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Abstract

Establishing a low network latency connection to stock exchanges has been the desire
of trader for years. A well-known example is the extremely expensive construction of
an ultra-low latency fiber optic cable between New York and Chicago just for reducing
three millisecond in the round trip time. Yet, the exact possible usage and potential

profitability of such high end network connection remains mostly unclear.

In this Thesis, we address this point by studying the impact of latency on the prof-
itability of traders. We concentrate on the single security, single exchange case and
use the Geometric Brownian Motion (GBM) model as the underling model for stock
prices. Using this model, we are able to quantify the potential profit of traders as a
function of their latency. This is done by presenting the possible earning increase as a
result of reducing latency based on the intra-day security prices of the AAPL and the
GOOG shares. One outcome of this work is that the HF T trading race in the single
security single exchange case is not a zero one game, and profit can be made also by

slower players.
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Abbreviations and Notations

St
Xy

AAPL
GOOG

Wiener process. may also be referred to as Brownian motion

value of a security at time ¢

natural logarithm of the value of a security at time ¢

drift coefficient, used as a parameter for the geometric brownian motion
diffusion coefficient, used as a parameter for the geometric brownian motion
refers to the Apple company securities

refers to the Google company securities

maximum likelihood function

log of maximum likelihood function
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Chapter 1

Introduction

The fast development of computer communication and networking technology over re-
cent decades created a major shift in the way stocks are traded in stock exchanges.
The manual interaction of talking (shouting), note writing and hand shaking was re-
placed by a very fast communication infrastructure that allows sophisticated trading

algorithms to perform actions within milliseconds without any human intervention.

The goal of this thesis is to quantify the possible earnings that may be made by traders

based solely on their low network latency (speed of trade).

Stock exchange is an entity which allows trading of shares or securities. Transaction is
an event where a certain amount of shares (or other securities) are sold by the owner to
a buyer at a certain price. For this to happen the security has to be listed at a specific
exchange and the price the buyer is willing to pay, should at the very least, be the price

the owner requests.

There are more than 10 registered stock exchanges and dozens of private venues in
New York city, in which a single type of stock may be traded. The common scenario is
that in all of these locations, each of the major stocks has quotes for both buying and

selling.

In order to fully grasp the importance of low latency connection to high frequency
traders, consider the case of “Spread Networks”. “Spread Networks” is a fiber optic
cable company that at 2010 finished constructing a new cutting edge fiber optic cable
connection between New York and Chicago financial venues. The Price of the construc-
tion is estimated to be 300 million dollars and the outcome was the shortening of the

prior latency from roughly 16 milliseconds to about 13 milliseconds [I].

The extent of the race for low latency is not limited to inter cities or cross state dis-
tances. Today, most trading venues including the registered ones, offer market members

the ability to “co-locate” their servers next to the trading floor. This means that the



exchange members may place their own servers inside the exchange’s building in order
to shorten the connecting cable. Furthermore, due to member’s demand, these venues
have evolved to the following “co-location” service guaranty: Each member that uses
the “co-location” services of the exchange will be connected to the exchange server

using an equal length cable [3].

In their seminal work, Budish Cramton and Shim [9] focus on the profit that can be
made relaying strictly on speed. They do so by describing a scenario with N equal high
frequency traders; one of which is chosen randomly to be the market maker, and the
other N — 1 are said to be the “snipers”. Their results indicate that after every price
change which is greater than half the market spread, an arbitrage opportunity arises
and each of the IV traders tries to catch it first. The N — 1 “snipers” try to act on the

old quote while the single market maker tries to cancel it.

This simplistic scenario leads the authors of [9] to raise a flag regrading inherent flaws
in current exchange market design. Those arbitrage opportunities represent a large
amount of money that can be made by the fastest trader; this leads the industry to
substantial spending on high end hardware which is capable of enabling such fast trade.
Eventhough the hardware spending is not a problem in and of itself, the reason for its
existent - an artificially made race for speed, rather than a race for best financial offer,

is a problem.

The above mentioned conclusion leads the authors to believe that major changes must
take place in current market design. The proposed solution is a switch to batch auctions
being conducted every ¢ time units, where ¢ is constant, known in advance and small

enough to allow for undisturbed trade.

In order to develop the mathematical model that is used to explain the profit making
process, few simplifying assumption are made in [9]. The first assumption is that there
exists a signal y for each security = whose price is (I) perfectly correlated with the price
of z and (II) publicly and simultaneously known to all. Such an assumption may seem

small at first glance but in fact it may be too powerful.

The authors use high end data at millisecond granularity of the ES and SPY indexes
to show how correlation between those two otherwise heavily correlated indexes break-
down as the interval goes down to millisecond level. It demonstrates how even though
arbitrage opportunities remain “open” for a shorter amount of time as the years go
by, the number of these opportunities remains constant. Thus, supporting the authors

claim as to the existence of inherent speed arms race.

As mentioned above, our goal is to quantify HFT potential profitability as a function
of the network latency. We do this by studying the well known Geometric Brownian
Motion (GBM) model and developing a model that quantifies the HFT earnings as a

function of network latency. The main contribution of this work is the mathematical



analysis of HF'T possible earnings in the context of network latency. Our works novelty
lies in the practical mathematical analysis of HF'T earnings as a functions of their time

delay from the stock exchanges.

In our process of validating profitability derived solely from network latency, we differ
from [9] by (I) not using the simplifying assumption regarding the existence of the
public signal y, and (II) we attempt to explicitly quantify how fast a trader has to be

in order to make profit solely from network latency.

Using our tool for profitability analysis, we are able to compare the potential profit of
traders with different network latency. Our results indicates that HF T is not a zero
one game but rather an arena in which an algorithmic trader can make profit even if
he isn’t the fastest.

This thesis is structured as follows. In Chapter 2 we describe relevant related works.
In Chapter 3 we introduce the Brownian motion concept. Chapter 4 consists of a study
of the Geometric Brownian motion model from both a mathematical perspective and
a real life data perspective. In Chapter 5 we verify the underline assumption of the
GBM model regarding price changes behaviour. Chapter 6 consists of the methods we
use to fit the model parameters to real data. In Chapter 7 we show an algorithm for
parameter extraction from a given data set and verify the model behaviour using its
results. In Chapter 8 we analyse the accuracy of the model both on a full given data
set and on future data. Chapter 9 consists of an analysis as to the potential profit that
can be made by using the trading technique we propose. In Chapter 10 we conclude

the research and its results.



Technion - Computer Science Department - M.Sc. Thesis MSC-2020-16 - 2020



Chapter 2

Related Work

2.1 Social effects

The social affects of high frequency trading was the subject of several academic studies
in recent years [5l, 9, [11], 23], 19, 24] [7, 8, 25]. One key question is whether the high
frequency traders are socially beneficial or not. In this context, high frequency traders
are the traders that use superior technology which relays on high end infrastructure
supplied by the stock exchanges. A major part of the earnings of these traders is based

on technology (speed) rather than on financial expertise.

As described in [23] high frequency traders may have some beneficial effects on the mar-
ket, such as increasing liquidity, shortening execution time and narrowing the spreads.
The congressional hearing report [25] claims that HFT techniques are divided into two
- passive and active. Active strategies relay mainly on attempting to force other algo-
rithm based traders into wrong action which will results in profit for the traders that
employ the active strategy. Such actions may include flooding the market with bid

requests and cancellations.

The second HFT technique is the passive one. According to [25] this method is based
on passive market making with attractive price offers that the traders are capable of
suggesting due to their superior knowledge at the time of the biding. Due to this method
of operation, HFT traders have the beneficial effects on the market of narrowing the

prices spreads.

Another beneficial effect of HFT traders on the market that is described in [7] is based
on their superior access to information. Where this issue is usually used against these
traders to claim adverse selection, it is claimed in [7] that this issue might be beneficial
to the economy as it leads the market towards the “real” price a security should have

and helps avoid pricing errors.



Adverse selection is caused when one side of a transaction (seller or buyer) has better
information about the quality of the goods than the other side. As described by Ak-
erlof’s market for lemons [2], adverse selection may very well cause the deterioration of

the market’s goods quality and even lead to a total collapse of the market.

A major issue raised by the authors of [5] is the case of possible adverse selection in the
securities market caused by HFT traders. This claim has two supporting pillars. First,
HFT traders have a better and more up to date view of the market condition. Second,
HFT traders also tend to invest in technologies which allow them a faster knowledge

of real world events which are likely to affect securities quality.

The authors of [5] continue by dealing with the question of how should the negative
externalities caused by such adverse selection be dealt with. Several approaches are
being investigated, including the complete ban of all high frequency practices. Since
HF'T has social benefits, a more relaxed approach is proposed in the form of Pigouvian

taxes executed upon high frequency technology investments.

2.2 Securities prices modeling

Finding a way to model (with accuracy) the dynamic behaviour of securities values
over time gained a considerable amount of attention from the academic community
[9, 10, 17, 28, 211, 13, 22| [14].

One classical approach for the prediction of security prices is the chartist method. This
approach is based on the believe that history tends to repeat itself, and thus the study
of past patterns may predict future behavior [10]. To use this method one analyses
the sequence of past price changes in order to forecast future price changes. This
approach is inline with current trends in machine learning. Yet, Fama write in [10]:
“The techniques of the chartist have always been surrounded by a certain degree of

mysticism...”.

Another method is the intrinsic value approach. The underline assumption of this
approach is that every security has an intrinsic value and its actual value tends to move
towards it [10]. The endeavor to find this intrinsic value is what leads many mega sized
firms to maintain entire divisions of analysts who’s job is to asses the quality of many
aspects in companies such as the value of its assets, quality of the management and
other such attributes. The end game agenda is that knowledge of the intrinsic value is

similar to predicting the future price of a security.

It is not surprising to discover that the raise of artificial intelligence algorithms in
practically every aspect of our lives had not left the world of forecasting securities prices

untouched. Different machine learning and artificial intelligence approaches were used

10



in the context of security price forecasting, see [14] for a recent survey. The authors of
[4] use Neuro-Fuzzy system to predict stock prices. The authors study several stocks
to determine the best model for prices prediction. The paper claims that the Neuro-
Fuzzy model indeed supply for relatively accurate results which were superior to other
investigated models. Another surveyed paper is [20]. In this paper, the authors use
stochastic time effective neural network in order to improve price prediction. This
method is based on adding weights to the training set so the more recent the price
change, the more important it is. This paper also concludes by stating that this model

improves accuracy of securities prices forecasting.

A different approach for the modeling of securities prices is called random walk. The
bulk part of [10] discusses this approach. It is distinctively different from other methods
since it is heavily rely on a random process. It assumes the market is unpredictable,
as stated in the paper: “the future path of the price level of a security is no more

predictable than the path of a series of cumulated random numbers.”

The underling assumptions of the random walk method about a sequence of an indi-
vidual security prices are (I) Price changes are uncorrelated and (II) Each individual
price change does not strive towards an intrinsic value or social optimal welfare. This
approach conflicts with the other more classic approaches that assume logic in price

changes.

Are the price changes really independent? according to [10], the answer is probably yes,
or at least independent enough in the sense that the dependency level is not sufficient to
make a profit. This firm claim is based upon substantial research which was conducted
and reviewed in [10] to examine price changes. Due to the importance of this question
for the legitimacy to use random walk, we also conduct a small study in this work in

order to validate this property on the data we use.

We use the random walk approach in this thesis since it allows us to conduct several
empirical studies with strong mathematical reasoning. This method is backed by a

substantial amount of academic studies such as [10] 9, [17], 22].

11
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Chapter 3

Introduction to Brownian motion

3.1 Definition of Brownian motion

Brownian motion (or Wiener process) is frequently used in modeling of stock prices. It
is a stochastic process with stationary and independent increments. It may be observed
as the continues time version of a random walk. The notion, Brownian motion, was
coined after the botanist Robert Brown who in 1828 observed the movements of particles
in a plant [I§]. Later, the Brownian motion was formally characterized as the Wiener
process in the following way [22][12]:

(3.1)

1. Wy =0
2. W is continues

3. W’sincrements are independent, assuming they are not overlapping. Vto, t1, sg, 51 €
N:t1 > toAsi > spif (to,t1) and (so, s1) are not overlapping, than W;, — Wy, is
independent of W, — W,

4. W’s increments size are normally distributed with mean zero and the standard
deviation is the length of the interval. Vt,s € (N):t > s:
Wt—Ws NN(O,t—S)

Since Brownian motion increments are independent and identically distributed (iid)

(points 3 and 4), Brownian motion is by definition a Markov process.

13



3.2 Martingale

Intuitively, a Martingale process is a process in which the best prediction for the future
is the present. Formally, if process X; is a Martingale process, then Vt,s € (N) : t > s :
E[X;— X] = 0. From a financial point of view, if a stock price behaves as a Martingale
process, then the best prediction for the stock price in the future is the current stock

price. Namely, all past knowledge is irrelevant.

From the definition, Brownian motion (Wiener process) is a Martingale.

14



Chapter 4

Geometric Brownian motion

4.1 Overview

In order to analyze the impacts of delay on traders, we need an underlying model for
stock prices. We use the Geometric Brownian Motion model, where we examine several
properties of the model and validate them on real data. Then, we use it to quantify

latency affect on traders.

Brownian motion captures the desired essence of the “jittery movement” of stock prices,
but, since stock prices tend to raise over time (at least on average) Martingale process
is insufficient. Thus, instead of using classic Brownian motion, we use the Geometric
Brownian Motion (GBM) model that is more common in the context of security prices
modeling [10] [I7].

GBM is formulated using the following Stochastic Differential Equation (SDE):
dS; = /,LStdt + oS dWy (41)

St is the value of the stock at time ¢, y is the drift coefficient, o is the diffusion coefficient
(or the volatility) and W; is the standard Brownian Motion (Wiener process) with
E[W] =0 and Var[W;] = 1.

4.2 The intuition behind the GBM SDE equation

The upper mentioned SDE Equation provides the change of the modeled object size
[17]. Namely, the left hand side of the equation, dS;, stands for the delta in S; size

during time t.

The right hand side is composed of two parts that capture prices incline to raise over

15



time and prices volatility. The first part, uSidt, is a multiplication of u, the drift
coeflicient, by the size of the object and the amount of time elapsed. Intuitively, this
means each price change size is dependent on the market’s tendency to grow (drift

coefficient ), the object absolute size, and the elapsed time.

The second part, 05;:dWy, is a multiplication of the diffusion coefficient ¢ which stand
for “how jittery the movement is” by the size of the object and W;, the Brownian
Motion. The motivation for this part is to add the randomness of the changes received
from the Brownian motion. The randomness becomes more significant as the market’s

volatility represented by the diffusion coefficient, o, grows.

4.3 Deriving GBM SDE

The GBM Equation is a SDE, the solution for which is well investigated [17, 27]

and will not be discussed at length in this thesis.

The derivation of Equation [I.1] relays on Ito’s lemma that allows for the derivation of
an Ito process:
dx = a(z,t)dt + b(x, t)W (4.2)

x is the Ito process, t represent time, W is a wiener process and a, b are functions of x

and . One may notice the GBM SDE is inline with the requirements for an Ito process.

Using Ito’s lemma its possible to rewrite the Equation as:

o2
Sy = Spel=T)troWe (4.3)

4.4 Expected value and variance

S¢ in Equation describes the price of a security at time ¢ according to the GBM

model. For ease of use, we define X; = In S; (see for example [I7]). Thus receiving:

2
Xe=InS; =S+ (u— %)t + oW (4.4)

Thus, X; stands for the natural logarithm of the security price. Next, we evaluate the

expected value of Xy

EXy] = E[ln Sy + (p — U;)t + oWy = E[ln Sp] + E[(1n — U;)t] + E[oW] (4.5)

16



Since p and o are constants and using basic expected value properties, we get:

2

E[X,] =InSy+ (u— %)E[t] + o E[Wy] (4.6)

By definition, the expected value of a Wiener process equals to 0 and since ¢ is a simple

variable (as oppose to a random variable) we get:

). (4.7)

0.2
E[Xi]|=InSo+ (1 — 5

As to the variance,
2

V(X)) = V((u— 50 + V(eW)), (48)

where p and o are constants. Thus,
V(Xy) = V(eW;) = o>V (W) (4.9)
By the definition of the Wiener process, the variance of Wy is ¢ (Equation , thus;

V(X;) = ot (4.10)

Since our main focus is security price changes, rather than absolute price values at
given time, we use Xa; to indicate the difference in X values between time t; and %o,

more formally, Xa; = X2 — X1 when At = to — t7.

We then get that for a time elapsed At:

E[Xat] = (u— U;)At (4.11)
V(Xat) = oAt (4.12)

From a financial point of view, the meaning of Equation is that according to
the GBM model, stock price expected change over time correlates with the markets
incline to grow (drift coefficient p) and negatively with the market volatility (diffusion
coefficient ¢). While according to Equation the stock price variance over time

correlates only with the market volatility.

17



4.5 The affect of the different parameters

The current market trend is captured in the GBM model using the market coefficient
- 1 and o. In order to better understand their impacts on the model behaviour, we

present the behaviour of the model for different values of u and o.

Figures [£.1] and [£.2] depict the reaction of the GBM model to these values.

Geometric Brownian metion with mu =1

45
— sigma = 0.0
40f| — sigma =04
— sigma = 0.8
354 ngma =1.2
— sigma = 1.6
3.0}
g 25
g2
2.0f
10 \7/——-—1/\/ ~—
e 5 10 15 20 25 30

time
Figure 4.1: GBM reaction to different values of o

Figures [£.1] and depict the prices a certain security would have according to the
GBM model over a time period of 30 time units. In Figure the drift coefficient
is fixed (1 = 1) and the volatility coefficient (o) changes. In Figure the volatility
coefficient is fixed (¢ = 1) and the drift coefficient (u) changes.

In Figure the line that correlates to o = 0 is smooth. This is because o is the
volatility coefficient and when it’s equal to 0 the price change values are without a
random factor. The line that correlates to o = 1.6 remains flat and the prices are
unable to grow. This is because the expected value of the price change is with negative
correlation to the size of o (Equation .

In Figure the line that correlates to u = 0 is flat, that is since p represent the
market prices incline to grow. From Equation we can take that only when p > %2
the Expected value is positive. When observing this figure, were ¢ = 1, indeed we can

see that only for the lines that correlates with p > 0.5 the price grows.

18
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Geometric Brownian motion with sigma = 1

14
— mu=0.0
. mu =104
— mu=0.8
— mu=1.2
10| — mu=1.6
8_
6
4l
2_
0 I
0 5 10 15 20 25 30

time

Figure 4.2: GBM reaction to different values of
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Chapter 5

Ascertaining independence in

real data price changes

An important underline assumption of the Brownian motion model is that the price

changes are independent, as explained in Section

As indicated also in [6], one should verify that the property of price changes inde-
pendence hold in the data used for the research. The technique we use to verify this

property is autocorrelatiorﬂ

The examined prices are 3 day long, l-minute interval closing prices of the Apple
company (AAPL) stock. More details about this data, its source and samples are
thoroughly elaborated in Subsection The test is done upon almost 1200 data
points and lag of up to 1000 minutes.

In order to check for hidden patterns inside a this data, we apply lags and check the
correlation coefficient between the relevant sequences. Figure depicts the autocor-

relation inside the data as a function of different lags.

As the graph implies, the prices changes do not exhibit significant autocorrelation for
any size of lag, Thus supporting the GBM underline assumption of independent price

changes.

We can see that for the largest lags in Figure there exist more points with slightly

L Autocorrelation is a statistical instrument used to check whether there are internal patterns within
a sequence of numbers. This is done be applying different lags inside the sequence and verifying the
size of the correlation coefficient between those parts of the sequence.

For a series of number x1, x2, ..., x, generated from X7 the autocorrelation is defined as:

RXin = E[X’LXJ] (5.1)

When the expected value is the multiplication of the expected value of X;7~'9 and Xilag [6, 26],
where j = lag.

21



Autocorrelation - AAPL 3 days price

Lo

0.5f

Autocorrelation

200 400 600 800 1000

Figure 5.1: Autocorrelation - AAPL 3 days price

bigger autocorrelation. This is because these lags are close to the overall size of the
data series, making the number of points measured smaller and thus the results are

more noisy.

The Python function used in order to find the coefficient between two sequence is
“corrcoef” from the “numpy” libraryﬂ The data used is the APPL stock price during
the 17-22/04/2019 and the execution itself took 0.36 seconds.

2 The formal documentations from the SciPy project https://docs.scipy.org/doc/numpy/
reference/generated/numpy.corrcoef .html
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Chapter 6

Fitting the coefficients to real
data

The main challenge with fitting the GBM formula to real data is that the GBM model
assumes knowledge of market key features. As explained in Chapter [4] these features
are the market trend (or drift coefficient) p and the volatility (or diffusion coefficient)
o. Moreover, since these features represent the market state they are evolving over

time.

In this section we study ways of finding these market features for a certain security,
based on real data. We do so using two different methods to extract the values of

and o from the data.

6.1 Linear least square

The first method is Linear Least Square for a given data set. This method attempts to

generate our first equation between (u, o) and the data set.

Studying Equation describing the expected value for X; = Ln(S;), we can see that
the expected value as a function of ¢ behaves like a straight line were the slope of the

line is (u — %2) and the conjunction with the y axis is in In(Sp).

Applying Linear Least Square to the natural logarithm of the real prices gives us such
a line where the conjunction with the z axis is in fact In(Sp) and its slope we can
calculate. Figure is an example; we also provide the actual values of the first few
points in Table

The slope of the Linear Least Square line shown in Figure is 0.00007838704. Which
means that for this time segment (p — %2) = 0.00007838704. Using the method in
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time price  In(price)
4/22/2019 14:07 | 203.71 | 5.316697
4/22/2019 14:08 | 203.66 5.316452
4/22/2019 14:09 | 203.76 | 5.316943
4/22/2019 14:10 | 203.7022 | 5.316659
4/22/2019 14:11 | 203.69 5.316599
4/22/2019 14:12 | 203.75 5.316894
4/22/2019 14:13 | 203.74 5.316845
4/22/2019 14:14 | 203.77 5.316992
4/22/2019 14:15 | 203.8273 | 5.317273

Table 6.1: Data sample for Linear Least Square
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Figure 6.1: Linear Least Square prices log

general gives us the following equation,

Slope(LinearListSquare) = (u — —).

24

6.2 Maximum likelihood estimation

maximises the likelihood of observing the actual data [6].

Maximum Likelihood Estimation (MLE) is a common method for statistical parameters

inference. It uses the probability function of the model to find the parameters which

The MLE function is commonly denoted by L(u,o) where (i, o) is the model param-

eters set. For a Markovian process X; with parameters (u,0) and PDF function f,



whose random variables are iid, the MLE function is given by

ﬁ(/,t,d) = Hfu,o(l'i)- (6.2)
=1

For ease of computation, it is common to work with the log likelihood function which

is denoted by £, Thus producing the equation:

L(p.0) =) 0 fuolw:). (6.3)
i=1
We construct the usual z; to be:
T, = In Sz —1In Si—17 (64)

thus converting the GBM model into a process which holds all the upper mentioned
conditions for Equation with (i, 0) and the probability density function is the one
of normal distribution with the expected value (E) and variance (V') as mentioned in

Section [4.4]

Deducing the equations for E, V based on MLE is done by a derivation of £ with respect
to each of 4 and ¢ in an attempt to find the maxima points for each. A detailed solution

to this derivative appears in [15], where the resultant closed form method to find E

and V is: "
E= Zi; i (6.5)
and N )
V= 2 iz (@i — E) (6.6)

n

When analyzing an actual data set, the series of x;’s can be extracted easily using simple
python program. Thus, equations [6.5| and generate results which using equations
[4.17] and [£.12] allow us to extract two additional formulas:

D i1 Ti o?

TS 6
n i — F)?

Ez:l(fl ) — 0_2' (68)

Studying Equation[6.5] one can notice that since z; = In.S; —In S;_; it forms a telescopic

sum resulting with
Y ir In(Sy) —1
E Zz:l z H(S ) D(SO)’ (69)

n n

considering only the first and last point of the data set. Thus deducing Equation [6.5
to a simple average of the first and last point of the data. This leads us to prefer the

Linear Least Square method depicted by Equation which also relays on the value
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of E as shown in Equation
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Chapter 7

Feature Extraction

7.1 Overview of the data

Complete intra-day tick by tick prices data is insurmountably hard to acquire, even

for a single stock during a short amount of time. Hence, we use Yahoo finance API

which allows free access to substantial amount of accurate financial datall We use

the 1-minute interval stock prices accessible through this API which contains for each

interval the volume, open, close, max and low prices.

In order to test our analysis we decided to use active stocks such as Apple (AAPL)

and Goggle (GOOG) for which there is plenty of trade and changing of market trends
during each day. Table provides an example for a 10 minutes data of the AAPL
stock during 22.04.2019:

time close high low open volume

4/22/2019 13:30 | 202.53 202.84 202.34 202.83 631486
4/22/2019 13:31 | 203.42 203.45 202.54 202.54 255422
4/22/2019 13:32 | 203.7 203.805 | 203.385 | 203.42 204558
4/22/2019 13:33 | 203.71 204.05 203.45 203.715 | 250866
4/22/2019 13:34 | 203.58 203.9205 | 203.4525 | 203.71 136420
4/22/2019 13:35 | 203.7291 | 203.7291 | 203.37 203.6289 | 110056
4/22/2019 13:36 | 203.82 203.97 203.59 203.74 163986
4/22/2019 13:37 | 203.98 203.99 203.6 203.818 | 86007

4/22/2019 13:38 | 203.88 203.98 203.68 203.98 71172

4/22/2019 13:39 | 203.97 204.1 203.8 203.8638 | 110658

Table 7.1: 10 minutes data of the AAPL stock

1t is interesting to note that Yahoo is one of the only free services remained out there.
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7.2 Algorithm for feature extraction

Using the results of Section[6] we can extract the (u, o) features necessary for the GBM
model from a data set. The procedure is as follows. First, we calculate the slope of
the Linear Least Square (LLS) line and compare it with the Expected Value Equation.
Then, We compare the Variance Equation to the MLE derived solution to V extracted

from the data.

Algorithm 1: Features extraction
Data: z1,...,x,

Result: GBM market features (u, o)
find LLS of x1, ..., zn;

V = Z?:1(2i—E)2 .

)

Solve: ,
1. Slope of LLS (21,...,2n) = p — &

9. Z?zl(zi—E)z — 52

return (p, o)

7.3 Verifying observation fit to model - AAPL

In order to verify that the observation (real data) fit to the model, we make use of the

log of the price ratios, formally called the “log returns” as used in Section

S
Xar=InSy —In Sy =1In <“> (7.1)
Sto
We study the frequencies of the values of the observations log returns compared to the
frequencies of the values in the GBM generated price series. The series is generated
using

GBM (z1, p,0,n), (7.2)

where x1 is the log of the observation’s initial price, u,o are the result of executing

Algorithm [I] on the observation and n is the prices series length.

As one can see, the two log returns series follow a normal distribution. In order to
measure the significance of the difference between the means of those series, we use the
t—testﬂ The results are depicted in Table

As one can see, the t-test results for the series in figures [7.1] and indicates a low
t-value (below 5%) and a high p-value (above 90%) indicating high likelihood that the

24t-test” is a test designated to measure the significance of the difference between the means of two
normally distributed data samples [16].
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22.04.19
value
t-statistics | 0.1127769602512468
p-value 0.9102367031676524

observation fit the model.

returns

Table 7.2: The results of a t-test on the values depicted in figures [7.1] and

7.4 Verifying observation fit to model - GOOG

Conducting a similar experiment on the log return values of the GOOG security, yields

the following frequencies:

50 o
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Figure 7.3: GOOG log returns -

17.04.19

With the following t-test results:
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Figure 7.4: GBM generated log

returns

Here also, the t-statistics result is low absolute value smaller than 5% and the p-value
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value
t-statistics | -0.1265631600773214
p-value 0.8993198087993637

Table 7.3: The results of a t-test on the values depicted in figures [7.3] and

results is high almost 90%. Thus, indicating high likelihood that the log returns values
fit the GBM model.

The Python function used in order to find the t-statistics and p-value values is the
“ttest_ind” from the “scipy.stats” library ﬂ The data used is the AAPL stock prices
during the 22.04.2019 and the GOOG stock prices during the 17.04.2019 accordingly,

the execution itself took 0.3 seconds.

7.5 Analysis of a single trend market price changes

The Apple stock prices, during the day of 22.04.2019 demonstrates several market
trends changes as presented in Figure The prices incline to raise/fall shift several
times during this day. Thus, we take only specific time frame of this trading day - the
22.04.2019 from 2:05:00 PM until 3:18:00 PM (UTC time), time units 36 to 109 on
Figure The prices during this time frame are shown in Figure [7.6

205.0 AAPL stock prices - full day 205.0 AAPL stock prices

@® ® Original data @ @ Original data
— Fitted line 2048 — Fitted line
T o

204.5

]
]
£
o

Stock Prices.
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750 300 30 400 203425 E3 ® 70 % % w0 110
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time (minutes) time (minutes)

Figure 7.5: AAPL stock prices - Figure 7.6: Stock prices for minutes 35
22.4.19 to 110

Applying Algorithm (1] for finding (i, o) on the specific time frame displayed on Figure
yields the following results: p = 0.0000819070, o = 0.00034.

Figure contains the price series and their fitted lines. The first price series shows the
original data as displayed on Figure The second price series is an execution of the
GBM model using the coefficients (i, o) calculated before and the initial price equals

3 The formal documentations from the SciPy project https://docs.scipy.org/doc/scipy/
reference/generated/scipy.stats.ttest_ind.html
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to the one of the original data. As one can see, the generated price series behaviour is

quite similar to the original one.

AAPL stock prices

205.5 . -
@® @ Original data
— Fitted line 3
¢ ¢+ GBM
205.0 Fitted line GBM
]
S
T 2045
8
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203.5,5 40 50 60 70 80 90 100 110

time (minutes)

Figure 7.7: AAPL prices from figure [7.6] with GBM results

Using the t-test for this single trend time fragment yields the following results:

value
t-statistics | -0.022339169292526523
p-value 0.9822074941845582

As we can see, when carefully choosing specific time segment with a single trend the

resultant t, p values indicates a much better match of the data to the GBM model.

Fitting parameters to different security - Google

In order to ascertain overfitting is not the issue in this case, we perform a similar test

using the prices of the Google (GOOG) stock during the date of 17.4.2019 as shown in
figures and
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Applying Algorithm [T] yields:
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Figure 7.11: Stock prices for minutes
50 to 100 with GBM results.
t-statisitcs —0.034841261935855.
p-value 0.9722771861891476.

Figure 7.10: GOOG stock prices full
day with GBM results
t-statisitcs —0.1265631600773.
p-value 0.8993198087993637.

Studying the figures that correlates to the GOOG share prices (original data), we can
see that the market trend changes throughout the day several times and consists of
much trading activity. As we can see in Figure [7.10] when the prices consists of many
trends, the GBM results starts “tight” around the real data, however, it doesn’t manage
to last for longer periods under market trend changes. As expected, the results of the

t-test for this single trend time fragment also demonstrate a significant improvement.
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7.6 Observation fit as a function of sequence length

The third experiment we conduct to check how the data fits the model is to measure
the quality of the fit as a function of the sequence length. We score the fit level using
the p-value of a t-test.

Our test works as follows; First, we take a random subsequence of the data set of length
! time units. Then, we use Algorithm ] to extract the market features (y, o) that fits the
subsequence. Then, we conduct the t-test on the GBM model for the given subsequence
of length | and (u, o). For each length [, we chose several different subsequences from
the data set for which the entire test is done and the result is the average p-value.
This is done in order to randomize the investigated subsequences for each length [ and
thus to reduce noising affects such as stronger or weaker prices fluctuations in a specific

subsequence.

Measure model p value
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0.66 4

0.64 4
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0.56 4

0.54 4

T
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Figure 7.12: Model p-value as a function of sequence length

Figure depicts the results of the described test. We perform this test three times
- with increasing amount of repetitions. The number of repetitions is the amount of
different subsequnces of prices being chosen for each length [, and for the amount of exe-
cutions of the GBM model for each such subsequence (r stands for repetitions). The test
was conducted using the GOOG security price during the dates of the 17,18,22/04/2019.

One can see that the ability of the GBM model to describe the data degradate with the
length of the sequence. This is due to the fact that the parameters (u, o) change over
time and thus the probability that a short sequence matches a specific GBM model is
higher.
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The Python function used in order to find the p-values is the “ttest_ind” from the
“scipy.stats” libraryﬁ The data used is the GOOG stock prices during the 17-22.04.2019,
the execution itself took 13 minutes and 58.18 seconds. The amount of repetitions is
as mentions on the graph itself (10,50, 150).

% The formal documentations from the SciPy project https://docs.scipy.org/doc/scipy/
reference/generated/scipy.stats.ttest_ind.html
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Chapter 8

Forecasting accuracy

8.1 Accuracy as a function of delay

A crucial part of this thesis goal is to asses the impact of HFT delay on their ability
to estimate securities prices correctly. In the previous sections, we investigated how to
use the GBM model and the feature extraction algorithm. In this section, We measure

the accuracy of our model as a function of the delay.

Assuming a security price is known at time ¢y and we wish to act according to this price
(buy or sell). Our ability to “catch” this exact price is limited by our delay from the
stock exchange. Thus, our action will only take place on time t;. The measurements
conducted in this section estimate the error size. We measure the effect of the standard

deviation of the GBM model in order to quantify its accuracy.

From Equation and by the definition of standard deviation, we get that the
standard deviation of GBM is

Standard_Deviation(GBM) = o x V At. (8.1)

We perform an empirical test to check the actual behaviour of the model’s standard
deviation. We do so by executing the model multiple times. Each execution yields
a series x1,...,xy, where x; is the value estimated for time ¢ = 4. Then, we find the

standard deviation for all the values x; in all the executions.

Since the examined standard deviation is merely an attribute of the model, the actual
values being assigned are of no significant and are only necessary in order to execute
the model. Thus, We perform the measurements using the (u, o) features found for the
time fragment in Figure using Algorithm
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Figure 8.1: Standard deviation as function of time units passed

As one can see in Figure 8.1] the standard deviation of the GBM model behaves as
expected and correlates with ov/At.

The importance of this result is that now we have a way to quantify the difference
between the price a trader see and the price this trader can realistically use as a function
of it’s time delay. From financial point of view, Equation means that the price

difference grows linearly with the root of the trader’s time delay.

8.2 Accuracy of forecast

Since the prime goal of this thesis is to analyse potential HF'T profitability with respect
to their latency, we measure the forecast mistake size as a function of the trader’s delay.
Namely, if one attempts to use the GBM model in order to estimate future security
prices, we want to quantify the size of the mistake in their estimates as a function of
their delay. Thus, in this section we focus on quantifying the mistake size as a function
of the delay.

This task might seem similar to the evaluation of the mistake as a function of the
sequence length in Section [8.I] However, this is not the case. The analysis in the
previous section was done using a fully known data set; That is, we considered the full
sequence to extract the market features. In contrast, the analysis in this section is done

using only the available data at the relevant time.

Our method to perform this check is as follows; First, we take a random sequence of

values of length [ time units. Then, we divide it into two consecutive sequences. The
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first, is used to extract the market features using Algorithm [Il The second is compared
to the synthetic price series generated by applying the market features to the GBM
model GBM (x1, pu, 0, n) ﬂ The result is the average difference between x; = In S; and
the log of the actual price at time ¢ = ZEl. The first time sequence used for the feature
extraction is named the “train set” and the second consecutive sequence is called the

“test set”.

This study allows us to simulate a scenario in which a trader has access to a security
price data and is about to perform an action (buy/sell). Namely, the trader knows
the train set and the test set remains unknown. Since this trader is aware of having a
certain delay, he is required to estimate the future price of the security after a certain
time delay, when his order is executed in practice. The results of this study depicts the
average error between the log of the forecasted price the trader asses and the log of the

actual price.
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Figure 8.2: Conducted on the AAPL Figure 8.3: Conducted on the GOOG
security prices during the 22.04.2019. security prices during the 17.04.2019.

Figure 8.4: Forecast Average accuracy as a function of time units amount

Figures and depicts the results of our study. We use a train set of 150 time
units, test set of 50 time units and 100 repetitions EL As one can see, the size of the
mistake behaves like oy/At. This is especially interesting since it the same behaviour
observed for the growth of standard deviation in Section [8.1] in spite the fact that the
data was not analysed while the market features were extracted (test set VS train set).
From these results, we conclude that for a short term, the accuracy of the GBM model

remains constant.

Next we want to study the effect of the sizes of the test sets on the results. Figure

Lz1 is the last price of the first sequence.

2The average is done by both choosing several different data sequences and by executing the
GBM (z1, 4, 0,n) several times for each data sequence.

3100 different data sequences were used and for each of this data sequences 100 executions of the
GBM model were conducted.
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Figure 8.5: Forecast accuracy for longer test set. Conducted on GOOG prices during
the 17,18,22.04.2019

depicts the forecast accuracy behaviour for longer test set. As expected, one can
see that the o % v/At behaviour breaks down as longer delays are exercised. In this
experiment, we also used 100 repetitions and train set of 150 time units. The 50 time
units vertical line indicts the point where the previous study ended. Also, one should
note that after the 150 time units vertical line, the average difference size starts to grow

faster.

We also check the effect of the train set length on how accurate the model forecast is.
In order to do so, we check the mistake size between the actual price and the forecasted
prices after three fixed time units amount - 5, 10, 20. Namely, we attempt to forecast the
price after each of this time units amount. This test results are depicted in Figure
As one can notice, the significance of the the train set size is crucial at the beginning;

However, it decays quickly and then becomes irrelevant.
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prices during the 17,18,22.04.2019
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Chapter 9

Potential profitability due to low

latency

In this Section we use the AAPL security prices and the GOOG security prices as a
test case to examine the potential profit that can be made by HFT during a single day.
Note that our profit analysis is based on the time unit interval size of the data. In this
section two different methods to quantify potential profits are examined, both of which

relay on price changes size and frequency.

Our first goal is to answer the following basic question - “How likely is the GBM model
to correctly foresee a price change?””. Namely, if a HFT uses the sequence of prices
until the current price and then uses the GBM model to forecast whether the prices
is about to go up or down, how likely is the GBM model to be correct? In practice
though, a trader has a certain time delay before it can access prices information and/or
execution orders (we assume information access and execution order submission time
delay is equal). Thus, using a model to forecast whether a price is about to go up or
down immediately is of no use to the trader. Rather, the trader needs to know whether
the price is about to go up or down at a certain time in the future (specifically d time
units in the future, d being the size of the trader’s delay). Thus, if the traders submit
an execution order at time ¢t = 0 it is actually executed at time ¢ = d then we check

how accurate the GBM model is in forecasting a price change at this time range.

Figures and depicts the accuracy percentage as a function of the delay. The
results obtained by taking a data sequence and dividing it into a train set and a test set.
Then, after using Algorithm [I| to extract the market features, we executed the GBM
model, and then we checked for each time delay whether the model forecasts an incline
or decline compared to the last known price (the end of train set). Using the test set
we checked whether this forecast is correct or not. To remove noise, we choose multiple

data sequences and for each data sequence we executed the model several times, the
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Figure 9.3: Accuracy percentage as a function of the delay

results being the overall average. As one can see, for small time delays values the

accuracy percentage is quite high and declines with the delay. The horizontal line in
the figures indicates the 50% accuracy level.

From a financial point of view, the meaning of these results is that using the GBM
model with sufficiently low delay one can forecast price changes correctly with greater
accuracy than 50%. This is a strong indication that correct financial statements can
be made using nothing but low network connection to a stock exchange server, a smart

learning algorithm with previous security prices as its input and a fast computer.

In order to quantify the potential profit that can be made from the forecast accuracy
using the traders low network latency, we propose the following trading technique,
which makes use of the results mentioned in figures[9.1)and 0.2 Our trading technique

assumes the trader is in possession of sufficient shares of the security and liquidity
allowing him to buy and sell shares at will.

We define the making of profit from a transaction as selling a share for a higher price

than the price at the beginning of the transaction or buying a share for a lower price
than the price at the beginning of the transaction.

Our intentionally simplistic technique is as follows. First, the trader checks whether
the price is about to increase after it’s time delayﬂ Then, the trader issues a sell order.
If the forecast was correct, then at time ¢ = 0 the price was pg and at time ¢ = d the
price was gq where gg > go. This means that the trader made a profit of ¢ — qo. If the

forecast was wrong, the loss caused to the trader is ¢y — ¢4. The cycle resumes after
the shares sell/purchase.

IThe opposite case for a price decrease is symmetric.
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Assuming the average price change over a single time unit is a, the amount of possible
transactions during a single day is n, the traders delay is d and the model accuracy

percentage is pgerqy then the average profit a trader stands to make through out a day
from a single stock unit is

X n
profit = Pdelay * 3 ca-d— ((1 - pdelay) i d) =a- n(2pdelay - 1)- (9.1)

al3

Figures and [9.5 depicts the assigning of pgejqy into Equation The Y-axis values
indicates the potential profit as a function of the average price change size and the
amount of price changes (a and n). This study shows a quantification of profit low
network latency can generate. The results address the case in which the transactions
involve a single security unit. The reason for this is that in practice the amount of
securities offered for each security price varies and the better the price the less is

offered. Analysis of profitability which includes the amount of securities is outside the
scope of this thesis.
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Figure 9.6: profitability as a function of delay

From a financial point a view, this is a formal quantification of the possible profit a
trader can make during a single day using his network speed.

Studying the results of figures [9.4] and from a different perspective yields further
insight. We consider the ratio between the profitability of two imaginary HF'T players.
One with delay of d = x and the second with smaller delay d = 2/, 2’ < z. From figures
and [9.5{ one can extract the relation between the delay (z), the delay reduction (1)
and the ratio between the possible profitability.

Figures and depicts this analysis. The X axis in the figures stands for the

delay of the slower trader of the two, while the Y axis stands for the ratio in their
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Figure 9.9: impact of superior delay

possible profitability (faster trader’s profit divided by the slower trader’s profit). Each
of the lines in the figures stands for a different value of the delay difference x — z’. The
meaning of a point (z,y) on a line which correlates to difference [ is that a trader with
delay x — [ would have earned y times more than a trader with delay = (based on the
relevant data). As one can see from these figures, the impact of the difference between
the values is more significant for the lower delay values and becomes indifferent for the

larger delay values.

There are two important conclusions to be made of this results. The first relates to
assisting a trader in his decision as to whether he should purchase faster connectivity
to the stock exchange. Using those graphs, we quantify the added potential profit a
trader stands to make in case he chooses to improve his network connectivity’s speed.
As expected, the graphs show that the shorter the delay, the more profitable it is to get it
even shorter. This is inline with the case of the “Spread Networks” company mentioned
in the introduction in which a large amount of money was invested in the construction
of an infrastructure shortening a few milliseconds in the connection between New York
and Chicago. For instance, as we can see in Figure if a trader with delay d = 6
will improve it’s delay to d = 4, he potentially double his profit.

It is commonly assumed that the world of HFT is a zero one game. Namely, the winner
is the fastest trader and he takes it all. The main earning technique described in [9] of
HFT is such a zero one game technique. Here, using figures and [9.8| we formally show
a distribution of the profits between the traders according to their network latency. In
other words, the race indeed yields better results for the fastest trader, but it is not a

Zero one game.
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Chapter 10

Conclusion

In this Thesis we investigate the relation between a trader’s network connection latency
to the stock exchange and his ability to make profit using strictly analytical tools
(as appose to financial tools). In order to do that, we use the Geometric Brownian
Motion to model security price changes. The model, relays on the Brownian Motion
which models chaotic movement and thus fits to the underline financial assumption,
assumes that two consecutive security price changes are uncorrelated. We describe an
algorithm that finds the parameters of the GBM model that best approximate a specific

observation.

We use this algorithm for parameter extraction and apply the results over real stock
prices data, successfully verifying that the GCM model is a good fit to real stock values.
This is done by comparing the synthetic price changes behaviour with the real price

changes and analyse the differences.

We use both the GBM model and the parameter extraction algorithm in order to
forecast future price changes. We do this by “training” the algorithm on a given
train set of price changes and then executing the GBM model in order to generate a
continuation to the train set in the form of a synthetic prices series. Measuring the
forecast level of accuracy provide an indication that for short term ranges our model is
capable of correctly forecasting the market likelihood to raise or fall with probability
well above 50%. By suggesting a realistic way to define profit from a trading we can

also analyze the relation between network delay and traders expected profit.

Using the results for the quantification of the potential profitability, we compare the
profits of two different traders with different network latency (delay). This provides
us with a tool to quantify the impact of network latency improvement for a trader as
a function of his current network latency. This tool clearly indicates that the faster
the trader currently is, the more effective each small improvement in latency. Another

significant result that can be concluded from this profitability analysis is that HFT is
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not a zero one game and profit is distributed among different traders according to their

network latency.
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Appendix A

Validity of the used data

granularity

The model we use, GBM, is a continuous model describing infinite amount of data points
for each time frame. Using such a model to analyze any natural phenomena requires
making simplifying assumption on the data. Using the GBM model to forecast real
prices may generate data points at any granularity. Even the most complete transaction
book data is discrete and thus coarse comparing to the possible infinity approaching

granularity of the continues model.

Moreover, in order to convince ourselves as to the legitimacy of using the 1-minute
interval data in the analysis (and not a more smaller interval data), we make the
following experiment - comparing to a bigger interval data. Specifically, 10 minutes

interval data.

Figure is an illustration of experiment similar to the one presented in Figure
As we can see in Figure the graph generated by the GBM model succeeds in scaling

to the new interval without the need of any changes.
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