
TIBCO solution brief

As the pace of business and change increases, application
communication and integration have become significantly more
important. A hardened, proven, tightly coupled communication
infrastructure is at the foundation of a truly digital enterprise
that can quickly react to change.

The most promising approaches to digital communication in
recent years have come from the open-source community where
developers have collaborated to provide solutions to common
challenges in building a digital world. One of these solutions is
Apache Kafka, which was built to provide distributed messaging for
log management and stream processing.

Because meeting the ever-changing needs of your business
requires careful consideration, in this whitepaper, we define several
commercial and open source options and set out their pros, cons,
and information about their complexity and cost of ownership.

A Brief History of Messaging

Starting from the time that someone needed one computer
to communicate with another, “messaging” describes
digital communications between systems.

Arpanet, the first wide-area packet switching network,
used network layer protocols like Ethernet, TCP/IP, and
UDP for system-to-system communication, which were the
beginnings of messaging.

As Arpanet evolved, and more systems were interconnected
to become today’s Internet, communications principles started
percolating up from the network layer to the application layer.
With these advances came layers of abstraction that simplified
how systems connected and communicated, which became
the goal of messaging technologies.

Choosing between
Kafka, Pulsar, and Other
Messaging Technologies

TIBCO solution brief | 2

Over the years, new communications protocols were invented
for different types of communications. Specifications
and protocols like Java Message Service (JMS) and Data
Distribution Service (DDS) came in the late 90s and early
2000s. Many applications began using protocols like HTML
and HTTP for more than what they were originally designed.
Everyone was looking for that one protocol that would
work for everything—like AMQ and AMQP (page 7)—but
the reality is that there will never be a single approach to
communicating. One person’s efficiency is another’s demise.
Digital communications will always be an amalgam of multiple
approaches and paradigms.

Apache Kafka
Open Source Software Solution
To understand Apache® Kafka®, you need to understand where it
came from. Developed by LinkedIn and donated to the Apache
Software Foundation, Kafka was originally designed as a
common framework to handle high-throughput and distributed
workloads for streaming logs and other real-time data feeds.

While the concept of high-throughput messaging isn’t new,
Kafka brings a new approach to solving the challenges of data
distribution and data resiliency that are built on the traditional
concepts of pub/sub messaging. Producer and consumer
applications send and receive data using topics (metadata)
that allow brokers to do the routing. Kafka is unique in how
it manages data persistence and tracks consumption. It
distributes brokers, and segments topics, into partitions that
can be balanced and redistributed by administrators as more
capacity and scale is needed.

Unlike other real-time messaging systems that store data based
on durable consumption, Kafka persists data (and consumption
metadata) based on Time To Live (TTL), an approach that
allows applications to consume data from any point in the
persisted data stream (replay those streams on demand) and
use consumer offsets to track which data has been consumed.

TTL provides native support for data replay where other systems
usually require out-of-band techniques to accomplish this.

TIBCO solution brief | 3

Key Characteristics of Apache Kafka

REQUIRED
SKILLS

Understanding of messaging and underlying operating system
functions, like storage and networking communications. Additional
understanding of open source software such as Apache Zookeeper,
MirrorMaker, etc.

COMPLEXITY Relatively easy to use out of the box. Complexity increases when
features like security, replication, and global distribution are required.

PROS •	 Long term data persistence

•	 Distributed data streaming

•	 Data replay services

•	 Higher throughput

CONS •	 Multiple systems to manage (Brokers, Zookeepers, MirrorMakers,
Connectors, etc.)

•	 	Replication not natively built into Kafka brokers

•	 	Management and monitoring can be challenging as the
infrastructure grows

•	 	Topic partitioning

•	 	Secure communications not designed in and is difficult
to implement.

•	 	Node partition balancing and leader selection

•	 	Community contributors are largely (90%) from a single organization

TOTAL COST OF
OWNERSHIP

Apache Kafka is simple and relatively easy to get up and running initially,
especially for small to medium-sized projects. Open source doesn’t mean
free, and growing Kafka to enterprise-scale requires dedicated support
staff to maintain the infrastructure. A number of commercial vendors,
including TIBCO, offer Apache Kafka support and maintenance.

PERFORMANCE
HIGHLIGHTS

Volume: HIGH
100,000+ messages/second

Latency: AVERAGE
Average of 10 ms

Scalability: HIGH
Clusters can scale both horizontally and vertically

Global Distribution: YES
Possible with third-party add-ons

Apache Pulsar
Open Source Software Solution
Developed by Yahoo, Apache® Pulsar®, like many other
messaging solutions, is built on the concept of publisher and
subscriber clients that leverage topics for data access. However,
Pulsar provides a storage system for both real-time and
historical data analysis.

TIBCO solution brief | 4

In many ways, Pulsar is similar to Kafka, but the foundation for
enterprise scale and deployment differentiates it. Natively built
to support all the data distribution paradigms that traditional
messaging solutions need to provide, Pulsar also supports
the ability to manage stream processing functions directly
in the broker infrastructure. This is very appealing to users
looking for less complexity when deploying large scale, global
infrastructure. Pulsar’s distribution at enterprise scale provides
out-of-the-box support for multi-tenancy and data replication
as part of the core infrastructure, allowing for simplification in
growing application usage and adoption over time.

Key Characteristics of Apache Pulsar

REQUIRED
SKILLS

Basic understanding of messaging and underlying operating system
functions, like storage and networking communications. Additional
understanding of OSS like Apache Zookeeper, Apache BookKeeper, etc.

COMPLEXITY A simplified encapsulated approach where all functions are centrally
accessible, reducing complexity when scaling to enterprise levels.

PROS •	 	Long-term data persistence

•	 	Multi-tenancy and data replication

•	 	Flexible security implementations

•	 	Much higher performance

•	 	A more centralized approach to integration and
streaming functions

•	 	Very broad community support, multiple contributors from
multiple organizations

CONS •	 	Initial setup can be more daunting

•	 	While centralized, there are a number of components

•	 	Not yet as widely deployed as other solutions

TOTAL COST OF
OWNERSHIP

Apache Pulsar takes a bit more effort to get up and running, but once
deployed, it scales to enterprise levels very well. Open source doesn’t
mean free, and running Pulsar at enterprise scale typically requires
dedicated support staff to maintain the infrastructure. A number of
commercial vendors, including TIBCO, offer Apache Pulsar support
and maintenance.

PERFORMANCE
HIGHLIGHTS

Volume: HIGH
100,000+ messages/second

Latency: AVERAGE
Average of 10 ms

Scalability: VERY HIGH
Clusters can scale both horizontally and vertically

Global Distribution: YES
Native support for global distribution and data replication built-in

TIBCO solution brief | 5

Eclipse Mosquitto (MQTT)
Open Source Software Solution
Like many other messaging solutions, Eclipse Mosquitto
was built and designed with a specific purpose in mind. It is
uniquely different in that it was built for the Internet of Things
(IoT), specifically to support MQ Telemetry Transport (MQTT).

MQTT was developed as an OASIS standard with input
from multiple organizations with many years of experience
in messaging and data distribution. Organizations like IBM,
Microsoft, TIBCO, and many others, contributed to the
specification, which has become one of the standards for
IoT communication. Developed to leverage MQTT exclusively,
Eclipse Mosquitto provides a simple broker approach to deploy
lightweight messaging suitable for internet-connected devices
that usually have low power consumption and intermittent
network connectivity. MQTT allows for a pub/sub, topic
approach to communications for devices like phones, controls,
sensors, and microprocessors.

Key Characteristics of Eclipse Mosquitto (MQTT)

REQUIRED
SKILLS

Knowledge of the MQTT protocol and specification

COMPLEXITY Very easy to set up and deploy. The MQTT protocol can be a little
complex depending on the usage requirements.

PROS •	 	Simple setup for messaging to devices in seconds

•	 	Purpose-built for IoT

•	 	The protocol defines message structure, making it easy to
integrate with other systems

CONS •	 	Limitations for large scale enterprise adoption

•	 	Infrastructure data persistence can be a challenge

•	 	Designed as a gateway communications protocol that should be
integrated into larger backend systems

TOTAL COST OF
OWNERSHIP

Eclipse Mosquitto provides a simple way to provide purpose-built
communications to IoT devices. It is easy to deploy and maintain,
but like any open-source solution, cost increases from supporting
and maintaining the infrastructure as it scales. IoT applications have
the potential to grow rapidly, and supporting this rapid growth
requires more investment in application development and the
supporting infrastructure.

PERFORMANCE
HIGHLIGHTS

Volume: HIGH
100,000+ messages/second

Latency: VARIABLE
Depends heavily on deployment architecture and network devices

Scalability: HIGH
Designed for large scale device communication, cluster scalability can
require additional resources

Global Distribution: NO
Built for device interconnectivity; clusters are not designed to scale for
global communication but to provide global aggregation of data

TIBCO solution brief | 6

Java Message Service (JMS)
Open Source Software & Commercial Solutions
Developed by a large consortium of enterprise software
companies and software developers with the goal of
providing a vendor-neutral approach to pub/sub messaging,
Java Message Service (JMS) was designed to simplify
communications and application development for Java
programming. The early goal was to provide a common
framework and interface for sending and receiving data in
a Java-centric world. In the late 1990s, JMS became the de
facto standard for application communication for the Java
programming language; However, the end goal of vendor-
neutral messaging was never fully achieved because the
specification only defined the application programming
interface (API) to leverage a JMS system.

The JMS specification, while by definition only applying to Java,
quickly grew beyond Java because its features and functions
were needed for all types of enterprise communication. It
didn’t define the wire protocol or many of the implementation
details that the JMS infrastructure needed; therefore, it became
a standardized way for applications to interact with a JMS
compliant messaging system. Each implementation was unique
and provided additional functionality that was not defined. This
meant that switching from one JMS implementation to another
was not as simple as originally imagined.

Defining the JMS specification, however, ushered in a new
era where common patterns were expected to be available
for enterprise-class messaging systems. Flexibility in delivery
types for broadcasting data to large numbers of consumers
versus more pointed delivery for applications needing queuing
semantics became common features of most messaging
systems. In addition, the ability to define how data persistence
and distribution occurred and the agreements for when
a message was processed, became common functions of
messaging after the advent of JMS.

Key Characteristics of Java Message Service (JMS)

REQUIRED
SKILLS

JMS specification knowledge is a plus

COMPLEXITY JMS systems are fairly simple to use and deploy. Since the system is
built on a defined specification, the operational behavior is fairly well
defined for most scenarios, but understanding all the pieces of the
specification can be daunting.

PROS •	 Well defined due to JMS specification

•	 	A very broad set of delivery modes, semantics, and features

•	 	Purpose-built for large scale Java communications

TIBCO solution brief | 7

Key Characteristics of Java Message Service (JMS)

CONS •	 	Has grown to support many heavyweight operations

•	 	Most implementations provide unique extensions that are highly
valuable but not interchangeable

•	 	Specification requirements tend to make the protocols for data
exchange chatty and heavyweight

TOTAL COST OF
OWNERSHIP

JMS has been around for a long time, and there are both commercial
and open-source solutions available. Knowledge of the JMS
specification typically lowers application development costs as the
interface is well defined and well known. Scaling JMS infrastructure
can be challenging and at times requires large numbers of servers, and
most enterprise operations require JMS infrastructure to be set up for
disaster recovery or high availability, which adds significant complexity
and cost.

PERFORMANCE
HIGHLIGHTS

Volume: MEDIUM
10,000+ messages/second

Latency: VARIABLE
Depends heavily on deployment architecture and latency of the
persistence engine can vary from 10s to 100s of milliseconds

Scalability: VARIABLE
Designed for large scale deployment but typically requires larger-scale
server infrastructure to support largely scalable environments

Global Distribution: YES
JMS is designed for large scale deployment but typically requires
larger-scale server infrastructure to support largely scalable
environments, and complex routing to support global architectures

AMQ / AMQP
Open Source Software & Commercial Solutions
Like JMS, Advanced Message Queuing (AMQ) and Advanced
Message Queuing Protocol (AMQP) are specifications designed
to provide a common framework for data exchange between
applications. Unlike JMS, AMQ and AMQP define both the
application programming interface (API) and the underlying
network communications layer. By defining the underlying protocol,
AMQP does something JMS cannot: provide a true vendor-neutral
approach to message distribution.

A common messaging paradigm both at the API layer and the
network protocol layer gives developers and organizations a
neutral way to implement a messaging infrastructure without
having to invest in multiple messaging systems. It’s equivalent
to the world agreeing that we are all going to speak the
same language. So, no need for error-prone translations from
one language to another and no more expensive time and
investment in learning how other languages communicate. But
what language is best for universal communications? How do
we incorporate all the efficiencies and subtlety of each unique
language’s communication into a common universal language?

TIBCO solution brief | 8

Will everybody be willing to sacrifice the language they are
comfortable with for one that will take a large amount of effort
to learn, adapt, and master?

This is the challenge of AMQ and AMQP. In trying to be
everything for everybody, many sacrifices in efficiency and
functionality have to be made. For some applications, these
sacrifices for universal communication definitely make sense;
For others, the sacrifice is just too great.

Key Characteristics of AMQ/AMQP

REQUIRED
SKILLS

AMQ and AMQP specification knowledge needed.

COMPLEXITY AMQ and AMQP can get highly complex quite fast. A universal
approach to data exchange at both the API and protocol level means
that the options for data distribution grow exponentially.

PROS •	 Defined to provide a universal, vendor-neutral approach to
message exchange

•	 Allows organizations the flexibility to deploy infrastructure that is
easily exchanged

•	 Specification means operational behavior is very well defined

CONS •	 	Specifications are very heavyweight, due to all the unique
universal requirements

•	 	Doesn’t allow many specializations for individual application
requirements

•	 	Plays to the lowest common denominator, which isn’t necessarily
the best choice for all applications

•	 	Value proposition comes from universal adoption

•	 	If AMQ is not used as the API, multi-language compatibility is lost

•	 	Incompatibility

TOTAL COST OF
OWNERSHIP

AMQ and AMQP could be a great approach to provide universal
communications; However, to provide this there has to be an
organizational standard that all communications are required to use.
In some organizations this is possible; in many others, it is not due to
unique requirements. If universal adoption is possible, the TCO is low. If
not, the TCO grows significantly as AMQ/AMQP becomes an integration
protocol that is fairly heavyweight and needs support and maintenance
to provide a common point of message integration.

PERFORMANCE
HIGHLIGHTS

Volume: MEDIUM / LOW
Average 1,000+ to 10,000+ messages/second

Latency: AVERAGE
Average of 10 ms

Scalability: VARIABLE
Similar to JMS, AMQP is designed for large scale deployment but
typically requires larger-scale server infrastructure to support largely
scalable environments.

Global Distribution: YES
Similar to JMS, AMQP is designed for large scale deployment but
typically requires larger-scale server infrastructure to support
largely scalable environments and complex routing to support
global architectures.

TIBCO solution brief | 9

High Volume / Low Latency
Open Source Software & Commercial Solutions
One of the benefits of standardization is that everything
becomes a level playing field. And for some companies,
leveling the playing field would eliminate their competitive
advantage. Organizations in industries like financial services
increase profitability and productivity using applications that
make decisions faster, process events faster, or distribute more
market data faster than others.

This is where the specialization of high volume / low latency
messaging has its appeal. Thirty years ago, market data
distribution for electronic trading was limited in scope, and
the technology at the time was limited in scale. The high-
performance network infrastructure was lucky to be capable
of 10 megabits a second, and low latency was described in
seconds. Today, network performance has increased by four
orders of magnitude, and 10 gigabit networks and real-time or
near real-time application responsiveness are commonplace.
Data distribution has to be less than 50 microseconds, and
some applications require nanosecond response.

Today, many of the features and functions of high volume / low
latency messaging have been incorporated into more traditional
enterprise messaging offerings. For example, open-source solutions
like Apache Kafka and Apache Pulsar describe themselves as high
volume / low latency. Purpose-built commercial solutions like IBM
LLM, TIBCO FTL software, and Informatica/29west LBM all went to
war in the early 2000s with a low-latency race to zero with many
of them now providing broad enterprise functionality built on their
high volume / low latency heritage.

The biggest key to leveraging messaging for high volume /
low latency functionality is defining what high volume and
low latency means to your enterprise. One organization’s low
latency is another’s high latency. So knowing what can be done
with a given solution, and how far that solution can scale to
meet the demands of extreme data volumes, is key.

Key Characteristics of High Volume / Low Latency

REQUIRED
SKILLS

Typically for extremely low latency and high volume, extreme tuning
of the underlying operating systems, networks, and applications is
required. Knowledge in threading, kernel tuning, and network tuning is
a plus.

COMPLEXITY To achieve highest performance, the solutions can get fairly complex
in what can be optimized and what tradeoffs need to be made. Most
solutions do not require using the more complex layers unless application
requirements demand that level of performance. Typically solutions built
for high volume/low latency are fairly easy to use in basic operations and
can be tuned to meet high demands with increased complexity.

TIBCO solution brief | 10

Key Characteristics of High Volume / Low Latency

PROS •	 	Built for some of the most demanding requirements and
performance

•	 	Handles workloads for all or most all application types

•	 	Designed to scale as infrastructure grows

•	 	Typically can use a peer-peer communication paradigm, removing
network hops

CONS •	 	Defining the needed level of performance can be challenging

•	 	Some solutions lack enterprise features needed for enterprise-
wide deployment

•	 	Complexity can increase quickly as demands for
performance increase

•	 	Requires well-architected publishing and subscribing applications
to keep up with and leverage the advantages

TOTAL COST OF
OWNERSHIP

These high volume / low latency solutions typically perform very well
for the task at hand. As demands on performance increase, complexity
typically does as well, meaning more investment needs to be made in
deploying, optimizing, and maintaining the infrastructure. Leveraging
low latency / high volume messaging as the nervous system for
enterprise communication provides a high ceiling with regards to
growth, but choosing the right solution that can meet all requirements
can take time and effort.

PERFORMANCE
HIGHLIGHTS

Volume: Extremely HIGH
Average 1,000,000+ messages/second

Latency: Extremely LOW
Average 50 microseconds

Scalability: HIGH
Designed to scale both infrastructure and client applications to process
and distribute large volumes of data with extremely low latency

Global Distribution: YES
Many solutions provide global distribution but require careful
architecture deployment to maintain performance, typically
architectural guidelines are provided to deploy these solutions in a
globally accessible way, with trade-offs

Websockets / Mobile Messaging
Open Source Software & Commercial Solutions
One of the first areas that traditional enterprise messaging
needed to extend into was for supporting web and mobile
communications. Arguably, this requirement was a precursor
to cloud messaging and IoT because mobile devices required
a lightweight approach to data delivery and needed variable
infrastructure. With the advent of WebSockets and HTML5, a
new approach to data delivery for web and mobile devices
became available that allowed for a natural extension of
enterprise messaging features to web and mobile.

TIBCO solution brief | 11

Websockets offered a simplified approach to providing bi-
directional communications for web and mobile applications,
but like standard sockets, a publish/subscribe abstraction layer
became very appealing with its much simpler approach to
communicating and scaling web and mobile applications.

The biggest value WebSockets and mobile messaging brings is
messaging-based communication native to the devices that need
to use it. For web-based applications, messaging is extended as
native WebSockets in Javascript or node.js models. For mobile
devices, WebSockets and mobile messaging extend to the
native interfaces for those devices, Android Java for Android
devices, and iOS C and Swift for Apple devices. Flexible
communications natively supported by the consumption
medium provides native support for push notifications.
Enterprise functionality allows enterprise organizations
to integrate and extend existing architectures to mobile
communication and integration.

Key Characteristics of Websockets / Mobile
Messaging

REQUIRED
SKILLS

Websockets / mobile messaging solutions tend to be fairly easy to
stand up and use. The interfaces tend to be natively defined for web
applications and mobile devices, meaning that the normal skill sets for
developing applications on these types of interfaces apply.

COMPLEXITY The overall complexity of Websockets / Mobile Messaging tends to be
low. It is designed to be very easy to setup, deploy, and service. Typically,
complexity comes in handling the large number of connections that these
types of applications require.

PROS •	 	Lightweight and easy to use

•	 	Typically provides native device application development bringing
messaging to the device seamlessly

•	 	Simplifies communications between front-end and back-end
systems leveraging native bi-directional communication to web
and mobile devices

CONS •	 	Typically not as robust in the enterprise message feature set that
may be needed for some types of applications

•	 	Communications protocols can be heavier weight due to
connection management and network connectivity requirements

•	 	Failure operations need to be considered in highly mobile
environments and when devices and not reachable long term

TOTAL COST OF
OWNERSHIP

Typically Websockets / Mobile Messaging solutions are designed to
provide simplified communication for web and mobile devices and
integrate with large scale enterprise solutions. This means that if the
only requirement is to provide messaging to these types of applications,
the cost of ownership is relatively low, however like most systems
these solutions need to tie into an enterprise backbone that requires
additional components.

TIBCO solution brief | 12

Key Characteristics of Websockets / Mobile
Messaging

PERFORMANCE
HIGHLIGHTS

Volume: MEDIUM to HIGH
Depends on the deployment model data structures used

Latency: HIGH
Latency can be very high depending on the networks and systems used

Scalability: HIGH
Typically provides high connection scalability but can require many
nodes/servers to do it

Global Distribution: MEDIUM
Most solutions are designed to provide internet based communications,
but the deployment of these solutions can limit global reach and
availability

Cloud Messaging
Commercial Solutions, Some Built on Open Source
Cloud messaging offerings are the newest offerings. With
the rapid growth of cloud services, many organizations are
looking to leverage the cloud not only for hosting application
infrastructure, but for communications infrastructure as
well. Because of this, many cloud providers offer simple
communications protocols for application development and
integration. In addition, many traditional messaging approaches
are now available as either hosted services or deployable as
containers into cloud environments.

The challenge is that there are so many options depending on
the cloud service and the application requirements. Another
question is the level of integration needed with existing on-
premises systems, and whether multi-cloud support is needed.
Moving a communications nervous system from on-premises to
cloud/multi-cloud can expose a lot of components that may or
may not be suited for the Cloud.

Where cloud messaging solutions tend to really stand out is
in new application development. As cloud-native services are
being built and deployed, a cloud-native communications
infrastructure purpose-built for these applications makes
communication simple. Cloud messaging initially provides a
very fast and easy approach to enabling communication for
cloud-based applications.

TIBCO solution brief | 13

Key Characteristics of Cloud Messaging

REQUIRED
SKILLS

Managed services require very little skill to get up and running.
Deploying cloud solutions in non-managed environments typically
requires basic knowledge of cloud deployment options and
containerization models like Kubernetes.

COMPLEXITY Cloud messaging offerings tend to be fairly easy to use. When more
complex operations are needed, cloud deployment of enterprise solutions
can be used.

PROS •	 	Built for cloud-native communications

•	 	Easy to use, deploy, and maintain

•	 	Managed services are readily available

•	 	Managed services require no additional infrastructure

CONS •	 	Many solutions do not provide the wide breadth of features that
traditional enterprise messaging solutions provide, like data
recovery and persistence

•	 	Multi-cloud deployment requires a neutral approach that allows
for deployment into any vendor’s cloud

•	 	On-premises integration can be challenging, depending on which
cloud messaging offering you choose, especially if an on-premises
messaging solution is already deployed

•	 	The latency of transmission can become challenging depending on
the location of service deployment

TOTAL COST OF
OWNERSHIP

Cloud messaging is a very low-cost way to provide native messaging
support without the overhead of deploying infrastructure to support
communications channels. Leveraging cloud messaging typically is a
great, low-cost approach for new application development or when you
need to extend the reach of applications to internet-based services.

PERFORMANCE
HIGHLIGHTS

Volume: HIGHLY VARIABLE
Depends heavily on the deployment architecture and location
of services

Latency: HIGHLY VARIABLE
Depends heavily on the deployment architecture and location
of services

Scalability: HIGH
Designed to be highly scalable on demand

Global Distribution: HIGH
By design, cloud messaging is globally accessible and typically
globally distributed

TIBCO solution brief | 14

TIBCO Software Inc. unlocks the potential of real-time data for making faster, smarter decisions. Our Connected
Intelligence platform seamlessly connects any application or data source; intelligently unifies data for greater
access, trust, and control; and confidently predicts outcomes in real time and at scale. Learn how solutions to our
customers’ most critical business challenges are made possible by TIBCO at www.tibco.com.
©2020, TIBCO Software Inc. All rights reserved. TIBCO, the TIBCO logo, and FTL are trademarks or registered trademarks of TIBCO Software Inc. or its
subsidiaries in the United States and/or other countries. Apache, Kafka, and Pulsar are trademarks of The Apache Software Foundation in the United States and/
or other countries. All other product and company names and marks in this document are the property of their respective owners and mentioned for identification
purposes only.

20May2020

Global Headquarters
3307 Hillview Avenue
Palo Alto, CA 94304
+1 650-846-1000 TEL
+1 800-420-8450
+1 650-846-1005 FAX
www.tibco.com

Conclusion	
Today more than at any other time, enterprises face a difficult
challenge when selecting a messaging communication offering.
While a single solution has a low TCO, no one solution can meet
all the demands for all applications. Messaging has to be more
holistic to fit specific and varied application requirements—
including for high performance/low latency event processing,
streaming data for streaming analytics, microservices for native
integration among disparate applications, IoT applications, and
much more.

The TIBCO Messaging platform fully supports almost all the
approaches described in this whitepaper. It takes on the
burden of natively integrating all communications solutions
and allows application developers to select the approach that
makes the most sense for the requirements without sacrificing
performance or needing additional coding. And with its native
information exchange, interchange, and data transformation,
TIBCO Messaging gives you the flexibility to build a fully-
integrated communications nervous system to unlock the data
throughout your enterprise.

With nearly 30 years’ experience deploying and maintaining
some of the most complex communications infrastructures
in the world—and now with full enterprise support for open
source and the other messaging technologies in our portfolio—
TIBCO can help you deploy and maintain pretty much any
solution you chose.

