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Abstract. We give an overview and outlook of the field of reinforce-
ment learning as it applies to solving financial applications of intertem-
poral choice. In finance, common problems of this kind include pricing
and hedging of contingent claims, investment and portfolio allocation,
buying and selling a portfolio of securities subject to transaction costs,
market making, asset liability management and optimization of tax con-
sequences, to name a few. Reinforcement learning allows us to solve
these dynamic optimization problems in an almost model-free way, re-
laxing the assumptions often needed for classical approaches.

A main contribution of this article is the elucidation of the link be-
tween these dynamic optimization problem and reinforcement learning,
concretely addressing how to formulate expected intertemporal utility
maximization problems using modern machine learning techniques.

1. Introduction

Intertemporal choice is at the heart of many modern financial applica-

tions involve. These are decision making problems in which the timing of

costs and benefits are spread out over time and where choices at one time

influence the possibilities available at other points in time. In finance, com-

mon problems of this kind include pricing and hedging of contingent claims,
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investment and portfolio allocation, buying and selling a portfolio of securi-

ties subject to transaction costs, market making, asset liability management

and optimization of tax consequences, to name a few. In this article we

elucidate the link between these dynamic optimization problem and rein-

forcement learning (RL), machine learning models that enables RL agents

to learn to make a sequence of decisions through “trial and error” incor-

porating feedback from its actions and experiences. In particular, we show

how to map and solve expected intertemporal utility maximization using

modern RL techniques.

Fundamental to these dynamic optimization problems is to determine the

best actions possible that maximize the relative value between two or more

payoffs at different points in time. Probably, the most common approach for

solving dynamic optimization problems of this kind is dynamic programming

(DP).1 DP refers to a collection of algorithms that can be used to explicitly

find solutions to the Bellman equation and hence compute optimal poli-

cies given a perfect model of the environment as a Markov decision process

(MDP) (see, for example, Sutton and Barto (2018)). While DP can be

applied in deterministic or stochastic and discrete-time or continuous-time

settings, it relies on several assumptions that are rarely true in practice,

including: (i) one accurately knows the dynamics of the environment, (ii)

one has enough computational resources to complete the computation of the

solution and (iii) the Markov property.

For many real-world financial applications, one is generally not able to im-

plement the DP solution exactly because one or several of these assumptions

are violated. Indeed, the assumptions are even violated in simple two-player

board games which are surely simpler than most problems of intertemporal

financial decision making. For example, although assumptions (i) and (iii)

present no problems for the game of backgammon, the second is a major

impediment. Because the game has about 1020 states, solving the Bellman

equation would, due to the curse of dimensionality, be prohibitive.

In many problems a complete model of the system is not available and we

will hence be in violation of (i). For instance, many stochastic systems in fi-

nance are complex and it is difficult to derive or estimate correct expressions

of their dynamics. This is referred to as the curse of modeling.

1Another approach is that of the maximum principle (MP). The MP is more general than
DP. In particular, one can show that the Bellman equations implies the MP, but not vice
versa (see, for example, Intriligator (2002)).
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RL provides a way of overcoming these two curses by means of building

agents that act intelligently, allowing efficient solutions to problems that

were considered intractable via DP. The roots of the success of RL comes

from leveraging several well-known areas, including DP, Monte Carlo simu-

lation, function approximation and machine learning (ML). For more than

twenty years, the standard reference on RL has been Sutton and Barto

(2018), which has been recently updated and remains close to the current

state of the field.

Perhaps the most useful mathematical object from classical control theory

that is being adapted for use in ML is the value function. A value function is

a mathematical expectation in a certain probability space. The underlying

probability measure is the one associated with a Markov process. When

the Markov process describes the state of a system it is sometimes called a

state-space model. The foundational treatise on value functions was written

by Richard Bellman at a time when ML was not in common usage ((see,

Bellman (1957)). Nonetheless, modern ML owes its existence, in part, to

him.

Interestingly, RL developed largely independently from classical utility

theory in economics and finance. It provides a way to train artificial agents

which learn through positive reinforcement to interact with an environment.

Their goal is to optimize the cumulative reward over time. Intuitively, the

RL agent does this through simple “trial and error” by receiving feedback

by means of the amount of reward resulting from each action it takes.

Mathematically speaking, RL is a way to solve multi-period optimal con-

trol problems. The RL agent’s policy typically consists of explicitly maxi-

mizing the action-value function for the current state. This value function

is an approximation of the true value function of the multi-period optimal

control problem. Training refers to the process of improving on the approxi-

mation of the value functions as more training examples are made available.

Although the state of the art of RL is still evolving, the vast majority

of the most successful applications in recent years utilize a simulation of

the environment to generate training data (as opposed to, say, training on

historical data). For example, in the by now famous example by Mnih et

al. (2013) and Mnih et al. (2015), a deep RL system learned to play video

games on a super-human level. The system was not provided with any

game-specific information or hand-designed features and was not privy to

the internal state of the emulator. It simply learned from nothing but the
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video input, the reward and terminal signals and the set of possible actions.

In another famous example, Silver et al. (2017) created the world’s best

Go player “based solely on RL, without human data, guidance, or domain

knowledge beyond game rules.” The associated system, termed AlphaGo

Zero “is trained solely by self-play RL, starting from random play, without

any supervision or use of human data.”2

Using simulated environments of course has the advantage that millions

of training examples can be generated, limited only by computer hardware

capabilities. The financial examples we present in this article follow the

same pattern. The RL agents we construct are trained by interacting with

a simulator.

The outline of this article is as follows. In section 2 we review the core

elements of reinforcement learning (RL). We discuss some common intertem-

poral decision problems in trading and portfolio optimization in section 3.

In section 4 we elaborate on the link between expected utility maximization

and the construction of rewards needed to train RL agents to solve trad-

ing problems. RL requires the specification of state and action variables.

In section 5 we discuss common state and action specifications pertaining

to financial trading and portfolio optimization. In this article, we provide

two concrete applications. First, in section 6 we expand upon an example

originally given by Ritter (2017) of using RL to trade mean-reversion. Here,

we introduce a continuous state space formulation and provide an explicit

graphical representation of the resulting value function. Second, section 7

describes a RL-based approach for the hedging and replication of deriva-

tives subject to market frictions and non-continuous trading. We provide

detailed numerical simulation results, demonstrating the effectiveness of the

method even in a setting with non-differentiable and nonlinear transaction

costs. Section 8 concludes.

2. Overview of the Elements of RL

In this section we review the core elements of RL including Markov de-

cision processes, value functions, policies and the Bellman equations. The

notation introduced in this section will be used throughout the remainder of

this article. For more details about these elements, we refer to Sutton and

Barto (2018).

2For many simpler examples of RL applications, see Sutton and Barto (2018).
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2.1. Markov Decision Processes. In RL aMarkov decision process (MDP)

serves the role of providing a model of the sequential decision-making prob-

lem at hand where a decision maker interacts with a system in a sequential

fashion. Intuitively, when in addition to a Markov process one has the possi-

bility of choosing an action from a menu of available possibilities (the “action

space”), with some reward metric that tells us how good our choices were,

then the augmented structure is an MDP.

The “environment” is defined simply as the part of the system outside of

the RL agent’s direct control. At each time step t, it observes the current

state of the environment st ∈ S and chooses an action at ∈ A. This choice

influences both the transition to the next state, as well as the reward, Rt,

the RL agent receives. Figure 1 depicts this situation.

Environment

Reward (Rt) Action (at)State (st)

RL Agent

Figure 1. The standard RL situation. At each time step t,
the RL agent observes the current state of the environment
st ∈ S and chooses an action at ∈ A. This choice influences
both the transition to the next state, as well as the reward,
Rt, it receives.

Underlying every MDP is a multivariate conditional probability distribu-

tion

p(s′, r | s, a) (1)

for the joint probability of transitioning to state s′ and receiving reward r,

conditional on the previous state being s and the RL agent taking action a

when in state s. In classical applications of DP, the researcher would build a

model of the system, which would allow, at least in principle, the calculation

of probabilities (1). In RL, the distribution (1) is typically not known to the

RL agent, but its existence gives mathematical meaning to notions such as

“expected reward.”

A policy π is, roughly, an algorithm for choosing the next action, based

on the state one is in. More formally, a policy is a mapping from states to
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probability distributions over the action space. If the RL agent is following

policy π, then in state s it will choose action a with probability π(a | s). To

define an ordering on policies, one must specify a goal function, a real-valued

random variable that is desired to be optimal in expectation.

There are two versions of goal functions in common usage: the discounted

reward goal and the average-reward (or reward-per-unit time) goal. As it

leads to simpler expressions of the Bellman equation, we first discuss the

discounted goal function defined as

Gt = Rt+1 + γRt+2 + γ2Rt+3 + . . .

= Rt+1 + γGt+1 (2)

where Rt is the reward at time t and γ ∈ (0, 1) is a discount factor expressing

the notion that rewards further in the future are worth less to the RL agent

than rewards which are closer in time.

RL is the search for policies which maximize the expectation of the goal

function, namely

max
π

E[Gt] . (3)

2.2. Value Functions and Policies. The action-value function is the ex-

pected goal function, assuming we start in state s, take action a and then

follow some fixed policy π from then on

qπ(s, a) := E[Gt] starting from s, taking a, then following π . (4)

The state-value function for policy π is defined as

vπ(s) = Eπ[Gt |St = s] (5)

where Eπ denotes the expectation under the assumption that policy π is

followed. The action-value function is a more general concept than the

state-value function, due to the obvious relationship between them given by

vπ(s) =
∑

a

π(a | s)qπ(s, a) . (6)

The state-value function defines a partial ordering on policies. Policy π

is defined to be at least as good as π′ if

vπ(s) ≥ vπ′(s) (7)

for all states s. An optimal policy is defined to be one which is at least as

good as any other policy. There need not be a unique optimal policy, but
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all optimal policies share the same optimal state-value function

v∗(s) = max
π

vπ(s) (8)

and optimal action-value function

q∗(s, a) = max
π

qπ(s, a). (9)

Note that v∗(s) = maxa q∗(s, a), so the optimal action-value function is

more general than the optimal state-value function. If we are willing to do

some computation, we can recover q∗ from v∗ via

q∗(s, a) = E[rt+1 + γv∗(st+1) | st = s, at = a] . (10)

Furthermore, if we knew the q-function corresponding to the optimal pol-

icy, say q∗, we would know the optimal policy itself, namely

choose a ∈ A to maximize q∗(st, a) . (11)

This is called following the greedy policy. Hence we can reduce the problem

to finding q∗, or producing a sequence of iterates that converges to q∗.

2.3. The Bellman Equations.

Many reinforcement learning methods can be clearly under-

stood as approximately solving the Bellman optimality equa-

tion, using actual experienced transitions in place of knowl-

edge of the expected transitions.

— Sutton and Barto (2018)

It is straightforward to establish that the optimal state-value function and

action-value function satisfy the Bellman equations

v∗(s) = max
a

∑

s′,r

p(s′, r | s, a)[r + γ v∗(s
′)] (12)

q∗(s, a) =
∑

s′,r

p(s′, r | s, a)[r + γ max
a′

q∗(s
′, a′)] (13)

where the sum over s′, r denotes a sum over all states s′ and all rewards r.

The basic idea of several RL algorithms is to associate the value on the

right-hand side of the Bellman equation, and specifically the quantity in

brackets in (13)

Y = r + γ max
a′

q∗(s
′, a′) (14)
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with the state-action pair X = (s, a) that generated it. We will use this

(X,Y ) notation frequently in the sequel. The only problem is that we do

not know q∗(s
′, a′) so we cannot actually calculate the Y -value or “update

target” in the above equation. Perhaps we could use our current best guess

of the function q∗ to estimate the update target, or Y -value.

Imagine a scenario where we simulate the underlying Markov process, or

perhaps even rely on the “simulation” that is known as the “real world.”

Performing the computations above in our “simulation” leads to a sequence

of (X,Y ) pairs where

Xt = (st, at) (15)

is the state-action pair at the t-th step in the simulation, and

Yt = rt + γ max
a′

q̂t(s
′, a′) (16)

with q̂t denoting the best approximation of q∗ as it existed at the t-th time

step. Then, the Bellman equation (13) implies that

q∗(s, a) = E[Y |X] .

Hence determining q∗(s, a) is driven by learning the association between Y

and X, a supervised learning problem.

RL methods which focus on learning the association Y = f(X) + noise

with (X,Y ) as above are referred to as function approximation by Sutton

and Barto (2018). The function f(X) in this relationship is typically non-

linear as we shall see in the examples below. RL is sometimes presented as

fundamentally different from supervised an unsupervised learning. Rather,

we think of it as a way of directing supervised learning methods towards

maximizing a longer-term goal.

3. Some Intertemporal Decision Problems in Trading and

Portfolio Optimization

Many financial trading and portfolio optimization problems can be ex-

pressed in terms of value functions. In this section we review a few exam-

ples.

Example 3.1 (Replication of a derivative contract). Given a derivative con-

tract, suppose there is a dynamic trading strategy which gives the same

payout as this contract in every state of the world; such world-states are

usually referred to as Arrow-Debreu states in economics. In other words,

this strategy is a replicating strategy. Suppose the policy π is to follow the
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replicating strategy. Then the no-arbitrage price of the option is

vπ(s0) (17)

where s0 is the state of the world today. Note that this applies to any

state-contingent claim, and is not limited to Black-Scholes-Merton (BSM)

or lognormal models.

We note that in Example 3.1 the policy is a trading strategy. A generalized

version of this example applies in the presence of transaction costs when

perfect replication is not possible. In these situations, one seeks the policy

which maximizes a mean-variance form (or another desired utility function)

which includes expected cost and a penalty for the hedging variance. The

hedging variance is nonzero whenever the hedge is not perfectly replicating

the derivative. We shall discuss an example of this form in greater detail in

section 7.

Example 3.2 (Optimal order execution). Let us consider liquidating an order

of size X using the framework of Almgren and Chriss (1999) and Almgren

and Chriss (2001). Almgren and Chriss suggest to determine the sequence

of child orders by maximizing expected mean-variance utility. In this case,

the value function is the expected integrated revenue and variance

vπ(s) = E

[
∫ T

0

(

xtrt −
λ

2
x2tσ

2
t − f(ẋt)

)

dt

∣
∣
∣
∣
∣
x0 = s

]

(18)

where f(ẋt) is some function of the time-derivative ẋt := dxt/dt approxi-

mating market impact.

Example 3.3 (Dynamic portfolio rebalancing with time-dependent return

predictions and market impact costs). Buy-side quant traders are interested

in maximizing their expected utility of wealth subject to trading costs. Using

mean-variance utility results in the model by Gârleanu and Pedersen (2013).

This approach is conceptually similar to that of optimal order liquidation

above, but with the added complexity of time-varying return predictions

(“alpha”).

To use this approach in practice requires three models: (1) a model of

expected returns, (2) a risk model which forecasts portfolio variance and

(3) a (pre-trade) transaction cost model. Gârleanu and Pedersen (2013)

require the transaction cost model to be quadratic and return predictions

to be autoregressive. Kolm and Ritter (2015) present and solve a more
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general model that allows for non-linear transaction costs and general return

predictions. Solution techniques for these problems are likely also useful in

Bayesian statistics and vice versa. For example, the model of Kolm and

Ritter (2015) was further generalized by Irie and West in a 2019 paper (Irie

and West, 2019), which gave birth to the technique known as Bayesian

emulation.

In the setting of multi-period portfolio selection, RL methods can in prin-

ciple be applied without directly estimating any of these three models, or

they can be applied in cases where one has one model but not all three.

For example, given a security return prediction model, ML techniques can

be used to infer the optimal strategy without directly estimating the cost

function.

Example 3.4 (Portfolio allocation subject to capital gains taxes). Example

3.3 can be extended to include capital gains and other taxes, resulting in

a dynamic portfolio rebalancing model for after-tax investing (see, for ex-

ample, Constantinides (1984), Garlappi, Naik, and Slive (2001), Dammon,

Spatt, and Zhang (2004), DeMiguel and Uppal (2005), and Haugh, Iyengar,

and Wang (2016)). Just as in the previous example, RL methods can in

principle be applied to solve these after-tax problems.

4. Economically Motivated Reward Signals

RL possesses a rather obvious connection with games and game theory

and hence with game-theoretic approaches to economics. The player is the

“agent” and the “environment” consists of the other players or the simulated

environment of the game. For many games including backgammon, Go

and some video games, the best player in the world is an AI trained using

reinforcement learning (see, for example, Mnih et al. (2013), Mnih et al.

(2015), Tian and Zhu (2015), and Silver et al. (2017)).

Von Neumann and Morgenstern (1945) show that if a decision-maker

(i) is faced with risky (probabilistic) outcomes of different choices and

(ii) has preferences satisfying four axioms of “rational behavior”

then their choices can be determined by maximizing the expected value

of some function, u, called the utility function, defined over the potential

outcomes. The utility function quantifies the decision-maker’s preferences

for different outcomes. This function is typically concave, increasing and

differentiable. When one applies expected utility theory to the trading of
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financial securities, the outcomes are typically different levels of wealth wT

at some future time T . A rational agent would then maximize the expected

utility of future wealth, E[u(wT )].

In finance, an optimal trading strategy is usually defined as a strategy that

maximizes expected utility of future wealth, where future wealth is the sum

of a number of wealth increments over shorter time periods. Hence, to find

the optimal trading strategy we seek to solve the problem

max E[u(wT )] (19)

where wT = w0 +

T∑

t=1

δwt . (20)

Here δwt := wt−wt−1 is the wealth increment from t−1 to t and w0 denotes

initial wealth.

It is well-known that under certain assumptions on the return distribution,

maximizing expected utility is equivalent to maximizing a mean-variance

form of the problem (Chamberlain, 1983). The main assumption for this

to be justified is that the isoprobability contours of the return distribution

exhibit elliptical symmetry. Note that these so-called elliptical distributions

comprise a large class of distributions that includes many fat-tailed distri-

butions. In other words, the validity of mean-variance optimization as a

solution to an investor’s expected utility maximization problem does not

require us to assume normally-distributed returns.

Under these assumptions, there exists some constant κ > 0, which de-

pends on initial wealth w0 and the investor’s utility function, such that (19)

is equivalent to

max E[wT ]−
κ

2
V[wT ] (21)

Suppose now that we could invent some definition of reward, Rt, so that

E[wT ]−
κ

2
V[wT ] ≈

T∑

t=1

Rt . (22)

Then (21) would become a “cumulative reward over time” problem that

we can solve through RL and maximizing the right-hand side of (22) is

equivalent to maximizing average reward.

Among the various algorithms provided by RL, a number of them seek to

maximize E[Gt] where

Gt = Rt+1 + γRt+2 + γ2Rt+3 + . . . (23)
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which, by (22), would then maximize approximate expected utility as long

as γ = 1− ǫ with ǫ small.

Let us consider the reward function

Rt := δwt −
κ

2
(δwt − µ̂)2 (24)

where µ̂ is an estimate of a parameter representing the mean wealth incre-

ment over one period, µ := E[δwt]. Then

1

T

T∑

t=1

Rt =
1

T

T∑

t=1

δwt

︸ ︷︷ ︸

→E[δwt]

−
κ

2

1

T

T∑

t=1

(δwt − µ̂)2

︸ ︷︷ ︸

→V[δwt]

(25)

for large T , such that the two terms on the right hand side approach the

sample mean and variance, respectively. Thus with this choice of reward

function (24), if the RL agent learns to maximize cumulative reward it should

also approximately maximize the mean-variance form of utility.

Strictly speaking, what appears on the left side of equation (25) is aver-

age reward, and not cumulative discounted reward. Of course, if the process

is stationary then a policy which is the optimal cumulative discounted re-

ward should also have favorable average-reward properties. Nonetheless, as

is clear from this formulation, we naturally have a preference for average

reward rather than discounted reward as the goal Gt.

Following Sutton and Barto (2018), in the average reward setting the

“quality” of a policy π is defined as

r(π) := lim
T→∞

1

T

T∑

t=1

E[Rt |S0, A0:t−1 ∼ π] (26)

= lim
t→∞

E[Rt |S0, A0:t−1 ∼ π] (27)

=
∑

s

µπ(s)
∑

a

π(a | s)
∑

s′,r

p(s′, r | s, a)r . (28)

Here, µπ denotes the steady-state distribution, which is assumed to exist for

any π and to be independent of S0. This particular assumption about the

MDP is known as ergodicity. Ergodicity means intuitively that where the

MDP starts, or any early decision made by the RL agent, can have only a

temporary effect.

We can now order policies according to r(π). In particular, we consider

all policies that attain the maximal value of r(π) to be optimal. Sutton and
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Barto (2018) suggest that in the context of function approximation, one

should always use the average-reward framework.

In the average reward setting, goals are defined in terms of differences

between rewards and the average reward

Gt := Rt+1 − r(π) +Rt+2 − r(π) + . . . (29)

The corresponding value functions are known as differential value functions.

They are defined in the same way and we will use the same notation for

them. Differential value functions also have Bellman equations, just slightly

different from those we have seen earlier. We simply remove all γ’s and

replace all rewards by the difference between the reward and the true average

reward. We refer to Sutton and Barto (2018) for details.

5. States and Actions for Trading Problems

The state variable st is a data structure which intuitively must contain

everything the RL agent needs to make a trading decision and nothing else.

Candidate state variables include:

(i) the current position or holding in the security,

(ii) the values of any signals which are believed to be predictive,

(iii) the current state of the market, including current price and any

relevant microstructure / limit-order book details, and

(iv) if contingent claims are involved, additional variables such as time

to expiry to properly define the contract.

In trading problems, the most obvious choice for the action at is the

number of securities to trade. If the RL agent’s interaction with the market

microstructure is important, then there will typically be more choices to

make and hence a larger action space. For example, the RL agent could

decide which execution algorithm to use, whether to cross the spread or

be passive, its target participation rate, etc. If one of the securities is a

contingent claim, there may be additional actions available, such as early

exercise or, more generally, a pre-specified set of dates or other conditions

at which the user can exercise various kinds of optionality.

One must choose whether to use mathematical methods which require a

finite state space and enumeration of all possible states (such as Watkins

Q-learning), or methods which allow a continuous state space. From our

discussion above, we infer that in trading problems the state vector will
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typically be an object which is “inconveniently” high dimensional. For ex-

ample, with k variables describing the current state of the limit order book

and n predictive signals we obtain a state space which is naturally embed-

ded within R
n+k. There is no natural way to represent R

n+k as a finite

enumeration of state vectors and, moreover, any method requiring an enu-

meration of state vectors is unlikely to scale well as n + k becomes large.

Therefore, for realistic trading applications we focus on continuous state-

space methods. Tabular methods which enumerate all states are useful for

simple proof-of-concept applications and for classroom examples.

Recall our earlier discussion of how these models can be trained. Simula-

tion leads to a sequence of (X,Y ) pairs where

Xt = (st, at), Yt = rt + γ max
a′

q̂t(s
′, a′) (30)

with q̂t denoting the best approximation of q∗ as it existed at the t-th time

step. Function approximation methods learn the unknown function f where

Y = f(X) + noise. This is of course the well-known nonlinear regression

problem in statistics that can be solved by many methods including artificial

neural networks, basis functions, etc. For many regression methods, even

nonlinear ones, the representation of X as an n-dimensional vector is not

problematic, even for large n. For a review of nonlinear regression techniques

which apply to the function estimation problem discussed here, we refer to

Friedman, Hastie, and Tibshirani (2001).

6. Trading Mean-Reversion with RL

In this section, we expand upon an example originally given by Ritter

(2017) using RL to trade mean-reversion. We extend Ritter (2017) by in-

troducing a continuous state space formulation and providing an explicit

graphical representation of the resulting value function. We will see later

from the value function that the RL agent has learned the existence of a no-

trade zone in a neighborhood around the equilibrium price. For background

and more details about this problem, we refer to the original article and the

references therein.

Assume that there exists a tradable security with a strictly positive price

process pt > 0. This “security” could itself be a portfolio of other securities,

such as an ETF or a hedged relative-value trade. Further suppose that there

is some “equilibrium price” pe such that xt = log(pt/pe) has dynamics

dxt = −λxt + σ ξt (31)
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where ξt ∼ N(0, 1) and ξt, ξs are independent when t 6= s and σ > 0. This

means that pt tends to revert to its long-run equilibrium level pe with mean-

reversion rate λ > 0. Note that these assumptions imply existence of an

alpha strategy. In particular, positions taken in the appropriate direction

while away from equilibrium have small probability of loss and extremely

asymmetric loss-gain profiles.

Initially, we do not provide the RL agent with any knowledge of the price

dynamics. Hence, it does not know λ, σ, or even that some dynamics of the

form (31) are valid.

The RL agent also does not know the trading cost. We charge a spread

cost of one tick size for any trade. If the bid-offer spread were equal to two

ticks, then this fixed cost would correspond to the slippage incurred by an

aggressive fill which crosses the spread to execute. If the spread is only one

tick, then our choice is overly conservative. In this article we will use the

following representation of the spread cost

SpreadCost(δn) = TickSize · |δn| . (32)

In addition, we assume that there is price impact in our economy which has a

linear functional form. Specifically, each round lot traded is assumed to move

the price one tick, hence leading to a dollar cost of |δnt| ×TickSize/LotSize

per share traded, for a total dollar cost for all shares

ImpactCost(δn) = (δn)2 × TickSize/LotSize . (33)

Taken together, the total trading cost becomes

Cost(δn) = multiplier × (SpreadCost(δn) + ImpactCost(δn) . (34)

This is a common trading cost specification both in practice as well as in

the academic literature (see, for example Almgren and Chriss (2001) and

Almgren (2003)). The multiplier allows us to easily test the RL agent in

regimes of more or less liquidity.

We will use the following state representation of the environment

st = (pt, nt−1) (35)

where pt is the price of the security and nt−1 denotes the RL agent’s position

coming into the period, in number of shares. In contrast to Ritter (2017),

here we represent the state vector as a vector in a (continuous) Euclidean

space – R
2 in this problem. This allows us to use the nonlinear regression

techniques discussed above to learn the association between X and Y that
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is the action-value function. We use an ensemble of model trees as our

nonlinear regression learner, but that is certainly not the only possible choice

– it is likely that an artificial neural network would work as well. For an

overview of continuous state and action space approaches see, for example,

Van Hasselt (2012), Nichols (2014), and Sutton and Barto (2018).
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Model−Tree Averaging Value Function

Figure 2. The learned value function p → q̂((0, p), a) for
various actions a, where q̂ is estimated by using continuous
state-space methods. The red, gold, green, blue and purple
lines represent the action of trading −100,−200, 0, 100 and
200 shares respectively. The resulting decision at each price
level (assuming zero initial position) is obtained by taking
the maximum of the piecewise-linear functions.

Figure 2 depicts the learned value function. The relevant decision at each

price level (assuming zero initial position) is the maximum of the various

piecewise-linear functions shown in the figure. The RL agent has learned the

existence of a no-trade region in the center, where the zero-trade action line

is the maximum. Notice that there are regions on both sides of the no-trade

zone where a trade n = ±100 is optimal, while the maximum trade of ±200

is being chosen for all points sufficiently far from equilibrium.

To evaluate the RL agent out-of-sample, we record its performance from

trading on 5, 000 new samples from the stochastic process (31). Figure 6

shows the RL agent’s P/L.
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Figure 3. Cumulative simulated out-of-sample P/L of
trained model.

We believe these results are encouraging: we constructed a system wherein

we know there is an alpha strategy, analogous to a game where winning

strategies exist. Our results demonstrates that (i) a RL agent can learn to

play this game and (ii) it learns a reasonable strategy.

We think this opens up the possibility of viewing classical no-arbitrage

theorems in a new way. Classically, there is no arbitrage in a system of

stochastic price processes if there exists a risk-neutral measure. In the

framework presented here, an arbitrage is defined as a high-Sharpe trad-

ing strategy after trading costs. This suggests the following no-arbitrage

theorem: there is no arbitrage if and only if the optimally-trained RL agent

cannot achieve a high Sharpe ratio.

7. Optimal Hedging of Derivatives with RL

In this section, we explore another application of interest to traders that

fits within the general framework presented in Section 4: the replication and

hedging of an option position. This is a fundamental problem in finance.

Since the seminal work of Black and Scholes (1973) and Merton (1973) on

option pricing and dynamic hedging (jointly referred to as BSM), a vast

number of articles have addressed the problem of optimal replication and

hedging under more general assumptions.3 The core idea of BSM is that

in a complete and frictionless market there exists a continuously rebalanced

3While a number of articles have considered discrete time hedging or transaction costs
alone, Leland (1985) was first to address discrete hedging under transaction costs. His
work was subsequently followed by others; see Kolm and Ritter (2019) for a discussion.
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dynamic trading strategy in the stock and riskless security that perfectly

replicates the option.

Of course, in practice continuous trading of arbitrarily small amounts of

stock is prohibitively costly. Therefore, the portfolio replicating the option

is rebalanced at discrete times to minimize trading costs. As a consequence,

perfect replication is impossible and an optimal hedging strategy depends

on the desired trade-off between replication error and trading costs. That

is to say that the hedging strategy chosen by an RL agent depends on their

risk aversion.

We look at the simplest possible hedging example: a European call option

with strike price K and expiry T on a non-dividend-paying stock. We take

the strike and maturity as fixed, exogenously-given constants. For simplicity,

we assume the risk-free rate is zero. The RL agent we train will learn to

hedge this specific option with this strike and maturity. It is not being

trained to hedge any option with any possible strike/maturity. We note

that a version of the model below appeared in Kolm and Ritter (2019).

For European options, the state must minimally contain the current price

St of the underlying and the time to expiration

τ := T − t > 0 , (36)

as well as the RL agent’s current position of n shares. Thus, the state is an

element of

S := R
2
+ × Z = {(S, τ, n) | S > 0, τ > 0, n ∈ Z}. (37)

We stress that the state does not need to contain the option Greeks, as they

are (nonlinear) functions of the variables the RL agent has access to via

the state. We expect it to learn such nonlinear functions on their own as

needed. This has the advantage of not requiring any special, model-specific

calculations that may not extend beyond BSM and similar models.

First, we consider an economy without trading costs and answer the ques-

tion of whether it is possible for a RL agent to learn what we teach students

in their first semester of business school: the formation of the dynamic repli-

cating portfolio strategy. Unlike our students, the RL agent can only learn

by observing and interacting with simulations.

We put the RL agent at a disadvantage by not letting it know any of the

following pertinent pieces of information: (i) the strike price K, (ii) that

the stock price process is a geometric brownian motion (GBM), (iii) the
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volatility of the price process, (iv) the BSM formula, (v) the payoff function

(S −K)+ at maturity and (vi) any of the Greeks. The RL agent must infer

the relevant information concerning these variables, insofar as it affects the

value function, by interacting with a simulated environment.

Each out-of-sample simulation of the GBM is different. Figure 4 shows a

typical example of the trained agent’s performance.
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Figure 4. Comparison of a simple delta-hedging agent
with (out-of-sample) simulation of a trained RL agent.
We depict cumulative stock, option and total P/L; RL
agent’s position in shares (stock.pos.shares), and −100 · ∆
(delta.hedge.shares). Observe that (a) cumulative stock and
options P/L roughly cancel one another to give the (rela-
tively low variance) total P/L and (b) the RL agent’s posi-
tion tracks the delta position even though the agent was not
provided with a computation of the delta.

A key strength of the RL approach is that it does not make any assump-

tions about the form of the cost function (34). It will learn to optimize

expected utility, under whatever cost function one provides.

As we need a baseline, we define πDH to be the policy which always

trades to hedge delta to zero according to the BSM model, rounded to the

nearest integer number of shares. Previously we had taken multiplier = 0
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in the function Cost(n) representing no frictions. We now take multipler

= 5, representing a high level of friction. Our intuition is that in high-

trading-cost environments (which would always be the case if the position

being hedged were a very large position relative to the typical volume in the

market), then the simple policy πDH trades too much. One could perhaps

save a great deal of cost in exchange for a slight increase in variance.

Given that we are using a reward signal that converges to the expected

mean-variance utility (21), we naturally expect RL to learn the trade-off

between variance and cost. In other words, we expect it to realize lower

cost than πDH , possibly coming at the expense of higher variance, when

averaged across a sufficiently large number of out-of-sample simulations (i.e.

simulations that were not used during the training phase in any way). After

training we generated N = 10, 000 out-of-sample simulations and ran a horse

race between the baseline agent who just uses delta-hedging and ignores cost,

and the RL trained agent who trades cost for realized volatility.

Figure 5 shows one representative out-of-sample path of the baseline

agent. We see that the baseline agent is over-trading and paying too much

cost. Figure 6 shows the RL agent – we see that, while maintaining a hedge,

the RL agent is trading in a cost-conscious way.

The curves in Figure 5, representing the RL agent’s position (stock.pos.shares),

are much smoother than the value of −100 ·∆ (called delta.hedge.shares in

Figure 5), which naturally fluctuates along with the GBM process.
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Figure 5. Out-of-sample simulation of a baseline agent who
uses policy “delta” or πDH . We show cumulative stock P/L
and option P/L, which roughly cancel one another to give
the (relatively low variance) total P/L. We show the position,
in shares, of the agent (stock.pos.shares). The agent trades
so that the position in the next period will be the quantity
−100 · ∆ rounded. The right-hand plot shows only the two
most relevant curves from the left.
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Figure 6. Out-of-sample simulation of our trained RL
agent. The curve representing the agent’s position
(stock.pos.shares), controls trading costs and is hence
much smoother than the value of −100 · ∆ (called
delta.hedge.shares), which naturally fluctuates along with
the GBM process. The right-hand plot shows only the two
most relevant curves from the left.

Above we could only show a few representative runs taken from an out-of-

sample set of N = 10, 000 paths. To summarize the results from all runs, we

computed the total cost and standard deviation of total P/L of each path.

Figure 7 shows kernel density estimates (basically, smoothed histograms) of

total costs and volatility of total P/L of all paths. The difference in average

cost is highly statistically significant, with a t-statistic of −143.22. The

difference in vols, on the other hand, was not statistically significant at the

99% level.
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Figure 7. Kernel density estimates for total cost (left panel)
and volatility of total P/L (right panel) from N = 10, 000
out-of-sample simulations. Policy “delta” is πDH , while
policy “reinf” is the greedy policy of an action-value func-
tion trained by RL. The “reinf” policy achieves much lower
cost (t-statistic = −143.22) with no significant difference in
volatility of total P/L.

One can also gauge the efficacy of an automatic hedging model by how of-

ten the total P/L (including the hedge and all costs) is significantly less than

zero. For both policies (“delta” and “reinf”) we computed the t-statistic of

total P/L for each of our out-of-sample simulation runs and constructed ker-

nel density estimates, see figure 8. The “reinf” method is seen to outperform

as its t-statistic is much more often close to zero and insignificant.
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Figure 8. Kernel density estimates of the t-statistic of total
P/L for each of our out-of-sample simulation runs and for
both policies represented above (“delta” and “reinf”). The
“reinf” method is seen to outperform in the sense that the
t-statistic is much more often close to zero and insignificant.

Lastly, we recall the well-known fact that, in continuous time, the opti-

mal replicating portfolio strategy for a derivative contract is a solution to

a nonlinear PDE given by the Feynman-Kac theorem (see Simon (1979) for

an exposition). Therefore, one might guess that if reinforcement learning

can determine the optimal replicating portfolio strategy in an approximate
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numerical sense, then it is performing numerical solution of the resulting

(Feynman-Kac) PDE. Indeed, Weinan, Han, and Jentzen (2017) find that

using deep reinforcement learning (RL in which the function approximation

is done by means of a neural network) can provide accurate numerical solu-

tions of certain parabolic PDEs. What we have done above is essentially to

solve the Black-Scholes PDE numerically using RL.

8. Conclusions

In this article we showed how reinforcement learning (RL) – machine

learning models that enable agents to learn to make a sequence of decisions

through “trial and error” incorporating feedback from its actions and expe-

riences – can be used to solve modern financial applications of intertemporal

choice. In finance, common problems of this kind include pricing and hedg-

ing of contingent claims, investment and portfolio allocation, buying and

selling a portfolio of securities subject to transaction costs, market making,

asset liability management and optimization of tax consequences, to name

a few.

Option hedging, optimal execution and optimal trading of alpha forecasts

all share the property that the value function is the expected integrated

revenue and variance

vπ(s) = E

[
∫ T

0

(

xtrt −
λ

2
x2tσ

2
t − f(ẋt)

)

dt

∣
∣
∣
∣
∣
x0 = s

]

where f(ẋt) is some function of the time-derivative ẋt := dxt/dt approxi-

mating market impact.

RL allows us to solve these dynamic optimization problems in a close

to “model-free” way, relaxing the assumptions often needed for dynamic

programming (DP) approaches. In finance, underlying stochastic dynamics

are often complex and therefore difficult to derive or estimate correctly.

Additionally, realistic specification of microstructure effects and transaction

costs add an additional layer of complexity due to their nonlinear and non-

differentiable behavior. In this article, we contended that RL shows great

promise in addressing these issues in a general and flexible way.

Weinan, Han, and Jentzen (2017) find that deep reinforcement learn-

ing gives new algorithm for solving parabolic partial differential equations

(PDEs) and backward stochastic differential equations (BSDEs) in high di-

mension. The PDEs include the typical Feynman-Kac PDEs that appear
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in option pricing, so it is perhaps not surprising that RL agents can learn

to hedge options. This technique is especially promising because it imme-

diately generalizes to more realistic problems including transaction costs.

Computationally, deep reinforcement learning is easily implemented with

the help of existing numerical libraries such as TensorFlow.

While RL is promising for financial applications it is not without chal-

lenges, including:

• Correct specification of the model: this entails the representation of

the state, choice of the actions and design of the reward. Each one

of these is problem specific, both in terms of specification as well as

in difficulty.

• Acquisition of sufficient data for training and online training: the

majority of the most successful non-finance RL applications in re-

cent years utilize a simulation of the environment to generate train-

ing data as opposed to training on historical data (see, for example,

the Mnih et al. (2013), Mnih et al. (2015), and Silver et al. (2017)

who use RL systems to play video games and Go on a super-human

level). A clear benefit of simulation is that data scarcity is not an

issue. That said, we believe it will be important for financial ap-

plications to develop RL techniques that can train on historical and

online data. The traditional way of training on scarce historical data

is achieved by first developing a stochastic model of the environment

with relatively few parameters, fitting those few parameters to his-

torical data and then training a RL system on as many simulations

as needed from the stochastic model. In effect, one uses a stochastic

model to “impute the missing data” from the environment. While

this can serve as a starting point, training then becomes dependent

on the assumptions and specifications of the chosen stochastic model.

More general and flexible data models are warranted.

• Generalization of RL models: There is a growing body of research

in the RL community addressing the need to take agents trained

for one task and adapt them for a similar task, without having to

start from scratch. Some approaches include transfer learning (see,

for example, Taylor and Stone (2009)) and progressive models (see,

for example, Rusu et al. (2016)), to name a few. These and related

techniques are likely to be useful also in financial applications.
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We expect in the coming years to see a lot of exciting new results con-

necting the fields of finance, machine learning and numerical solutions of

PDEs; these fields all share reinforcement learning as the common thread

which connects them.
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