
CloudEx: Building a Jitter-free Financial
Exchange in the Cloud

Jinkun Geng, Vinay Sriram, Ahmad Ghalayini,
Vig Sachidananda, Balaji Prabhakar and Mendel Rosenblum

Exchange System

Runs on top of

Exchange Infrastructure

Trading Exchanges: Main Components and Goals

Ensure “Fairness” in Trading

Interact with

Determines Asset Prices

Buy and/or SellMarket Participants

Exchange Infrastructure

Fairness Requirements
• Inbound: Orders are processed in globally FIFO manner,

regardless of which gateway (G1 or G2) they arrive at
• Outbound: Market data (i.e. trades and limit order book) is

simultaneously released to market participants.

Buyers

Sellers

Market
Participants

G1
Matching

Engine

Definition of Fairness

G2

Gateways

Motivation for CloudEx

• Carefully-engineered networks are expensive to scale and maintain
• Cloud-based solutions are elastic and typically easier to maintain

• Research tool
• Fully configurable end-to-end exchange

• Teaching tool
• Prototype system for learning about (i) infrastructure, (ii) trading algorithms,

and (iii) matching algorithms

Matching
Engine

Portfolio Matrix
!"#$ %%&' ())(…

+, $552 2 4 …
+1 $100 6 1 …
… … … … …

H/R

Trader
C1

Market Data
Disseminator

Sequencer

Gateway
G1 Ti

m
e

Pe
rim

et
er

Tim
e Perim

eter

H/R
Gateway

G0

Trader
C0

H/R
Gateway

G2

Trader
C2

Limit Order Books

Order / Trade Confirmations

BigTable
StorageSystem Design of CloudEx

Matching
Engine

Portfolio Matrix
!"#$ %%&' ())(…

+, $552 2 4 …
+1 $100 6 1 …
… … … … …

H/R

Trader
C1

Market Data
Disseminator

Sequencer

System Design of CloudEx

Gateway
G1

BigTable
Storage

Limit Order Books

Order / Trade Confirmations

API: fetch_historical_data(time_range)API:
fetch_limit_order_book(symbol)

fetch_trade_reports(symbol)

API: submit_order(order)

Major Components of our Work
1. Infrastructure Development
• Networking: Market participant à Gateway àResequencing Buffer à Matching

Engine à H/R buffers à Market Participants
• The Trading Exchange: Matching Engine, Limited Order Book System, Portfolio

Matrix, Big Table for market data persistence and dissemination

2. Matching Engine and Trading Algorithm Design
• Currently, we’re implementing a continuous price-time matching; in future, we can

also try batch auctions and other types of mechanisms
• A toolkit of basic trading algorithms for automatic trading

3. Data Analysis
• Network traffic: timestamped data at the MP, Gateway, RB, ME and H/R buffers
• Asset prices: stock price variations as a function of trader strategies and algorithms

Evaluation Setup
• Deploy VMs in Google Cloud

• 1 gateway VM serves 3 trader VMs, and 1 matching engine VM serves all gateways

• Leverage software-based (i.e., use VM clocks) clock synchronization algorithm1 for:
• Resequencing orders
• Hold-and-releasing market information

• Trading setup:
• Limit 1 outstanding order per trader, with every trader submitting one new random order as

soon as they receive their outstanding order’s confirmation
• 8 symbols available for trading

• Conduct two experiments with different number of traders:
• 48 traders (16 gateways, 1 matching engine)
• 96 traders (32 gateways, 1 matching engine)

1. Geng, Yilong, et al. "Exploiting a natural network effect for scalable, fine-grained clock synchronization."
15th USENIX Symposium on Networked Systems Design and Implementation (NSDI 18). 2018.

Evaluation Parameters and Metrics
Parameters:
• resequencing delay parameter: the minimum duration we force all orders to

experience (1) from when they get timestamped at the gateway (2) to when
they get processed at matching engine.
• note that if the order’s buffer queueing delay is large enough, no extra waiting is incurred

Metrics:
• (fairness metric) out-of-sequence order ratio: the percentage of processed

orders whose gateway timestamp is smaller than the previous processed order

• (performance metric) number of orders per second: the average number of
orders that the matching engine can process in a second

1 2 3 4 5

1 3 24 5

out-of-sequence order ratio is 0%

out-of-sequence order ratio is 20%

Processing Order

Case 1:

Case 2:

Gateway Timestamp

>

Resequencing Delay Parameter
• We implement the resequencing buffer as a priority queue which dequeues

buffered orders with the smallest gateway timestamp first
• if we disable priority dequeuing: out-of-sequence order ratio > 20%

• For each experiment, we sweep the resequencing delay parameter across the
following values (in milliseconds):
• 0, 0.1, 0.2, 0.3, 0.4, 0.5, 1, 2, 3

Measurement Setup

Order Confirmation Latency

Sequencer

Gateway

Trader

Order Processing Latency

Matching Engine-Gateway OWD

Gateway-Trader OWD

Matching Engine

Gateway-Sequence OWD

Trader-Gateway OWD

Buffer Queuing Delay

Latency Comparison
48-Trader Experiment 96-Trader Experiment

important to consider for an effective
resequencing delay parameter value

Gateway to Matching Engine OWD (ms)
1p: 0.125, mean: 0.192, 99p: 0.330

48-Trader Experiment

• Larger resequencing delay parameter
leads to lower out-of-sequence-order
ratio
• In this case: 0.5ms offers the best

balance between buffer queueing
delay (0.799ms) and out-of-sequence
order ratio (0.008%)

• Resequencing delay parameter does not
degrade matching engine throughput (i.e.
number of orders per second) under a
certain threshold

96-Trader Experiment

• When matching engine is slow, more
traders lead to longer buffer queuing
delays
Ø the resequencing delay parameter

becomes less significant for decreasing the
out-of-sequence order ratio

Conclusion
• Cloud environments can be challenging for building fair exchanges
• Clock-based resequencing can effectively enable fairness
• With NIC timestamps, the resequencing delay parameter can be reduced by an

order of magnitude

• Future work:
• Infrastructure

• Sharding matching engine to enhance order processing speed and throughput
• Tolerate exchange failures while guaranteeing continuous service availability

• New algorithms and scenarios
• Design new algorithmic trading strategies and matching engine policies
• Consider two (or more) categories of market participants: close/distant from gateways

• Analysis
• Build a framework for the automatic analysis of traffic and for raising alerts
• Build methods/tools for finding correlations in asset prices and network traffic at:

(i) different timescales, and (ii) across assets and nodes (market participants/gateways)

Demo

