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ABSTRACT

This thesis encompasses three papers on the subject of modelling high-frequency
intraday discrete price changes. In all papers we consider the task of modelling the discrete
conditional distribution of price changes, propose new models and conduct large scale
estimation and forecasting exercises in order to compare the models with existing models
in the literature. In the first paper we extend the univariate non-linear non-Gaussian
state space model of Koopman, Lit and Lucas (2017) by including a specification for
the conditional mean. In the second paper we propose a new model for the bi-variate
conditional distribution by using Gaussian copulas and by modelling the correlation
coefficient dynamics by using a non-linear, non-Gaussian state space model. On the
last paper we propose a new model for the univariate conditional distribution where
the conditional volatility is predicted by a deep feedforward neural network. We also
incorporate three new variables for predicting the discrete price high-frequency volatility:
the bid-ask spread, high-low interval spread and the volume traded. In all the three papers
the new models outperformed recent literature models considered at the conditional density
forecasting exercises conducted.

Keywords: volatility models; high frequency data; discrete price changes; importance
sampling; deep learning; neural networks; score driven models; Skellam; non-Gaussian
time series models; time-varying copulas, dynamic discrete data, score driven models, NAIS

JEL Classification: C32, C45, G11



RESUMO

Esta tese inclui três artigos sobre o tópico de modelagem de retornos intradiários
discretos em alta-frequencia. Em todos os artigos nós conduzimos a tarefa de modelar
a distribuição condicional discreta das mudanças de preço, propomos novos modelos de
previsão e conduzimos exercícios de estimação e previsão em larga escala para comparar os
novos modelos com os modelos existentes na literatura. No primeiro artigo nós estendemos
o modelo de espaço de estados univariado, não-linear e não-gaussiano de Koopman, Lit
and Lucas (2017) incluindo uma especificação para a média condicional. No segundo artigo
nós propomos um novo modelo para a distribuição condicinal bivariada usando cópulas
gaussianas dinâmicas e modelando o coeficiente de correlação com um modelo em espaço de
estados não-linear e não-gaussiano. No último artigo nós propomos um novo modelo para
a distribuição univariada condicional onde a volatilidate condicional é prevista por uma
rede neural feedforward. Nós tambem incorporamos três novas variaveis para o modelos
de previsão de volatilidade em alta frequência com preços discretos: o spread de compra
e venda, o spread entre o preço maximo e preço mínimo e o volume transacionado. Em
todos os três artigos os novos modelos mostraram melhor performance nos exercícios de
previsão de densidade condicional quando comparados a modelos recentes da literatura.

Palavras-chaves: modelos de volatilidade; dados em alta frequência; retornos discretos;
importance sampling; aprendizagem de máquina; redes neurais; modelos de score; Skellam;
modelos de série de tempo não gaussianos; NAIS

Classificação JEL: C32, C45, G11
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Introduction

Volatility research in financial time series traditionally have been done by analyzing
daily returns datasets. Models like Garch and Stochastic Volatility have been studied for
decades in the literature and are popular among practitioners. They are useful for market
participants, regulators and exchanges for measuring the risks of financial investments.
See Andersen et al. (2006) for a comprehensive survey.

The availability of intraday high-frequency data have moved the literature focus
towards the usage of intraday returns for predicting daily volatility. Volatility in asset
returns is unobservable and time varying, so that including more timely data in the
models (e.g. intraday returns) can increase volatility prediction accuracy. Most of the
papers in this literature use non-parametric methods for volatility inference. Papers like
Barndorff-Nielsen and Shephard (2002), Andersen et al. (2001) and Hansen and Lunde
(2006) follow this approach.

More recently there have been an increased interest in modeling the underlying
intraday stochastic process in order to obtain a better description of the intraday return
dynamics. The interest in this case is modelling and predicting the intraday volatility
and correlation using the intraday returns - in contrast to the existing literature that
focused in forecasting daily volatility and correlation. For instance, Shephard and Yang
(2016) develop continuous-time stochastic Levy processes and Koopman, Lit and Lucas
(2017) estimate a stochastic volatility model using intraday high-frequency data. This
thesis follow this recent trend and focus in analyzing high frequency intraday returns to
forecast conditional intraday return distribution with emphasis on conditional volatility
and correlation.

In the first paper we model the univariate intraday price dynamics by using non-
linear non-Gaussian state space models, following an approach close to Koopman, Lit
and Lucas (2017). Two different specifications are analyzed. Different from the previous
literature, we consider estimation over multiple days and model the mean of the intraday
distribution, by using an auto-regressive specification. Comparing the forecasting perfor-
mance we conclude that all specifications provide forecasts that outperform empirical
non-parametric predictors. We also conclude that including the autoregressive specification
for the mean enhances the forecasting performance for the log-likelihood out-of-sample
prediction loss.

In the second paper we model the bivariate intraday price dynamics by using two
different kind of models: State-Space models and Score Driven models. In both cases
we consider the case of Gaussian copulas for the conditional distribution. Both types
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of models outperform empirical predictors for the bivariate conditional distribution. We
also conclude that the newly proposed State Space model have a statistically significant
superior forecasting performance for all of our sample.

In the third paper we model the univariate intraday price dynamics by using deep
learning. Specifically, we train feedforward neural networks in order to generate predictions
for the underlying high frequency volatility. This approach is novel in the literature to the
best of the authors knowledge. Four different specifications are tested including different
set of features and parameters. All models beat empirical non-parametric forecasting rules
considered. Our forecasting procedure for the univariate also provides better out-of-sample
forecasts compared to all Space State Models considered in the thesis. We also conclude
that new variables have predictive power for the volatility process: the bid-ask spread,
high-low interval spread and the volume traded.

The amount of data considered for all papers is huge (more than 2.3 billion prices)
and the estimation procedures are computationally expensive. The estimation procedures
on this thesis need efficient computational implementations in order to be feasible. The
Appendix depicts the computational techniques and machines used for computing the
models for this work. They included the use of distributed processing, GPU processing,
analytic approximating functions and specific compiled code. We have also used a cluster
at Amazon AWS EC2 service for part of the computations.



1 Modeling High Frequency Intraday Returns
by Non-Linear State Space Models

Abstract

In this paper we propose a model for discrete intraday high-frequency returns based on
non-linear, non-Gaussian state space models, following an approach close to Koopman, Lit
and Lucas (2017). Two different specifications are analyzed. Different from the previous
literature, we consider estimation over multiple days and model the mean of the intraday
distribution by using an auto-regressive specification. We also develop a novel estimation
procedure based on the coordinate descent method that minimizes the number of Nu-
merically Accelerated Importance Sampling (NAIS) procedure computations during the
optimization. Lastly, we conduct an extensive walk-forward forecasting exercise. Comparing
the forecasting performance of all models, we conclude that all state space specifications
considered provide forecasts that outperform empirical non-parametric predictors. We also
conclude that including the specification for the mean enhances the forecasting performance
for the log-likelihood out-of-sample prediction loss.

Keywords: discrete price changes; high frequency data; importance sampling; NAIS;
non-Gaussian time series models Skellam; volatility models;

JEL Classification: C32, G11
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1.1 Introduction
Understanding and predicting asset return’s distribution is important for market partic-
ipants, regulators and exchanges. Modeling the return’s distribution is one of the main
research goals in the financial literature. The second moment, volatility, is a primary mea-
sure of risk in financial markets and predicting potential losses by using daily volatility has
been standard since the 90’s. Modeling the first moment is usually pursued by quantitative
asset managers.

In recent times, the interest in modeling returns has expanded also to intraday time
frame. The ongoing technological advances in financial markets have popularized electronic
trading, increasing order management speed and making High Frequency Trading (HFT)
possible. Market reactions became faster, including extreme ones, leading to the interest
in measuring intraday risk. One extreme example of interest is the 2010 S&P futures
market flash crash (see Easley, Prado and O’Hara (2011) and Kirilenko et al. (2017)). The
availability of intraday prices have also increased over time and there are now many studies
using these prices to forecast daily volatilities and, more recently, to forecast the intraday
dynamic itself. See Barndorff-Nielsen and Shephard (2002), Andersen et al. (2001) and
Hansen and Lunde (2006) for papers forecasting daily volatilities and refer to Engle and
Sokalska (2012) and Andersen, Bollerslev and Lange (1999).

Volatility is unobservable, changes through time and possesses a clustering pattern. All
these characteristics also make volatility an interesting target for state space models in
finance and in fact this is one of the main approaches for modeling its time dependence.
There are many studies considering state space for modelling daily volatility through state
space models and also a few papers considering these models for the intraday price changes.
See Harvey and Shephard (1996) and Harvey (2007) for daily volatility and Bekierman
and Gribisch (2016) for a mixed frequency approach that includes a intraday component.
These papers rely on Non-Linear Gaussian State Space models.

But these model are not suitable for modelling the High Frequency Price dynamics, as they
rely on a continuous (Gaussian) distribution. Koopman, Lit and Lucas (2017) proposes
modelling the underlying price change distribution through a discrete (modified) Skellam
distribution. We follow a similar approach in this paper, but we also model the process
conditional first moment. It is commonly assumed in finance literature that the expected
values of short term returns do not depend on past prices, but this ceases to be the case
for high frequency returns, which are affected by the market’s microstructure. So we are
considering a discrete price, non-linear, non-Gaussian state space model for forecasting
the conditional probability distribution for financial assets’ returns, including its first and
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second moments.

Our dataset consists of trading prices for selected equities for the entire year of 2018,
obtained from Thomson Reuters Datascope service. We test our models by using four liquid
Brazilian stock. We consider the time frames of 10 seconds, considering only time frames
where trades happen. In this regard we follow Koopman et al. (2018) instead of Koopman,
Lit and Lucas (2017). This is because we use the same models for the univariate case and
for the marginals of the bivariate case in paper 2. As it is common in this literature, we
only consider intraday price changes disconsidering the overnight gap.

We estimate the model parameters by maximum likelihood estimation. The log-likelihood
function is intractable, so we rely in simulation methods for sampling it. We use the
Numerically Accelerated Importance Sampling introduced in Koopman, Lucas and Scharth
(2015). This approach is close to he Efficcient Importance Sampling that can be found
in Liesenfeld and Richard (2003) and Richard and Zhang (2007). For the forecasting
procedure we use the Bootstrap Particle Filter.

On the empirical section we conduct a forecasting exercise, comparing the forecasting
performance for different models specifications. We also compare the models performance
with empirical non-parametric predictors. In order to make all the computations we
parallelized the computation through several GPUs, setting up a cluster on Amazon AWS
EC2. The details of the computational aspects are described in the Appendix for the
thesis.

The rest of this paper is organized as follows. Section 2 contains the data description,
specification and treatment description. Sections 3 and 4 describe the analytical model.
Sections 5 and 6 provide details on the numerical estimation procedure. Sections 7 and
8 contain the empirical forecasting exercise along with the results from the estimation
procedure. Section 9 concludes.

1.2 Data
Our dataset is formed by intraday prices for four Brazilian Stocks: Petrobras (PETR4),
Vale (VALE3), Itau-Unibanco (ITUB4) and Bradesco (BBDC4) for the entire year of 2018.
These stocks are among the most liquid Brazilian stocks. The data used in this paper
consists of the closing trading prices for the intraday interval of 10 seconds obtained from
B3 exchange by using Thomson Reuters Datascope service. Taking all four stocks together,
our dataset consists of more than 2.3 billion prices.
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In the literature we have studies with approaches similar to this paper that uses both
1 second (Koopman, Lit and Lucas (2017)) and 10 seconds time interval (Koopman et
al. (2018)). The first one is concerned with the volatility dynamics, analyzing univariate
time series while the second makes a multivariate analysis. The 10 seconds time frame is
more convenient for the multivariate analysis as it raises the probability of the joint event
of simultaneous trading for the assets considered in the analysis, as argued in Koopman
et al. (2018). A reason for using 10 seconds interval even in the univariate case is that
although we chose the most liquid Brazilian stocks, these stocks are less liquid than the
American counterparts used in Koopman, Lit and Lucas (2017). For these two reasons we
chose the 10 seconds interval for the three papers in this thesis. There is a last advantage
in this choice: it makes the whole thesis comparable and based in the same dataset, which
is described in this section.

It is worth noting that even using the 10 seconds time frame (instead of the 1 second) we
still have to deal with a lot of missing values, as the stocks do not necessarily trade every
10 seconds interval. Regarding this issue we also take the same approach of Koopman et
al. (2018), by only updating the model when trading activity occurs. So we do not pad
missing prices as done in Koopman, Lit and Lucas (2017). Repeating prices when trading
activity do not occur has the effect of equating the event of no trade in a time 𝑡 to the
(different) event of a trade happening in time 𝑡 with the same price as 𝑡− 1, which is not
desirable. This procedure would inflate the number of zero price changes.

We consider all prices ranging from the market opening to the market closing. We model
the intraday price changes, so we discard the overnight price changes in the cases where
we estimate the model through more than one day. We apply a data-cleaning procedure
before the analysis, in order to clean for exchange reporting errors, as recommended by
Brownlees and Gallo (2006).

In table 1 we show descriptive statistics for the entire sample. We notice that there is high
occurrence of no change in price (0’s) and changes of magnitude 1 (±1). The distribution
for all stocks is also fat tailed, as the minimum and maximum price changes are more
than 30 times the standard deviation. This last fact can also be checked by looking at the
0.1% and 99.9% percentiles that are more than 5 times the standard deviation. These
occurrences shows not only a fatter than normal distribution, but also fatter than the
Skellam or Modified Skellam distributions.

In figure 1 we plot the histograms for the price changes for the selected stocks in the entire
year of 2018. In order to make this plot we discard the most severe price changes, that is,
we only consider the percentiles 0.1% to 99.9%, as the minimum and maximum values
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Table 1 – Descriptive Statistics for the 2018 Sample

# prices %0 %±1 std min max 0.1% 99.9%
Itau-Unibanco 585,142 33 36 1.90 -58 38 -9 9
Bradesco 583,730 36 40 1.57 -63 35 -8 7
Petrobras 587,000 43 43 1.24 -33 26 -6 5
Vale 567,534 31 36 2.09 -49 53 -11 11

We report prices as the number of 10 seconds closing prices considered in the sample, %0 as the
percentage of 0 price changes, %± 1 as the percentage of %± 1 price changes, std as the standard
deviation, min as the minimum price change in ticks, max as the maximum price change in ticks,
0.1% as the 0.1% percentile of price changes in ticks and 99.9% as the 99.9% percentile of price
changes in ticks the data, including whatever notes are needed.

exceed the range of the graphs. We can see from this plots that the price changes takes
few values most of the time emphasizing the need for a discrete distribution for this data.

We also note from figure 1 that the least volatile stock in terms of tick volatility, Petrobras,
attains less values most of the time for its price changes, while compared with the others.
This does not mean that Petrobras stock is less volatile than the others considering usual
price log returns . In fact, Petrobras stock is more volatile than the other in this sample.
The histogram dispersion for each stock is actually determined by the stock volatility
divided by the ratio of the tick size to its price. And for our sample this ratio is higher
for Petrobras than for the others. This fact forces the price changes to attain less distinct
values most of the time.
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Figure 1 – Histogram for price changes in 2018

(a) Itau-Unibanco (b) Bradesco

(c) Petrobras (d) Vale

In figure 2 we plot the price changes for the selected stocks in number of ticks for a selected
date (June 20, 2018). We can see again that Petrobras price changes attain less distinct
values than the other stocks.
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Figure 2 – Price changes for assets on June 20, 2018

(a) Itau-Unibanco (b) Bradesco

(c) Petrobras (d) Vale

1.3 Modeling Univariate High Frequency returns
Daily financial market returns are usually modelled by continuous distributions, often by
Gaussian distribution. It is common to use continuous distributions even in the case of
intraday returns, when the frequency is not high enough (e.g. 30 minutes). This is an
useful approximation as market prices and returns are discrete, but at these time frames
the wide range of distinct values frequently attained by the underlying market process
allows such simplification.

It is clear however from the descriptive analysis conducted in the previous section that
discreetness is an important feature at the 10 seconds time frame. The histograms for the
price changes show that only a few distinct values are attained most of the time. So the
Gaussian distribution is not suitable for modeling this high-frequency data, as any other
continuous distribution. So we need another workhorse distribution in order to model our
price changes/returns.
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Previous works, like Shahtahmassebi (2011) and Shahtahmassebi and Moyeed (2014),
have considered the usage of the Skellam distribution for modelling the price change
distribution at this time frame. The Skellam distribution was originally derived as the
difference between two Poisson distributions. In Koopman, Lit and Lucas (2017) the
authors consider a reparameterized version of the Skellam distribution, dependent on the
parameters 𝜇 and 𝜎, following Alzaid(2010). We follow the same approach. Let 𝑌𝑡 ∈ Z be
a Skellam distributed variable with E(𝑌𝑡) = 𝜇 ∈ R and Var(𝑌𝑡) = 𝜎2 ∈ R+ and let 𝑦𝑡 ∈ Z
be a time-indexed realization for 𝑌𝑡 for 𝑡 ∈ 1 . . . 𝑇 . It’s probability mass function (pmf) is
given by 𝑃𝑟(𝑌𝑡 = 𝑦𝑡) = 𝑝𝑠(𝑦𝑡;𝜇, 𝜎):

𝑝𝑠(𝑦𝑡;𝜇, 𝜎2) := exp(−𝜎2)
(︃
𝜎2 + 𝜇

𝜎2 − 𝜇

)︃
𝐼|𝑦𝑡|(

√︁
𝜎4 − 𝜇2), (1.1)

where 𝐼|𝑦𝑡|(.) is the modified I Bessel function of order |𝑦𝑡|. Comparing with the two
original Poisson distributions we have 𝜇 = 𝜆1 − 𝜆2 and 𝜎 = 𝜆1 + 𝜆2. The parameter 𝜇 not
only changes the expected value of 𝑌𝑡 but also its skew. The condition 𝜇 > 0 implies a
right-skewed distribution while 𝜇 < 0 implies a left skewed distribution. In the case where
𝜇 = 0, equation (1.1) simplifies to

𝑝𝑠(𝑦𝑡;𝜇, 𝜎2) := exp(−𝜎2)𝐼|𝑦𝑡|(𝜎2). (1.2)

Although the Skellam distribution is a good place to start, it does have some rigidity
regarding the shape of its 0 peak. In order to accomodate more flexible patterns in empirical
data, both Koopman, Lit and Lucas (2017) and Karlis and Ntzoufras (2008) consider a
more flexible version, the Modified Skellam Distribution. In this case a new parameter, 𝛾,
is used to transfer mass probability between the peak and its surroundings. The general
form of the Modified Skellam distribution transfers mass from 𝑃𝑟(𝑌𝑡 = 𝑘) to 𝑃𝑟(𝑌𝑡 = 𝑖)
and 𝑃𝑟(𝑌𝑡 = 𝑗) if 𝛾 < 0, or transfer in the opposite direction if 𝛾 > 0. The Modified
Skellam distribution MSKII(𝑖, 𝑗, 𝑘, 𝜇, 𝜎2, 𝛾) pmf is given by

𝑝𝐼𝐼(𝑦𝑡; 𝑖, 𝑗, 𝑘, 𝜇, 𝜎2, 𝛾) :=

⎧⎪⎪⎪⎨⎪⎪⎪⎩
𝑝𝑠(𝑦𝑡;𝜇, 𝜎2) for 𝑦𝑡 /∈ {𝑖, 𝑗, 𝑘}
𝑝𝑠(𝑦𝑡;𝜇, 𝜎2)− 𝛾Δ/2 for 𝑦𝑡 ∈ {𝑖, 𝑗}
𝑝𝑠(𝑦𝑡;𝜇, 𝜎2) + 𝛾Δ for 𝑦𝑡 = 𝑘,

(1.3)

where 𝛾 satisfies 2 min(𝑝𝑠(𝑖, 𝜇, 𝜎2), 𝑝𝑠(𝑗, 𝜇, 𝜎2)) > 𝛾Δ > −𝑝𝑠(𝑘, 𝜇, 𝜎2).
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Our case of interest for this paper is given by 𝑘 = 0, 𝑖 = −1 and 𝑗 = 1, in order to transfer
between the peak at zero and its surroundings. We also allow the mean and the variance
to vary through time. So we simply write the our pmf as

𝑝(𝑦𝑡;𝜇𝑡, 𝜎2
𝑡 ) := 𝑝𝐼𝐼(𝑦𝑡;−1, 1, 0, 𝜇𝑡, 𝜎2

𝑡 , 𝛾).

Note that the transformation done at the Modified Skellam Distribution is close to the
one done at mixtures. Specifically, the transformation is close to a mixture between the
deterministic distribution centered at zero and the Skellam distribution.

A novelty in this paper compared to the existing literature is that we also model the
parameter 𝜇, that was previously only considered fixed at zero. We consider two distinct
versions of our baseline models with different equations for 𝜇:

1. State Space Model (SS):
𝜇 = 0

2. State Space Model with mean (SSM) with

𝜇 = 𝛿𝑦𝑡−1.

The equation for the SSM model suggests a time dependency in the returns similar to
an auto-regressive model. To the best of the authors knowledge this structure for the
mean is novel for high frequency modeling using the Skellam Distribution and stochastic
volatility. In previous works, like Koopman, Lit and Lucas (2017), the mean is assumed to
be identical to zero like in the SS model.

1.4 Modelling the Volatility Process
We consider a volatility process close to the one described at Koopman, Lit and Lucas
(2017). The serial dependence in 𝑦1, · · · , 𝑦𝑛 second moments is modeled through the
parameter 𝜎𝑡, which follows a dynamic stochastic process. So the model is given by

𝑌𝑡|𝜎2
𝑡 ∼ 𝑝(𝑦𝑡;𝜇𝑡, 𝜎2

𝑡 ) (1.4)

And there are no other dynamics in 𝑌𝑡 other than the one implied by this structure (i.e
parameters 𝜇𝑡 and 𝜎𝑡).
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We model the stochastic process of 𝜎𝑡 by a long term expectation (𝜎), a seasonality pattern
(𝑠𝑡) and a stochastic component (𝛼𝑡). Thus 𝜎𝑡 is given by

𝜎2
𝑡 = 𝜎2𝑠𝑡 exp(𝛼𝑡)

𝛼𝑡+1 = 𝜑𝛼𝑡 + 𝜂𝑡

𝜂𝑡 ∼ NID(0, 𝜎𝜂(𝑡)2)

(1.5)

We assume |𝜑| < 1, in order to obtain stationarity, and assume normality of 𝜂𝑡. So the state
space equation is Gaussian and linear. We also assume diffuse initialization for 𝛼0. The
state space model itself is nevertheless non-Gaussian and nonlinear, as the link function
(𝜎2𝑠𝑡 exp(𝛼𝑡)) is non linear and the pmf for the observation equation (𝑌𝑡) is non-Gaussian.

Observe that in this general model we allow 𝜎𝜂 to change through time. We consider
this parameter to vary according to a fixed function. With this specification one can
accommodate deterministic sudden volatility changes through the specification of this
function, which can be caused by scheduled announcements, for instance. In this paper we
consider this function to be constant.

1.4.1 The Seasonality Pattern

A salient feature of intraday volatility is seasonality. This aspect has been documented
in many studies (e.g Andersen and Bollerslev (1997)). There are several reasons for
deterministic seasonality, including the usual schedule for economic and company news
releases, lunch-time, the market opening and market closing. A common pattern is a high
volatility on the market opening, which falls through the lunch-time and rises again over
day afternoon until the makert close. As shown in Andersen (1996), the intraday volatility
is also related to the volume of trading activity, which is itself influenced by the events
just described.

We model the seasonality pattern using a parsimonious specification through cubic splines.
The treatment is similar to the one used in Harvey and Koopman (1993) and Koopman,
Lit and Lucas (2017). Specifically, we write 𝑠𝑡 as a zero-sum cubic spline function

𝑠𝑡 = 𝛽′𝑊𝑡. (1.6)

𝑊𝑡 is calculated as described in Poirier (1973). 𝛽 is a 𝐾×1 vector of parameters associated
with 𝐾 + 1 spline knots. In this paper we set 𝐾 = 3 and set the knots for the spline at
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the times 10:00, 12:00, 13:30 and 17:00. These times reflect the market opening, start and
end of lunch time and market closing.

1.5 Estimation Procedure and state extraction
The model described by equations (1.3),(1.4),(1.5) and (1.6) represents a non-linear
non-Gaussian state space. The equation (1.4) represents the non-linear non-Gaussian
observation equation while equation (1.5) represents a linear state space equation. We
follow Durbin and Koopman (2012) and proceed the parameter estimation by Maximum
Likelihood Estimation. Let 𝑇 be the sample size and denote the model parameters
by 𝜓. In order to proceed with this estimation, we assume that given the realizations
𝛼 := (𝛼0, 𝛼1, · · · , 𝛼𝑇 ) the observations 𝑦 := (𝑦1, · · · , 𝑦𝑇 ) are conditionally independent.

1.5.1 Log-Likelihood estimation: Importance Sampling

The joint conditional density can be written as

𝑝(𝑦|𝛼, 𝜓) =
𝑛∏︁
𝑡=1

𝑝(𝑦𝑡|𝛼𝑡;𝜓)

𝑝𝑔(𝛼, 𝜓) =
𝑛∏︁
𝑡=1

𝑝𝑔(𝛼𝑡;𝜓).
(1.7)

Where 𝑝𝑔 is the unconditional distribution of 𝛼𝑡 obtained by the state space equation (1.5)
with parameters specified in 𝜓. And one possible expression for the likelihood function is

𝐿(𝑦, 𝜓) =
∫︁
𝑝(𝑦, 𝛼;𝜓)𝑑𝛼 =

∫︁
𝑝(𝑦|𝛼;𝜓)𝑝𝑔(𝛼;𝜓)𝑑𝛼. (1.8)

We can use numerical integration techniques to evaluate this last integral, including Monte
Carlo. This approach is common in the literature. A naive Monte Carlo procedure can be
directly obtained by equation (1.8). We could sample from the unconditional distribution
of 𝛼𝑡:

𝐿(𝑦, 𝜓) =
∫︁
𝑝(𝑦, 𝛼;𝜓)𝑑𝛼 ≃ 1

𝑆

𝑆∑︁
𝑘=1

𝑝(𝑦|𝛼(𝑘);𝜓)

𝛼(𝑘) ∼ 𝑝𝑔(𝛼;𝜓).
(1.9)

However, such naive procedure is extremely inefficient as it relies on a simulation of 𝛼 that
does not take the observations 𝑦 into account. The integral in equation (1.9) is evaluated
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efficiently using importance sampling, where we can sample 𝛼 from a distribution that is
closer to the unknown condition distribution 𝑝(𝛼|𝑦;𝜓).

We consider a Gaussian proxy for 𝑝(𝛼|𝑦;𝜓). Let 𝑔(𝛼|𝑦;𝜓) be such proxy, with 𝜓 denoting
its parameters. This proxy should be obtained by efficient numerical methods, in order to
obtain a feasible method of estimating (1.8). Let 𝜓* = (𝜓, 𝜓). We can write

𝐿(𝑦, 𝜓*) =
∫︁
𝑝(𝑦, 𝛼;𝜓)𝑑𝛼 =

∫︁ 𝑝(𝑦, 𝛼;𝜓)
𝑔(𝛼|𝑦;𝜓)

𝑔(𝛼|𝑦;𝜓)𝑑𝛼 (1.10)

The importance sampling estimate is thus given by

1
𝑆

𝑆∑︁
𝑘=1

𝜔(𝑦, 𝛼(𝑘);𝜓*)

𝜔(𝑦, 𝛼(𝑘);𝜓*) = 𝑝(𝑦, 𝛼(𝑘);𝜓)
𝑔(𝛼(𝑘)|𝑦;𝜓)

𝛼(𝑘) ∼ 𝑔(𝛼|𝑦;𝜓).

(1.11)

In order to obtain convergence, it suffices to have finite variance in 𝜔(𝑦, 𝛼(𝑘);𝜓) to apply
the central limit theorem. As done in Durbin and Koopman (2012), we let the Gaussian
proxy 𝑔 be given by 𝑔(𝛼;𝜓) = 𝑝𝑔(𝛼;𝜓). So we can write

𝜔(𝑦, 𝛼;𝜓) = 𝑝(𝑦, 𝛼;𝜓)
𝑔(𝛼|𝑦;𝜓) = 𝑝(𝑦|𝛼;𝜓)𝑝𝑔(𝛼;𝜓)

𝑔(𝑦|𝛼;𝜓)𝑔(𝛼;𝜓)/𝑔(𝑦;𝜓*)
= 𝑔(𝑦;𝜓*)𝑝(𝑦|𝛼;𝜓)

𝑔(𝑦|𝛼;𝜓) (1.12)

1.5.2 Finding the Gaussian Proxy

The closer 𝑔(𝛼|𝑦;𝜓*) is to 𝑝(𝛼|𝑦;𝜓), the more efficient will be the importance sampling
procedure. But one should also take into account the computational burden in obtaining
𝑔(𝛼|𝑦;𝜓*), as one could also increase the sample as an alternative to obtain less variance
in the Monte Carlo estimate.

There are several proposals for 𝑔(𝛼|𝑦;𝜓*). One is given in Durbin and Koopman (2012),
where 𝑔(𝛼|𝑦;𝜓*) is obtained by a ’linearisation’ process, by second order Taylor expanding
𝑝(𝑦|𝛼;𝜓) around the mode of 𝛼|𝑦. 𝑔(𝛼|𝑦;𝜓*) is obtained iterating on the linearised state
space model, which can be done efficiently using the Kalman Filter and Smoother. This
approach was introduced by Shephard and Pitt (1997) and Durbin and Koopman (1997).
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The ’Efficient Importance Sampling’(EIS) method is an alternative and is used in Liesen-
feld and Richard (2003) and Richard and Zhang (2007). In this method, the Gaussian
importance density parameters are found for each 𝑡 = 1, . . . , 𝑇 through

𝜓𝑡 = arg min
𝜓𝑡,𝜆0𝑡

∫︁
𝜆2(𝑦𝑡, 𝛼𝑡;𝜓*

𝑡 )𝜔𝑡(𝑦𝑡.𝛼𝑡;𝜓*
𝑡 )𝑔(𝛼𝑡|𝑦;𝜓*

𝑡 )𝑑𝛼𝑡

𝜆(𝑦𝑡, 𝛼𝑡;𝜓*
𝑡 ) := log𝜔𝑡(𝑦𝑡, 𝛼𝑡;𝜓*

𝑡 )− 𝜆0𝑡 := log 𝑝(𝑦𝑡|𝛼𝑡;𝜓𝑡)− log 𝑔(𝑦𝑡|𝛼𝑡;𝜓𝑡)− 𝜆0𝑡,

(1.13)

where 𝜆0𝑡 ∈ R is a normalizing constant that sets the mean of 𝜆(𝑦𝑡, 𝛼𝑡;𝜓*
𝑡 ) to zero.

Richard and Zhang (2007) evaluate (1.13) using importance sampling and calculate the
minimization through weighted least squares. Koopman, Lucas and Scharth (2015) use a
similar approach, but instead of using importance sampling, they evaluate (1.3) through
Gauss-Hermite quadrature Methods, which is highly efficient for low dimensional state
spaces. The minimization is also done through weighted least squares and the final log-
likelihood estimates can be controlled by control variables to further increase the method
efficiency. They call this method as ’Numerically Accelerated Importance Sampling’ (NAIS).
We use this method to find 𝑔(𝛼|𝑦;𝜓*).

For estimating efficiently over higher dimensional state spaces, one can follow Koopman,
Lit and Nguyen (2012) and Pinto (2012).

1.5.3 NAIS

In this subsection we derive the NAIS procedure. Our procedure will be for a generic
number of dimensions in the state space, so that we do not assume that the dimension is
one or two - as previously done in Koopman, Lucas and Scharth (2015) and Koopman, Lit
and Lucas (2017). Let 𝑛 be the dimension of the state space, that is, the dimension of 𝛼𝑡.
We first write the Gaussian distribution 𝑔(𝑦𝑡|𝛼𝑡;𝜓𝑡) as kernel function of 𝛼𝑡:

𝑔(𝑦|𝛼𝑡) =
𝑇∏︁
𝑡=1

𝑔(𝑦𝑡|𝛼;𝜓𝑡)

𝑔(𝑦𝑡|𝛼𝑡;𝜓𝑡) = exp(𝑎𝑡 + 𝑏′
𝑡𝛼𝑡 −

1
2𝛼

′
𝑡𝐶𝑡𝛼𝑡)

𝑔(𝑦, 𝛼𝑡;𝜓𝑡) =
𝑇∏︁
𝑡=1

𝑔(𝑦𝑡|𝛼;𝜓𝑡)𝑝𝑔(𝛼𝑡|𝛼𝑡−1;𝜓𝑡),

(1.14)
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with scalar 𝑎𝑡, 𝑛× 1 vector 𝑏𝑡 and 𝑛× 𝑛 matrix 𝐶𝑡. 𝛼𝑡 is also 𝑛× 1. 𝑎𝑡 is a scalar set so
that 𝑔(𝑦𝑡|𝛼𝑡;𝜓𝑡) integrates to one. So we can set 𝜓𝑡 := {𝑏𝑡, 𝐶𝑡}.

Note that the conditional density in (1.14) can be equivalently written as the density of a
linear Gaussian state space model, as done in Shephard and Pitt (1997) and Durbin and
Koopman (1997). Let 𝑦*

𝑡 := 𝐶−1
𝑡 𝑏𝑡 and consider the following linear Gaussian state spate

model

𝑦*
𝑡 = 𝛼𝑡 + 𝜀𝑡, 𝜀𝑡 ∼ NID(0, 𝐶−1

𝑡 )

𝛼𝑡+1 = 𝜑𝛼𝑡 + 𝜂𝑡, 𝜂𝑡 ∼ NID(0, 𝜎2
𝜂).

(1.15)

Then the conditional density on the observation equation is

log 𝑔(𝑦*
𝑡 |𝛼𝑡;𝜓𝑡) = 1

2
{︁
− log 2𝜋 + log |𝐶𝑡| − (𝐶−1

𝑡 𝑏𝑡 − 𝛼𝑡)′𝐶𝑡(𝐶−1
𝑡 𝑏𝑡 − 𝛼𝑡)

}︁
= 𝑎𝑡 + 𝑏′

𝑡𝛼𝑡 −
1
2𝛼

′
𝑡𝐶𝑡𝛼𝑡,

(1.16)

where 𝑎𝑡 collects all terms that are constant w.r. to 𝛼𝑡. Therefore 𝑔(𝑦*
𝑡 |𝛼𝑡;𝜓) and 𝑔(𝑦𝑡|𝛼𝑡;𝜓)

have the same kernel and we conclude that 𝑔(𝑦*
𝑡 |𝛼𝑡;𝜓) ≡ 𝑔(𝑦𝑡|𝛼𝑡;𝜓). As the state space

equation is also identical, we conclude that 𝑔(𝑦*
𝑡 , 𝛼𝑡;𝜓) ≡ 𝑔(𝑦𝑡, 𝛼𝑡;𝜓). This representation

is useful because it provides a way to compute 𝑔(𝛼|𝑦;𝜓*(𝑘)) efficiently. We have just proved
that

𝑔(𝛼𝑡|𝑦;𝜓*(𝑘)) = 𝑁(𝛼̂(𝑘)
𝑡 , 𝑃

(𝑘)
𝑡 ), (1.17)

where 𝛼̂(𝑘)
𝑡 and 𝑃

(𝑘)
𝑡 are the mean and covariance matrix for the states 𝛼𝑡 conditional on

the whole data (𝑦). They can estimated by the Kalman Filter and Smoother applied to
(1.15).

Now we turn to NAIS in order to obtain efficient estimates for 𝜓. In NAIS itself, we obtain
𝜓 iteratively. Again, let the parameters for 𝑝(𝑦𝑡|𝛼) be 𝜓𝑡 and let 𝜓*(𝑘)

𝑡 := (𝜓𝑡, 𝜓𝑡
(𝑘)). Given

𝜓
(𝑘)
𝑡 we obtain 𝜓

(𝑘+1)
𝑡 by

𝜓
(𝑘+1)
𝑡 = arg min

𝜓
(𝑘+1)
𝑡

∫︁
𝜆2(𝑦𝑡, 𝛼𝑡;𝜓*(𝑘+1))𝜔𝑡(𝑦𝑡, 𝛼𝑡;𝜓*(𝑘))𝑔(𝛼𝑡|𝑦;𝜓*(𝑘))𝑑𝛼𝑡. (1.18)

We evaluate this integral numerically, using Gauss-Hermite Quadrature. Let 𝜑 be the
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integrand in (1.18),

𝜑(𝑦𝑡, 𝛼𝑡;𝜓(𝑘+1)
𝑡 , 𝜓

*(𝑘)
𝑡 ) := 𝜆2(𝑦𝑡, 𝛼𝑡;𝜓*(𝑘+1))𝜔𝑡(𝑦𝑡, 𝛼𝑡;𝜓*(𝑘))𝑔(𝛼𝑡|𝑦;𝜓*(𝑘)). (1.19)

To shorten the notation, consider 𝜑(𝛼𝑡) := 𝜑(𝑦𝑡, 𝛼𝑡;𝜓(𝑘+1)
𝑡 , 𝜓

*(𝑘)
𝑡 ). Let 𝐹 (𝑘)

𝑡 be the Cholesky
decomposition of 𝑃 (𝑘)

𝑡 , such that 𝐹 (𝑘)
𝑡 𝐹

(𝑘)
𝑡

′ = 𝑃
(𝑘)
𝑡 . Also let ℳ = {1, · · · ,𝑀}, where 𝑀

is the number of desired points in the Gauss-Hermite quadrature per dimension. In each
dimension we can generate M points 𝒵 := {𝑧𝑠}𝑠∈ℳ with Gauss-Hermite weights ℎ(𝑧𝑠). We
then consider the multidimensional version of the Gauss-Hermite quadrature by using
𝑧 ∈ 𝒵𝑛 ⊂ R𝑛, whose weights are given by the product of ℎ(𝑧𝑠) for each coordinate 𝑧𝑠 of 𝑧.
We can index all the 𝒵𝑛 elements using elements 𝑗 ∈ℳ𝑛, whose coordinates we denote
by 𝑗𝑠, 𝑠 ∈ {1, · · · , 𝑛}.

Then using this multidimensional Gauss-Hermite Quadrature, in all the n state variables,
we obtain the points 𝑧 ∈ R𝑛 by approximating equation (1.7) by:

∫︁
𝜑(𝛼𝑡)𝑑𝛼𝑡 ≃

∑︁
𝑗∈ℳ𝑛

𝑤̃(𝑧𝑗)𝜑(𝛼̃(𝑘)
𝑡,𝑗 ), where

𝑤̃(𝑧𝑗) :=
𝑛∏︁
𝑠=1

ℎ(𝑧𝑗𝑠)𝑒𝑧
2
𝑗𝑠

𝛼̃
(𝑘)
𝑡,𝑗 = 𝛼̂

(𝑘)
𝑡 + 𝐹

(𝑘)
𝑡 𝑧𝑗

𝑧𝑗 := (𝑧𝑗1 , · · · , 𝑧𝑗𝑛)′.

(1.20)

And we just generalized the NAIS method to 𝑛 dimensions in the most straightforward
way. It is worth saying that this method of integration through Gauss-Hermite integration
is not the most appropriate for high dimensional state space problems. For this case, using
NAIS, we refer to Pinto (2012). He changes the estimation exactly in this step, considering
a multi-step Quasi-Monte Carlo method.

Using equation (1.20) the numerical version of (1.18) becomes

arg min
𝜓

(𝑘+1)
𝑡

∑︁
𝑗∈ℳ𝑛

𝑤̃(𝑧𝑗)𝜑(𝑦𝑡, 𝛼̃(𝑘)
𝑡,𝑗 ;𝜓(𝑘+1)

𝑡 , 𝜓
*(𝑘)
𝑡 ) (1.21)

Substituting the definition of 𝜑 and 𝜆, we obtain equation (1.21) as

arg min
𝜓

(𝑘+1)
𝑡

∑︁
𝑗∈ℳ𝑛

𝑤𝑗[log 𝑝(𝑦𝑡|𝛼̃(𝑘)
𝑡,𝑗 ;𝜓𝑡)− log 𝑔(𝑦𝑡|𝛼̃(𝑘)

𝑡,𝑗 ;𝜓(𝑘+1)
𝑡 )− 𝜆0𝑡]2

𝑤𝑗 := 𝑤̃(𝑧𝑗)𝜔𝑡(𝑦𝑡, 𝛼̃(𝑘)
𝑡,𝑗 ;𝜓*(𝑘)

𝑡 )𝑔(𝛼̃(𝑘)
𝑡,𝑗 |𝑦;𝜓*(𝑘)

𝑡 )
(1.22)
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Then using equation (1.14) one can see that this equation is equivalent to a weighted least
squares regression, where 𝜓𝑡 = (𝑏𝑡, vech(𝐶𝑡)) can be obtained as the coefficients for 𝛼̃(𝑘)

𝑡,𝑗

and vech(𝛼̃(𝑘)
𝑡,𝑗 𝛼̃

(𝑘)′

𝑡,𝑗 ), respectively. In other words, we run a weigthed regression with weight
𝑤𝑗 and the 𝑀𝑛 observations with the equation

log 𝑝(𝑦𝑡|𝛼̃(𝑘)
𝑡,𝑗 ;𝜓) = constant + 𝜅′𝛼̃

(𝑘)
𝑡,𝑗 −

1
2𝜉

′vech(𝛼̃(𝑘)
𝑡,𝑗 𝛼̃

(𝑘)′

𝑡,𝑗 ) + error (1.23)

And store the coefficient results as 𝑏(𝑘+1)
𝑡 = 𝜅 and vech(𝐶(𝑘+1)

𝑡 ) = 𝜉.

So we have updated 𝜓(𝑘+1)
𝑡 as a function of 𝜓(𝑘)

𝑡 . We repeat this procedure until convergence
is obtained, as measured by the distance between 𝜓

(𝑘+1)
𝑡 and 𝜓

(𝑘)
𝑡 .

We sumarise the described NAIS algorithm as

1. Find appropriate values for starting the algorithm, setting 𝜓(0)
𝑡 . The algorithm usually

converges for every starting point. Usually setting 𝑏𝑡 to ones and 𝐶𝑡 = 𝐼𝑛 suffices. It
will be faster, of course, if the starting point is closer to the fixed point solution.

2. Given 𝜓
(𝑘)
𝑡 , Construct the linear state space model defined in equation (1.4). Run

Kalman Filter and Smoother in order to obtain 𝛼̂
(𝑘)
𝑡 and 𝐹

(𝑘)
𝑡 .

3. Obtain 𝜓
(𝑘+1)
𝑡 by weighted least squares using equation (1.22).

4. if ||𝜓(𝑘+1)
𝑡 − 𝜓(𝑘)

𝑡 || < 𝜖, then the algorithm has converged and the solution is 𝜓(𝑘+1)
𝑡 .

Otherwise set k=k+1 and go to step 2.

It is worth mentioning that after the NAIS convergence, we have an efficient way to
generate random sample from 𝑔(𝛼|𝑦;𝜓). We can use the state space (1.15) to generate
such sample, using the Kalman Filter and Smoother. See Durbin and Koopman (2012)
regarding the Linear State Space Simulation Smoother.

A final essential feature of the NAIS procedure just described is its robustness to the
range of values returned by the procedure described by equations (1.13) and its practical
implementation, equation (1.23). As these optimizations are unconstrained, one can expect
in practice that the 𝐶𝑡 matrices obtained by such procedure will not be positive definite in
general. But the procedure is robust to that fact and all computations can be executed
normally even in that case, as argued in Pinto (2012) and Koopman, Lucas and Scharth
(2015).
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1.5.4 State extraction: Mode, Smoothing and Filtering

After estimating the model parameters by the method described in the previous section,
we need to extract the states from the model in order to make forecasts or just infer the
distribution of the instantaneous volatility that happened in the past. In what follows we
call smoothed estimates for a function of 𝛼𝑡 the estimates that use whole dataset 𝑦1, . . . , 𝑦𝑇

and call filtered estimates the estimates for such function the estimates that only the
dataset 𝑦1, . . . , 𝑦𝑡−1.

The procedure already gives us a valuable information. The 𝛼̂𝑡 and 𝐹𝑡 that are part of the
output of the NAIS procedure are already estimates for the mode of 𝛼𝑡 and its covariance
matrix, conditional on the whole data. So they are ’smoothed’ estimates for the mode.

In order to obtain smoothed estimates for the 𝛼𝑡 we can also use the importance sampling
procedure described at subsection 1.5.1, analogously to the equation (1.11). Specifically,
let ℎ be a function of 𝛼 we can write (using the same notation as in subsection 1.5.1):

𝐸[ℎ(𝛼)] =
∫︁
ℎ(𝛼)𝑝(𝑦, 𝛼;𝜓)𝑑𝛼 =

∫︁
ℎ(𝛼)𝑝(𝑦, 𝛼;𝜓)

𝑔(𝛼|𝑦;𝜓) 𝑔(𝛼|𝑦;𝜓)𝑑𝛼 (1.24)

The importance sampling estimate is thus given by

1
𝑆

𝑆∑︁
𝑘=1

ℎ(𝛼(𝑘))𝜔(𝑦, 𝛼(𝑘);𝜓)

𝜔(𝑦, 𝛼(𝑘);𝜓) = 𝑝(𝑦, 𝛼;𝜓)
𝑔(𝛼|𝑦;𝜓)

𝛼(𝑘) ∼ 𝑔(𝛼|𝑦;𝜓)

(1.25)

If we let ℎ(𝛼) = 𝛼 we can use equation (1.24) to obtain estimates for the mean. We
can also let ℎ(𝛼) = 𝛼𝛼′ to obtain estimates for the second order moments. The 𝛼(𝑘) are
generated by the same procedure used in estimating the log-likelihood which is the Linear
State Space Simulation Smoother applied to the linear state space decribed by equation
(1.15). See Durbin and Koopman (2012).

Finally, we need to obtain filtered estimates for the volatility in order to make the forecasting
comparisons we sought in this paper. One way to obtain such estimates is to repeatedly
obtain smoothed estimates up to 𝑡− 1, either using the mode or the mean and then use
state space equation in order to go one step ahead. This approach is time consuming
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as one needs to recalculate all previous states again at each interaction. Koopman, Lit
and Lucas (2017) follows this approach and use the mode, calculated through NAIS as
described above.

We use a different approach in this paper. We calculate the filtered estimates by using the
Bootstrap Particle Filter applied to the non-linear non-Gaussian state space described by
equations (1.13) - (1.16). A formal description of such algorithm follows. Let 𝑁 be the
number of particles (we use 200), 𝑝𝑔 be the Gaussian distribution of the states 𝛼𝑡 implied
by the state space equation in (1.15) and ℎ(𝛼) be our function of interest.

For all 𝑖 ∈ 1, . . . , 𝑁 :

1. Sample 𝛼̃(𝑖)
𝑡 from 𝑝𝑔(𝛼𝑡|𝛼(𝑖)

𝑡−1)

2. Compute the corresponding weights 𝑤̃(𝑖)
𝑡

𝑤̃
(𝑖)
𝑡 = 𝑝𝑔(𝑦𝑡|𝛼̃(𝑖)

𝑡 ), 𝑖 = 1, . . . , 𝑁

and normalize:
𝑤

(𝑖)
𝑡 = 𝑤̃

(𝑖)
𝑡 /

𝑁∑︁
𝑗=1

𝑤̃
(𝑗)
𝑡

3. Compute expectation of the function of interest

ℎ̂𝑡 =
𝑁∑︁
𝑖=1

𝑤
(𝑖)
𝑡 ℎ𝑡(𝛼̃

(𝑖)
𝑡 )

4. Resample the particles: draw 𝑁 independent particles 𝛼(𝑖) from {𝛼̃(1)
𝑡 , . . . , 𝛼̃

(𝑁)
𝑡 } with

replacement with the corresponding probabilities {𝑤(1)
𝑡 , . . . , 𝑤

(𝑁)
𝑡 }

And, again, we can use ℎ(𝛼) = 𝛼 and ℎ(𝛼) = 𝛼𝛼′ to calculate the first and second filtered
moments.

1.6 Optimization Procedure
In this section we describe in greater detail the model optimization procedure used to
maximize the log-likelihood. We estimated the models by maximum likelihood. The log-
likelihood function is calculated by the equations (1.10) and (1.11). For each interaction
the same random numbers are used in order to ensure that the sampling error will not
affect the calculus of the derivatives.

To maximize of the log-likelihood function we apply a version of the Coordinate Descent
Algorithm. The reason behind this choice is that the parameters that affect the measurement
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equation have derivatives that are easier to calculate and the coordinate descent method
also diminishes the number of NAIS procedure runs.

Let 𝜃 = {𝜃𝑦, 𝜃𝛼} represent the model parameters, where 𝜃𝑦 represents the parameters
related to the observation equation while 𝜃𝛼 represents the parameters related to the state
equation. The algorithm is the following:

1. Start with a initial guess 𝜃 = 𝜃0.

2. Maximize the log-likelihood function w.r. to 𝜃𝛼, using the NAIS algorithm to calculate
the mode 𝛼̂𝑡 and the Gaussian proxy parameters (𝑏𝑡 and 𝐶𝑡) at each iteration.

3. Maximize the log-likelihood function conditional on the values obtained in the previous
step with respect to 𝜃𝑦, while keeping 𝛼̂𝑡 and the Gaussian proxy parameters (𝑏𝑡 and
𝐶𝑡) constant.

4. Repeat the procedure until the change in the final parameters (𝜃) is less than the
tolerance 𝜀.

In each iteration of the above algorithm, we use numerical maximization for steps 2 and 3,
as the functions are intractable in both cases. We prefer to split the optimization in these
two separate optimizations because there is no need to recalculate the NAIS parameters
during the optimization in step 3, making it really faster.

We use the BFGS algorithm for step 3. As we keep 𝛼̂𝑡 constant at this step, the derivatives
for the log-likelihood with respect to 𝜃𝑦 are analytical for this step, making the BFGS
algorithm more efficient.

For the step 2 we use the Constrained optimization by linear approximation (Cobyla)
algorithm, described in Powell (1994). As we need to update the states 𝛼̂𝑡 for each
interaction, the log-likelihood function may have too low numerical accuracy at some
points for a Quasi-Newton procedure like BFGS. We find that this method is much more
robust for this step, as it does not involve derivatives calculation.

The whole algorithm generally converges fast, taking just a few iterations at the outer loop
of the Coordinate Descent algorithm. One advantage of the proposed algorithm is that
the NAIS procedure is only needed at the step 2, and this step only have two parameters
to estimate. Another advantage is the possibility of using analytic expression for the
derivative of the log-likelihood function at the step 3.

We estimated the two models described on table 2. We estimated the models for every 5



Chapter 1. Modeling High Frequency Intraday Returns by Non-Linear State Space Models 33

Table 2 – Estimated Models’ Characteristics

Name estimation sample size mean equation forecast sample size
𝑆𝑆 5 days 𝜇𝑡 = 0 5 days
𝑆𝑆𝑀 5 days 𝜇𝑡 = 𝛿𝑦𝑡−1 5 days

consecutive business days periods (‘weekly’), for all ‘weeks’ of 2018. As the models involve
seasonality with the period consisting of one day, estimating with more than one day in
the sample should help identifying the difference between the seasonality and the state
space factors of the volatility process. In this respect we differ from Koopman, Lit and
Lucas (2017), that estimated the models with sample size equal to one day.

1.7 Estimation Results
Now we describe the in-sample estimation results for the two models (SS and SSM).
The models were estimated for 48 different 5 business days periods in 2018 for all the
four equities in our list. In this section we cover the parameter estimates, the estimated
seasonality and the filtered volatilities fora sample data.

1.7.1 Parameter Estimates

We report the descriptive statistics for the parameter estimates for model SS and SSM in
the tables 3 and 4 respectively. For each equity / parameter we report the sample mean
for the parameter estimates on the first row and the standard deviation in parenthesis on
the second row.

Table 3 – Descriptive Statistics for SS Model Estimates

𝜎 𝛾 𝜑 𝜎𝜂
2 𝛽0 𝛽1 𝛽2

Bradesco 1.43 0.11 0.96 0.023 0.91 -0.047 -0.12
(0.10) (0.12) (0.038) (0.029) (0.28) (0.085) (0.075)

Itau-Unibanco 1.58 0.40 0.91 0.062 0.77 -0.00525 -0.12
(0.15) (0.27) (0.061) (0.054) (0.32) (0.087) (0.093)

Petrobras 1.30 -0.13 0.99 0.0072 0.53 -0.043 -0.0070
(0.17) (0.074) (0.019) (0.012) (0.35) (0.12) (0.066)

Vale 1.64 0.32 0.87 0.098 0.85 0.042 -0.13
(0.24) (0.28) (0.089) (0.075) (0.43) (0.10) (0.11)
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The descriptive statistics for SS already describe some interesting features on the data
that worth mentioning. First, as expected, the 𝜑 parameter estimates look as close to one
as the estimates in Koopman, Lit and Lucas (2017). And this is in line with the expected
behavior. The estimates for the 𝜎 factor are all at the same order of magnitude.

The betas also have all the same pattern, with 𝛽0 >> (𝛽1, 𝛽2), suggesting that the seasonal-
ity pattern of the 4 stocks should have some similarity. The 𝜎𝜂 parameter, which represents
the volatility of the volatility shock, differ for the stocks, being roughly proportional to
1− 𝜑 - showing that the unconditional variance of the 𝛼 is of the same order of magnitude
for all stocks.

The 𝛾 parameter shows more variation, with the estimates for the Petrobras being negative
while all other are positive. This reflects the marked difference in the histograms shown on
section 1.

Observe that the sample standard deviations should not be interpreted as standard errors,
and there is no reason to believe that the true model parameters are the same for each
estimation. We shall see that some parameters even look to have trended during the year.
That said, we see less relative variation for parameters like 𝜎, 𝜑 and 𝛽0, and more relative
variation for 𝛾 and 𝜎𝜂.

Table 4 – Descriptive Statistics for SSM Model Estimates

𝜎 𝛾 𝛿 𝜑 𝜎𝜂
2 𝛽0 𝛽1 𝛽2

Bradesco 1.39 0.069 -0.22 0.96 0.029 1.00 -0.024 -0.143
(0.13) (0.099) (0.035) (0.040) (0.036) (0.30) (0.088) (0.089)

Itau-Unibanco 1.57 0.31 -0.21 0.90 0.075 0.88 0.017 -0.14
(0.20) (0.21) (0.039) (0.068) (0.066) (0.31) (0.10) (0.11)

Petrobras 1.25 -0.13 -0.24 0.99 0.0089 0.66 -0.033 -0.020
(0.16) (0.059) (0.062) (0.018) (0.015) (0.34) (0.13) (0.080)

Vale 1.64 0.25 -0.20 0.86 0.12 0.95 0.062 -0.14
(0.28) (0.24) (0.048) (0.088) (0.086) (0.44) (0.12) (0.13)

Comparing the estimates for SSM parameters on table 4 and the estimates for the SS
parameters on table 3, we observe mostly similarities. The estimates for all the common
variables in both models have similar means and deviations.
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The new parameter, 𝛿, has strikingly similar means across the different stocks. The means
are also high when compared the the standard deviations. These estimates already suggest
that the model SSM should be preferred to the SS model as 𝛿 seem far from zero for most
estimates.

We also note that the sign of the mean 𝛿 is negative for all stocks. This implies a negative
dependency of the mean on previous returns. This effect is expected and has been detected
in other works in the literature for intraday data. See Chu, Ding and Pyun (1996) and
McInish and Wood (1992). This estimative is new, however, in the context of the model
estimated in the present paper. The magnitude of the estimates are also high, as all
estimates point to a return reversion that surpass 20% of the previous price change in
ticks.

So far we have described the set of estimates as a whole, using descriptive statistics. Now
we analyze how the estimates have evolved through time in the year of 2018, describing
all coefficient point estimates for both models.

Figure 3 – Estimates for 𝜑

(a) Itau-Unibanco (b) Bradesco

(c) Petrobras (d) Vale
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In figure 3 we see the estimates for 𝜑. The estimated show similarities for both models
(SS & SSM) for all stocks, for most estimation periods. The estimates vary through time
for all stocks, being higher and less volatile for Petrobras, which is the stock with less
volatility as measured on a per tick basis (that is, lower 𝜎).

Figure 4 – Estimates for 𝜎𝜂2

(a) Itau-Unibanco (b) Bradesco

(c) Petrobras (d) Vale

Figure 4 shows estimates for 𝜎𝜂2. We note again that estimates for both models are similar.
As mentioned before, there is a huge level difference between the stocks, mostly in line
with the differences with the 1−𝜑 coefficient. Regarding the dynamics, we notice a spike in
this coefficient for all stocks between May and July 2018. At this period Brazilian market
was hit by three different shocks: (1) A national Truck driver’s strike, causing economic
turmoil and products’ shortage, (2) A temporary deterioration on the elections perception,
with a sudden rise in polls of a non market friendly populist candidate (3) an external
shock caused by the depreciation of emerging markets currencies.
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Figure 5 – Estimates for 𝜎

(a) Itau-Unibanco (b) Bradesco

(c) Petrobras (d) Vale

Figure 5 shows estimates for 𝜎. We can see again that the estimates of the two models are
similar and that the price return volatility rises between May and July for all stocks, just
as in the previous parameter. We also see for this parameter that the volatility rises again
on the last quarter, where Brazilian presidential elections happened.
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Figure 6 – Estimates for 𝛾

(a) Itau-Unibanco (b) Bradesco

(c) Petrobras (d) Vale

Figure 6 shows estimates for 𝛾. There is a disparity in the levels for the estimates for this
parameter across the stocks, notably with Petrobras showing a consistent negative value
while all other show mostly positive values. We can also see slightly larger values for this
parameter at the last quarter for all stocks except Bradesco.
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Figure 7 – Estimates for 𝛿

(a) Itau-Unibanco (b) Bradesco

(c) Petrobras (d) Vale

Figure 7 shows the estimates for the new parameter in model SSM. All point estimates for
all stocks are negative, being less than -0.10 in all estimates and reaching values below
-0.30 for some periods. We note that between May and July all estimates became less
negative, implying a lower short term price return reversion for this period, along the
higher volatility.
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Figure 8 – Estimates for 𝛽0

(a) Itau-Unibanco (b) Bradesco

(c) Petrobras (d) Vale

Figures 8, 9 and 10 show the dynamics of the estimates for the parameters related to the
seasonality. Looking at the changes in the estimates through the year we can see that
𝛽0 tended to be low at the start and the end of the year, while 𝛽2 showed the opposite
dynamic:it was higher at the start and at the end of the year, being lower in between. 𝛽1

had no relevant trends.

We note that a high 𝛽0 and low 𝛽2 means more volatility at the start of the day. So the
changes in parameters 𝛽0 and 𝛽2 show that the seasonality changed through the year with
relatively more volatility at the end of the day as compared to the start of the day at the
start of the year and at the end of the year.
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Figure 9 – Estimates for 𝛽1

(a) Itau-Unibanco (b) Bradesco

(c) Petrobras (d) Vale

Figure 10 – Estimates for 𝛽2

(a) Itau-Unibanco (b) Bradesco

(c) Petrobras (d) Vale



Chapter 1. Modeling High Frequency Intraday Returns by Non-Linear State Space Models 42

1.7.2 Seasonality

In this sub-section we analyze the descriptive statistics for the volatility seasonality. Figure
11 depicts the seasonality for the SSM model, showing the mean and two percentiles for
the log of the seasonality factor for each time of the day.

Observe that all stocks show a sharp decrease in the expected volatility from the opening
to the end of the day. This effect is also documented in Koopman, Lit and Lucas (2017).
One possible reason is that on the starting of the trading session there is more information
for the markets to digest, including all the overnight news and economic releases, that are
more common in the morning.

Figure 11 – Average Seasonality for 2018

(a) Itau-Unibanco (b) Bradesco

(c) Petrobras (d) Vale
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1.7.3 Filtered Volatility Example

We now show an example of the filtered volatility obtained by the Bootstrap Particle
Filter using both SS and SSM models. Figure 12 shows the path of the filtered volatility
for the day July 6, 2018. The model was estimated with data from the same 5-days period
containing that day. Observe that the volatility decreases during the day as predicted by
the mean seasonality in the previous sub-section.

Figure 12 – Filtered Forecast Volatility for July 6, 2018

(a) Itau-Unibanco (b) Bradesco

(c) Petrobras (d) Vale

1.8 Forecasting Performance Comparison
To assess the forecasting performance of the two models we conduct a forecasting exercise
for all 5-days periods of 2018. For the forecast of time 𝑡 and for all models, we use only
data up to 𝑡 − 1. To compare the performance we estimate the pmf by using empirical
forecasting models for the Skellam pmf parameters. The models are:

EW: 𝜎𝑡 is estimated by an EWMA process: 𝜎̂2
𝑡 = 𝜆𝑦2

𝑡−1 + (1− 𝜆)𝜎̂2
𝑡−1. 𝜆 is estimated using

the fit sample (previous week). 𝜇 and 𝛾 are set to zero
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𝑀1: 𝜎𝑡 is estimated non-parametrically by a moving average process using a rolling window
of the past 90 returns. 𝜇 and 𝛾 are set to zero

𝑀2: 𝜎𝑡 is estimated non-parametrically by a moving average process using a rolling window
of the past 900 returns. 𝜇 and 𝛾 are set to zero

E: the pmf of 𝑦𝑡 is determined by the empirical probabilities of 𝑦𝑡 on the fit sample.

For each 5-day period of 2018, we estimate all the models on the previous 5-day period
and calculated the pmf forecasts by iteratively filtering the volatility while keeping the
parameters fixed. To assess the forecasting performance we follow Koopman, Lit and Lucas
(2017) and used the log-likelihood loss function, which is simply the negative of the sum of
the log of the pmf obtained by each model for all the points in the forecasting sample.

In tables 5 and 6 we collect the main statistics for the forecasting performance comparison
of the models. For each stock we report the mean log-loglikelihood loss function value for
each time on the whole sample ( for all periods of 5-day taken together). We also report
the Diebold-Mariano statistics comparing all models to the SS Model (DM[SS] column)
and comparing all models to the SSM model (DM[SSM] column). In both cases a negative
number means that the model in the columns outperforms the model on the row and a
positive number means the opposite.

The Diebold-Mariano statistic follow a standard normal distribution. So our exercise
suggest that SSM outperforms all other models for forecasting the pmf by a large margin
for all stocks. The SS model also outperforms all models for most stocks(except SSM), but
with a lower margin. And the EWMA model actually outperformed SS model for the Vale
stock.

Table 5 – Forecasting Results - Bradesco and Itau

Bradesco Itau
Log Loss DM[SS] DM[SSM] Log Loss DM[SS] DM[SSM]

SS 1.761 - -45.97 1.948 - -42.64
SSM 1.742 45.97 - 1.932 42.64 -
EW 1.764 -9.165 -41.40 1.949 -3.079 -27.54
𝑀1 1.772 -21.72 -45.63 1.959 -17.74 -36.41
𝑀2 1.801 -61.97 -76.69 1.987 -51.86 -65.02
E 1.789 -48.61 -64.73 1.968 -27.22 -42.41
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Table 6 – Forecasting Results - Petrobras and Vale

Petrobras Vale
Log Loss DM[SS] DM[SSM] Log Loss DM[SS] DM[SSM]

SS 1.477 - -45.62 2.027 - -33.54
SSM 1.453 45.62 - 2.015 33.54 -
EW 1.480 -12.80 -47.44 2.023 7.942 -10.91
𝑀1 1.486 -28.81 -54.53 2.033 -7.249 -21.30
𝑀2 1.500 -56.73 -70.70 2.065 -43.57 -52.98
E 1.517 -81.27 -88.45 2.046 -21.21 -31.99

We also compute the DM statistic individually for each 5-day period. We show the results
for the comparison with the SS model in figure 13 and the comparison with the SSM
model in figure 14. We can see in the figures that all previously reported out-performances
are consistent through most of the 5-days samples, with few points of exception.

Figure 13 – Weekly DM Score for SS Model

(a) Itau-Unibanco (b) Bradesco

(c) Petrobras (d) Vale
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Figure 14 – Weekly DM Score for SSM Model

(a) Itau-Unibanco (b) Bradesco

(c) Petrobras (d) Vale

1.9 Final Remarks
In this paper we extended the non-linear, non-Gaussian State Space model of Koopman,
Lit and Lucas (2017) in order to jointly model the mean of the conditional density. We
modeled the mean to have an auto-regressive functional form.

We estimated the model in two variants, without the mean (SS) and with mean (SSM).
For estimating both models, we used a new estimation procedure, based on the Coordinate
Descent algorithm, that minimizes the number of NAIS computations. The models were
estimated for four stocks with a 10 seconds time interval, for every 5-days periods along
the year of 2018. We found significant negative auto-regressive coefficients for the mean of
all stocks and this sign of the estimates was consistent along all the estimates through all
periods. Like in Koopman, Lit and Lucas (2017), we found a strong intraday seasonality
pattern, although we also showed that this pattern changed slightly through the year.
Using the models estimated during the year, we concluded that, on average, the volatility
is high at the starting of the day and falls during the day.
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We conducted an extensive walk-forward conditional density forecasting exercise. We
showed that the SS model outperforms all other models for all stocks with exception of
one stock (Vale), in which the EWMA model was superior. The same exercise showed
that the new model, the SSM model, outperformed all other the models in forecasting
performance. The results show that modeling the mean is important for forecasting the
conditional mean and that there is a strong short term reversion for the stocks analyzed
in the 10 seconds time frame.



2 Modelling Intraday Covariance

Abstract

In this paper we propose a new model for forecasting discrete high-frequency bi-variate con-
ditional densities and covariance. The model is composed of two marginals using a modified
Skellam distribution and a dynamic conditional Gaussian copula. The dynamics of both the
volatilities and the correlation are modelled through state space models with a seasonality
factor, which permits the measurement of the intraday seasonality for the covariance. We
also estimate a Score Driven model following Koopman et al. (2018) and other empirical
non-parametric models. By conducting an extensive walk-forward forecasting exercise we
conclude that the new model outperforms both the empirical non-parametric predictors
and the score-driven model for the forecasting the conditional bivariate distribution. We
also conclude that the Score Driven outperforms all the empirical non-parametric models
considered.

Keywords: time-varying copulas, dynamic discrete data, high frequency data; discrete
price changes; importance sampling, score driven models, Skellam distribution, dynamic
dependence

JEL Classification: C32, G11
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2.1 Introduction
In the first paper we studied the dynamics of the conditional probability distributions
for univariate high frequency intraday price changes. We modelled both the mean and
the volatility, showing that it does have an intraday seasonal pattern. We showed that
volatility is higher at the start of the day, falling during the day. Other works like Andersen
and Bollerslev (1997) and Koopman, Lit and Lucas (2017) arrive at the same conclusion.
We argued that one possible reason for such behavior is that information accumulates
overnight and the market reacts to it on the starting of the trading session.

A natural extension of this work is to study how bivariate conditional probability distri-
butions evolve during the day. As in the univariate case, the study of such distributions
is of interest for exchanges, risk managers and market participants in general. One can
question whether the asset correlations do have patterns like the volatility, whether they
are higher or lower during the first trading hours.

Koopman et al. (2018) studies this issue, arriving at the conclusion that correlation is
lower at the start of the trading session. The authors argue that one possible explanation
is that a higher proportion of idiosyncratic information accumulates during the overnight
as most firm-specific news are released when the market is closed. Allez and Bouchaud
(2011) and Bibinger et al. (2019) also arrives at the same stylized fact, but differently from
Koopman et al. (2018) and the present work, they used non parametric realized measures
in their studies.

At the present work we propose a new method for estimating the bivariate intraday
covariance at high frequency. We extend the model developed in the first paper by adding
a dynamic Gaussian copula to the marginals modeled by state space in that paper. This
dynamic copula itself relies on a correlation parameter, 𝜌𝑡, which is also modeled with
a state-space dynamic that has a seasonal component. So we are modeling the high
frequency bivariate distribution using modified Skellam distributions marginals, with mean
dependency, and a dynamic Gaussian copula.

The new model is the main contribution of this paper. As the correlation has a parametric
seasonal component in the model, we can estimate the mean seasonality in the model,
contributing to the academic discussion on this seasonality. The model can also be compared
with existing models in the literature by its conditional probability distribution predictions.
In particular, we can compare it with the Score Driven model developed in Koopman et
al. (2018) and simple non parametric predictors to assess its performance.
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2.2 Modeling the Dynamic Correlation using Copulas
Let 𝑦𝑡 = (𝑦1𝑡, . . . , 𝑦𝑛𝑡) ∈ Z𝑛 be a integer-valued n-dimensional vector representing the price
changes for the 𝑛 assets at time 𝑡 in ticks. We represent the price changes by integers as
we are focused in high frequency price changes. At high frequency the price changes are
discrete as stocks are traded in multiples of a tick size. So we represent the price changes
as integer multiples of the tick size for each stock.

Let 𝐹𝑖(𝑦𝑖𝑡|ℱ𝑡−1; 𝜃𝑚𝑖𝑡 ) be the time-varying conditional marginal cdf, where ℱ𝑡 := {𝑦1, . . . , 𝑦𝑡}
is the filtration (information set) at time 𝑡 and 𝜃𝑚𝑖𝑡 collects all the 𝑖 marginals parameters.
In this paper 𝐹𝑖 will always be the cdf of a (modified) Skellam distribution, but the
framework of this section is general and could be applied to other marginal distributions.

The dependence structure 𝑦𝑡 is modelled by a parametric 𝑛-dimensional copula function
for each 𝑡.

𝐶 [𝐹1 (𝑦1𝑡|ℱ𝑡−1; 𝜃𝑚1𝑡) , . . . , 𝐹𝑛 (𝑦𝑛𝑡|ℱ𝑡−1; 𝜃𝑚𝑛𝑡) |ℱ𝑡−1; 𝜃𝑐𝑡 ] (2.1)

where 𝜃𝑐𝑡 collects the parameters of the copula function. Observe the we allow 𝜃𝑐𝑡 to vary
through time, which allow the study of how such parameters vary through the day. In the
present paper we will focus on the Gaussian copula, so that the unique parameter is the
correlation 𝜌𝑡.

Koopman et al. (2018) notes that the discrete copula defined just like above is not unique
in the standard representation (see Sklar (1959)). The copula is only uniquely determined
in the Cartesian product of the range of the cdf marginals. For example, if the above is
applied to two Bernoulli trials with probability 𝑝 as marginals, the copula would have
uniquely determined values at {0, 𝑝, 1} × {0, 𝑝, 1}. This problem with discrete copulas
contrasts with the continuous copulas, that are uniquely determined at [0, 1]𝑛.

Let 𝜃𝑡 := (𝜃𝑚1𝑡 , . . . , 𝜃𝑚𝑛𝑡, 𝜃𝑐𝑡 ). With the definitions above we can calculate the joint probability
mass function (pmf) by using the ’inclusion-exclusion’ formula, obtaining:

𝑝(𝑦𝑡; 𝜃𝑡) =
∑︁

𝑗1∈{0,1}
. . .

∑︁
𝑗𝑛∈{0,1}

(−1)𝑗1+...+𝑗𝑛𝐶 [𝐹1(𝑦1𝑡 − 𝑗1; 𝜃𝑚1𝑡), . . . , 𝐹𝑛(𝑦𝑛𝑡 − 𝑗𝑛; 𝜃𝑚𝑛𝑡); 𝜃𝑐𝑡 ]

(2.2)
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In the bivariate case the equation (2.2) becomes:

𝑝(𝑦𝑡; 𝜃𝑡) = 𝐶 [𝐹1(𝑦1𝑡; 𝜃𝑚1𝑡), 𝐹2(𝑦2𝑡; 𝜃𝑚2𝑡)]− 𝐶 [𝐹1(𝑦1𝑡 − 1; 𝜃𝑚1𝑡), 𝐹2(𝑦2𝑡; 𝜃𝑚2𝑡)]

−𝐶 [𝐹1(𝑦1𝑡; 𝜃𝑚1𝑡), 𝐹2(𝑦2𝑡 − 1; 𝜃𝑚2𝑡)] + 𝐶 [𝐹1(𝑦1𝑡 − 1; 𝜃𝑚1𝑡), 𝐹2(𝑦2𝑡 − 1; 𝜃𝑚2𝑡)]
(2.3)

The formula in the equation (2.2) is the exact representation of the pmf of the model
developed above, but it has two possible short-comings. First, it is cumbersome for high
dimensions as the number of terms grow exponentially in the sum. This is not a problem
for the bivariate case which is the focus of this paper, but it would be a problem in general.
Second, it might not be numerically accurate if 𝐹𝑖(𝑦𝑖𝑡 − 1; 𝜃𝑚𝑖𝑡 ) is too close to 𝐹𝑖(𝑦𝑖𝑡; 𝜃𝑚𝑖𝑡 )
for all 𝑖, as the formula makes the difference of such terms. This is an issue especially in
calculating log(𝑝(𝑦𝑡; 𝜃𝑡)) and 𝑑 log(𝑝(𝑦𝑡; 𝜃𝑡))/𝑑𝜃𝑡, and both are needed in what follows.

So we also consider an approximation of equation (2.2). Observe that when 𝐹𝑖(𝑦𝑖𝑡−1; 𝜃𝑚𝑖𝑡 ) is
close 𝐹𝑖(𝑦𝑖𝑡; 𝜃𝑚𝑖𝑡 ) we can use approximate the copula by its midpoint density in the implied
integral and make a first order approximation obtaining the following approximation for
equation (2.2).

𝑝(𝑦𝑡; 𝜃𝑡) ≃ 𝑝(𝑦𝑡; 𝜃𝑡) = 𝑐(𝑢*
1𝑡, . . . , 𝑢

*
𝑛𝑡; 𝜃𝑐𝑡 )

𝑛∏︁
𝑖=1

[𝐹𝑖(𝑦𝑖𝑡; 𝜃𝑚𝑖𝑡 )− 𝐹𝑖(𝑦𝑖𝑡 − 1; 𝜃𝑚𝑖𝑡 )]

= 𝑐(𝑢*
1𝑡, . . . , 𝑢

*
𝑛𝑡; 𝜃𝑐𝑡 )

𝑛∏︁
𝑖=1

𝑝𝑖(𝑦𝑖𝑡; 𝜃𝑚𝑖𝑡 )
(2.4)

where 𝑢*
𝑖𝑡 is the midpoint of the marginal 𝑖 cdf’s, that is 𝑢*

𝑖𝑡 := [𝐹𝑖(𝑦𝑖𝑡; 𝜃𝑚𝑖𝑡 )+𝐹𝑖(𝑦𝑖𝑡−1; 𝜃𝑚𝑖𝑡 )]/2,
𝑐 is the copula density function and 𝑝𝑖 is the probability density function for the marginal
𝑖.

As mentioned before, we consider only Gaussian copulas in this work. So the copula
function is given by:

𝐶(𝑢;𝑅) := Φ𝑅

(︁
Φ−1(𝑢1), . . . ,Φ−1(𝑢𝑛)

)︁
(2.5)

where Φ𝑅 is the multivariate Gaussian cumulative density function with correlation matrix
𝑅 and Φ−1 is the inverse of the Gaussian univariate cumulative density function.



Chapter 2. Modelling Intraday Covariance 52

The copula density function is given by:

𝑐(𝑢;𝑅) := 1√
det𝑅

exp
(︂
−1

2
(︁
Φ−1(𝑢1), . . . ,Φ−1(𝑢𝑛)

)︁ (︁
𝑅−1 − 𝐼

)︁ (︁
Φ−1(𝑢1), . . . ,Φ−1(𝑢𝑛)

)︁𝑇)︂
(2.6)

In the bivariate case the Gaussian copula parameter 𝜃𝑐𝑡 is constituted of just one parameter,
𝜌𝑡. And the correlation matrix at each time 𝑡, 𝑅𝑡, is given by:

𝑅𝑡 =
⎡⎣ 1 𝜌𝑡

𝜌𝑡 1

⎤⎦ (2.7)

2.3 Modeling Bivariate High Frequency returns using State Space
Model
Now we develop the main model for this paper. Using the structure developed in the
previous section, it suffices to specify the marginals and the dynamics for 𝜌𝑡. We will also
specify the relevant parameters 𝜃𝑚1𝑡 , . . . , 𝜃𝑚𝑛𝑡, 𝜃𝑐𝑡 that are specific to this model.

The marginal probability density specification follow the same specification of paper 1. So
we have for each asset 𝑖:

𝑦𝑖𝑡|𝜎2
𝑖𝑡 ∼ 𝑝𝑖(𝑦𝑖𝑡;𝜇𝑖𝑡, 𝜎2

𝑖𝑡, 𝛾) (2.8)

We write the marginal pmf 𝑖 as a Modified Skellam distribution MSKII(𝑖, 𝑗, 𝜇, 𝜎2, 𝛾):

𝑝𝑖(𝑦𝑡; 𝑗, 𝑙, 𝑘, 𝜇𝑖𝑡, 𝜎2
𝑖𝑡, 𝛾) :=

⎧⎪⎪⎪⎨⎪⎪⎪⎩
𝑝𝑠(𝑦𝑡;𝜇𝑖𝑡, 𝜎2

𝑖𝑡) for 𝑦𝑡 /∈ {𝑗, 𝑙, 𝑘}
𝑝𝑠(𝑦𝑡;𝜇𝑖𝑡, 𝜎2

𝑖𝑡)− 𝛾Δ/2 for 𝑦𝑡 ∈ {𝑗, 𝑙}
𝑝𝑠(𝑦𝑡;𝜇𝑖𝑡, 𝜎2

𝑖𝑡) + 𝛾Δ for 𝑦𝑡 = 𝑘,

(2.9)

where 𝛾 satisfies 2 min(𝑝𝑠(𝑖, 𝜇, 𝜎2), 𝑝𝑠(𝑗, 𝜇, 𝜎2)) > 𝛾Δ > −𝑝𝑠(𝑘, 𝜇, 𝜎2) and 𝑝𝑠 is the Skellam
Distribution pmf, which is given by:

𝑝𝑠(𝑦;𝜇, 𝜎2) := exp(−𝜎2)
(︃
𝜎2 + 𝜇

𝜎2 − 𝜇

)︃
𝐼|𝑦|(

√︁
𝜎4 − 𝜇2) (2.10)



Chapter 2. Modelling Intraday Covariance 53

and 𝑗 = −1, 𝑙 = 1, 𝑘 = 0. 𝐼|𝑦| denotes the Bessel I Function with |𝑦| degrees of freedom.
The equation for the mean chosen to be equal to the SSM model of paper 1,

𝜇𝑖𝑡 = 𝛿𝑖𝑦𝑖,𝑡−1 (2.11)

.

For each 𝑖 ∈ {1, 2} we model the stochastic process of 𝜎𝑖𝑡 by a long term expectation (𝜎𝑖),
a seasonality pattern (𝑠𝑖𝑡) and a stochastic component. 𝜎𝑖𝑡 is given by

𝜎2
𝑖𝑡 = 𝜎𝑖

2𝑠𝑖𝑡 exp(𝛼𝑖𝑡)

𝛼𝑖,𝑡+1 = 𝜑𝑖𝛼𝑖,𝑡 + 𝜂𝑖,𝑡

𝜂𝑖𝑡 ∼ NID(0, 𝜎𝜂,𝑖)2.

(2.12)

We assume |𝜑𝑖| < 1 in order to obtain stationarity. We also assume that 𝜂1𝑡 is independent
from 𝜂2𝑡.

Regarding the seasonality factor 𝑠𝑖𝑡, we use the spline specification as in the paper 1, using
a parsimonious specification through cubic splines. The treatment is similar to the one
used in Harvey and Koopman (1993) and Koopman, Lit and Lucas (2017). We write 𝑠𝑖𝑡 as
a zero-sum cubic spline function

𝑠𝑖𝑡 = 𝛽′
𝑖𝑊𝑡, (2.13)

where 𝑊𝑡 is calculated as described in Poirier (1973). 𝛽𝑖 is a 𝐾 × 1 vector of parameters
associated with 𝐾 + 1 spline knots. In this paper we set 𝐾 = 3 and set the knots for the
spline at the times 10:00, 12:00, 13:30 and 17:00. These times reflect the market opening,
start and end of lunch time and market closing.

Collecting all parameters for this model for the marginals we obtain that

𝜃𝑚𝑖𝑡 = {𝜇𝑖𝑡, 𝜎𝑖𝑡, 𝛾} (2.14)

and the model parameters for each marginal are {𝜎𝑖, 𝛿𝑖, 𝜑𝑖, 𝜎𝜂,𝑖, 𝛽𝑖}.

Regarding 𝜌𝑡, we model it as a state space dynamic with a linear/Gaussian state space
equation and a non-linear link function in order to accommodate for the restriction that
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it must lie in the interval [−1, 1]. We also include a seasonality factor in the correlation
structure. So we write:

𝜌𝑡 = tanh(𝜌+ 𝛼0,𝑡 + 𝑠0,𝑡)

𝛼0,𝑡+1 = 𝜑0𝛼0,𝑡 + 𝜂0,𝑡

𝜂0𝑡 ∼ NID(0, 𝜎𝜂,0)2

(2.15)

where 𝑠0,𝑡 is given by:

𝑠0𝑡 = 𝛽′
0𝑊𝑡 (2.16)

The tanh function guarantee that 𝜌𝑡 lies in [−1, 1]. 𝜂0𝑡0 is assumed to be independent of
𝜂1𝑡1 and 𝜂2𝑡2 for all 𝑡0, 𝑡1, 𝑡2. So, collecting all parameters for the copula, we obtain

𝜃𝑐𝑡 = (𝜌𝑡) (2.17)

and the model parameters related to the copula are given by (𝜌, 𝜑0, 𝜎𝜂,0, 𝛽0).

2.4 Modeling bivariate High Frequency returns using Score Driven
Model
Koopman et al. (2018) cites three advantages for the score driven models. First, they
possess information theoretic optimality properties (Blasques, Koopman and Lucas (2015)).
Second, they have similar forecasting performance as their parameter driven peers, even
when the latter are actually the true data generating process (Koopman, Lucas and Scharth
(2016)). Third, the model’s static parameters can be estimated in a straightforward way
using maximum likelihood methods.

Now we derive our score-driven model. The model also builds on the Dynamic Correlation
model of section 2.2. We will specify the relevant parameters 𝜃𝑚1𝑡 , . . . , 𝜃𝑚𝑛𝑡, 𝜃𝑐𝑡 directly and
map them to the Gaussian copula and Skellam distribution parameters.

We write the score-base update of 𝜃𝑡 as

𝜃𝑡+1 = 𝜔 + 𝐴O𝑡 +𝐵𝜃𝑡 (2.18)
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where 𝜔 is a constant vector and 𝐴 and 𝐵 are constant matrices. O𝑡 is given by

O𝑡 = 𝜕 log 𝑝(𝑦𝑡; 𝜃𝑡)
𝜕𝜃𝑡

(2.19)

This specification of the score dynamics follows Creal, Koopman and Lucas (2011), Creal,
Koopman and Lucas (2013) and Harvey and Luati (2014). We follow Koopman et al.
(2018) and consider the case where 𝐴 and 𝐵 are diagonal, so that each component for 𝜃𝑡
has its own dynamics. So we have

𝐴 = diag(𝑎)

𝐵 = diag(𝑏)
(2.20)

for constant vectors 𝑎 and 𝑏.

The analytical formula for the score function O𝑡 coordinates is given by equations (2.20)
and (2.21):

O𝑚
𝑖𝑡 = 𝜕 log 𝑝(𝑦𝑡; 𝜃𝑡)

𝜕𝜃𝑚𝑖𝑡
=

∑︁
𝑗1∈{0,1}

. . .
∑︁

𝑗𝑛∈{0,1}

(−1)𝑗1+...+𝑗𝑛

𝑝(𝑦𝑡; 𝜃𝑡)
𝜕𝐶(𝑢1𝑡, . . . , 𝑢𝑛𝑡; 𝜃𝑐𝑡 )

𝜕𝑢𝑖𝑡

𝜕𝑢𝑖𝑡
𝜕𝜃𝑚𝑖𝑡

(2.21)

O𝑐
𝑡 = 𝜕 log 𝑝(𝑦𝑡; 𝜃𝑡)

𝜕𝜃𝑐𝑡
=

∑︁
𝑗1∈{0,1}

. . .
∑︁

𝑗𝑛∈{0,1}

(−1)𝑗1+...+𝑗𝑛

𝑝(𝑦𝑡; 𝜃𝑡)
𝜕𝐶(𝑢1𝑡, . . . , 𝑢𝑛𝑡; 𝜃𝑐𝑡 )

𝜕𝜃𝑐𝑡
(2.22)

This equation makes more apparent the need for use the approximation of equation (2.4).
Both numerator and denominator can be too close to zero when 𝐹𝑖(𝑦𝑖𝑡 − 1; 𝜃𝑚𝑖𝑡 ) is close to
𝐹𝑖(𝑦𝑖𝑡; 𝜃𝑚𝑖𝑡 ). In that case working with (2.4) is preferable. The corresponding derivatives for
that equation are given by equations (2.23) and (2.24):

O𝑚
𝑖𝑡 = 𝜕 log 𝑝𝑖(𝑦𝑖𝑡; 𝜃𝑚𝑖𝑡 )

𝜕𝜃𝑚𝑖𝑡
(2.23)

O𝑐
𝑡 = 𝜕 log 𝑐(𝑢*

1𝑡, . . . , 𝑢
*
𝑛𝑡; 𝜃𝑐𝑡 )

𝜕𝜃𝑐𝑡
(2.24)
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These equations are more numerically stable, as they do not suffer from the same problem
of dividing too small numbers.

Now that we described the general rule we followed to calculate the score-driven update
for 𝜃𝑡, we can specify the exact equations for the parameters of the score-driven model. We
parameterized our final model variables 𝜎𝑖𝑡 and 𝜌𝑡 by using equations (2.25) and (2.26):

𝜎2
𝑖𝑡 = exp(𝜃𝑚𝑖𝑡 ) (2.25)

𝜌𝑡 = 𝜃𝑐𝑡√︁
1 + (𝜃𝑐𝑡 )2

(2.26)

We calculated the exact likelihood and exact derivatives by using equations (2.3), (2.21)
and (2.22) whenever numerically feasible, that is, when:

‖𝐹𝑖(𝑦𝑖𝑡; 𝜃𝑚𝑖𝑡 )− 𝐹𝑖(𝑦𝑖𝑡 − 1; 𝜃𝑚𝑖𝑡 )‖∞ > 𝜀0 (2.27)

for a fixed parameter 𝜀0. Otherwise we use expressions (2.23) and (2.24) whenever the
expression in equation (2.27) is less then 𝜀1. If the value of the expression was in the
interval (𝜀0, 𝜀1), a linear combination of both expressions was used. This procedure was
taken to guarantee both numerical stability and continuity for the score function. The
estimation results were robust to changes in 𝜀0 and 𝜀1.

Now we show how to calculate the expressions (2.21), (2.22), (2.23) and (2.24) for our
specific model.

First, notice that 𝑝(𝑦𝑡; 𝜃𝑡) can be calculated using equations (2.3) and (2.5), when calculat-
ing in the exact form, and can be calculated by (2.4) and (2.6) in the approximated form.
Regarding the derivatives for the copula function, we also note that it can be written as a
conditional copula:

𝜕𝐶(𝑢1𝑡, 𝑢2𝑡; 𝜃𝑐𝑡 )
𝜕𝑢1𝑡

= 𝑃 (𝑈2𝑡 ≤ 𝑢2𝑡|𝑈1𝑡 = 𝑢1𝑡) (2.28)
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So in our case of Gaussian copula the equation (2.28) becomes

𝜕𝐶(𝑢1𝑡, 𝑢2𝑡; 𝜃𝑐𝑡 )
𝜕𝑢1𝑡

= Φ
⎛⎝Φ−1(𝑢2𝑡)− 𝜌𝑡Φ−1(𝑢1𝑡)√︁

1− 𝜌2
𝑡

⎞⎠ (2.29)

The derivative of the bivariate Gaussian cdf with respect to the correlation 𝜌 is given by

𝜕Φ2(𝑥, 𝑦; 𝜌)
𝜕𝜌

= 1
2𝜋
√

1− 𝜌2 exp
(︃
−𝑥

2 − 2𝜌𝑥𝑦 + 𝑦2

2(1− 𝜌2)

)︃
(2.30)

And now substituting 𝑥 = Φ−1(𝑢1𝑡), 𝑦 = Φ−1(𝑢2𝑡) and 𝜌 = 𝜌𝑡 and applying the chain rule
we obtain:

𝜕𝐶(𝑢1𝑡, 𝑢2𝑡; 𝜃𝑐𝑡 )
𝜕𝜃𝑐𝑡

= (1 + 𝜃𝑐𝑡 )−3/2𝜕Φ2

𝜕𝜌
(Φ−1(𝑢1𝑡),Φ−1(𝑢2𝑡); 𝜌𝑡) (2.31)

Lastly, the derivative for the marginal Skellam cdfs can be calculated by cumulative sum
the derivatives for the pmfs, which have closed expression. Using the widely known formula
for the derivative of the Bessel 𝐼 function we obtain:

𝜕𝑢𝑖𝑡
𝜕𝜎2

𝑖𝑡

= exp(−𝜎2
𝑖𝑡)

𝑦𝑖𝑡∑︁
𝜈=−∞

[︃(︃
𝜈

𝜎2
𝑖𝑡

− 1
)︃
𝐼|𝜈|(𝜎2

𝑖𝑡) + 𝐼|𝜈+1|(𝜎2
𝑖𝑡)
]︃

(2.32)

And by the chain rule we can calculate the last expression we need:

𝜕𝑢𝑖𝑡
𝜕𝜃𝑚𝑖𝑡

= 𝜎2
𝑖𝑡

𝜕𝑢𝑖𝑡
𝜕𝜎2

𝑖𝑡

(2.33)

2.5 Data
Like in paper 1, our dataset is formed by intraday prices for four Brazilian Stocks: Petrobras
(PETR4), Vale (VALE3), Itau-Unibanco (ITUB4) and Bradesco (BBDC4) for the entire
year of 2018. These stocks are among the most liquid Brazilian stocks. The data used in
this paper consists of the closing trading prices for the intraday interval of 10 seconds
obtained from B3 exchange by using Thomson Reuters Datascope service. Taking all four
stocks together, our dataset consists of more than 2.3 billion prices.
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The 10 seconds time interval was also used in (Koopman et al. (2018)). The 10 seconds
time frame is more convenient for the multivariate analysis as it raises the probability of
the joint event of simultaneous trading for the assets considered in the analysis, as argued
in Koopman et al. (2018). This is the reason we chose the 10 seconds interval.

It worth noting that even using the 10 seconds time frame (instead of the 1 second) we
still have to deal with a lot of missing values, as the stocks do not necessarily trade every
10 seconds interval. Regarding this issue we also take the same approach of Koopman et
al. (2018), by only updating the model when trading activity occurs on any of the stocks.

We consider all prices ranging from the market opening at 10:00 to the market closing at
17:00. We model the intraday price changes, so we discard the overnight price changes
in the cases where we estimate the model through more than one day. We apply a data-
cleaning procedure before the analysis, in order to clean for exchange reporting errors, as
recommended by Brownlees and Gallo (2006).

For descriptive statistics on the dataset refer to the data section of the paper 1.

2.6 Estimation Procedure
In this section we describe the model estimation procedure. Like in paper 1, we estimated
the models by maximum likelihood.

We estimated the two models for every 5 consecutive business days periods (‘weekly’), for
all ‘weeks’ of 2018. As the models involve seasonality with the period consisting of one day,
estimating with more than one day in the sample should help identifying the difference
between the seasonality and the state space factors of the volatility process. In this respect
we differ from Koopman, Lit and Lucas (2017), that estimated the models with sample
size equal to one day. So we have about 100,000 data points for each estimation.

2.6.1 State Space Covariance Model

For the State Space Model we estimated the parameters for each marginal in separate,
using only the data for that marginal, and then estimated the covariance model.

The log-likelihood function is calculated by the equations (2.3) and (2.4). For each interac-
tion the same random numbers are used in order to ensure that the sampling error will
not affect the calculus of the derivatives.
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To maximize the log-likelihood function we apply a version of the Coordinate Descent
Algorithm. The reason behind this choice is that the parameters that affect the measurement
equation have derivatives that are easier to calculate and the coordinate descent also
makes possible to run the NAIS algorithm less times.

The whole algorithm generally converges fast, taking just a few iterations at the outer loop
of the Coordinate Descent algorithm. One advantage of the proposed algorithm is that
the NAIS procedure is only needed at the step 2, and this step only have two parameters
to estimate. Another advantage is the possibility of using analytic expression for the
derivative of the log-likelihood function at the step 3.

2.6.2 Score Driven Covariance Model

All the parameters of the Score Driven model are estimated jointly by maximum likelihood.
The log-likelihood function is also calculated by the equations (2.3) and (2.4), but the 𝜃𝑡
is updated according to equation (2.18). The resulting log-likelihood function was then
optimized used the BFGS method, with the derivatives estimated numerically.

2.7 Estimation Results
Now we describe the estimation results for both models. In what follows we call 𝐶 the
State Space Covariance Model and 𝐶𝑆 the Score Driven Covariance Model. Like on paper
1, we start by describing the descriptive statistics of the coefficient estimated obtained by
the rolling estimation procedure previously described.

2.7.1 Parameter Estimates

In what follows we write the coefficients for the seasonality for the 𝐶 model as 𝛽0 =
(𝛽0

0 , 𝛽
0
1 , 𝛽

0
2).

The statistics for the model 𝐶 parameter estimates is shown in table 7. We observe that 𝜑
for both models are close to 1, as we would expect. The coefficient estimates for both pairs
are quite different, however. The 𝜌 estimates shows that Bradesco and Itau were much
more correlated than Vale and Petrobras on average. This makes sense because Itau and
Bradesco are in the same sector, they are both retail banks. Vale and Petrobras are in
distinct sectors as Vale is a Mining company and Petrobras is an oil company. As in the
case of the estimates on paper 1, the 𝜎𝜂,0 are higher in the cases that the estimates of 𝜑
are far from one.
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The seasonality coefficients show some similarity, as both have a negative 𝛽0
0 , a 𝛽0

2 close to
zero and the 𝛽0

1 is the highest seasonality coefficient.

Table 7 – Descriptive Statistics for C Parameter Estimates

𝜌 𝜑 𝜎2
𝜂,0 𝛽0

0 𝛽0
1 𝛽0

2

Bradesco & Itau-Unibanco 0.31 0.96 0.0059 -0.012 0.040 0.0070
(0.092) (0.11) (0.025) (0.093) (0.036) (0.023)

Vale & Petrobras 0.12 1.0 9.6e-05 -0.032 0.025 0.0033
(0.060) (0.0072) (0.00022) (0.064) (0.032) (0.019)

The statistics for the model 𝐶𝑆 parameter estimates are shown in tables 8 and 9. In this
model the mean estimates for both pairs of the correlation AR coefficient (𝑏2) are really
close to one - different from the previous case. This is also the case for the AR coefficients
associated with the marginal volatility processes (𝑏0 and 𝑏1)

Table 8 – Descriptive Statistics for CS Parameter Estimates (w and a)

𝑤0 𝑤1 𝑤2 𝑎0 𝑎1 𝑎2

Bradesco & Itau-Unibanco 0.0036 0.0053 0.00013 0.073 0.074 0.016
(0.0020) (0.0026) (0.00085) (0.026) (0.02)6 (0.010)

Vale & Petrobras 0.0060 0.0018 0.00014 0.075 0.069 0.012
(0.0031) (0.0017) (0.00044) (0.022) (0.020) (0.0044)

Table 9 – Descriptive Statistics for CS Parameter Estimates (b and 𝜃0)

𝑏0 𝑏1 𝑏2 𝜃0
0 𝜃0

1 𝜃0
2

Bradesco & Itau-Unibanco 1.0 1.0 1.0 1.6 2.0 0.49
(0.0013) (0.0013) (0.0017) (0.20) (0.32) (0.20)

Vale & Petrobras 1.0 1.0 0.99 2.2 1.2 0.42
(0.0011) (0.00096) (0.0080) (0.48) (0.30) (0.28)

In the rest of this subsection we show graphs of all the point estimates for the coefficients
for both models. Each point in each graph correspond to the estimate for the variable in
one model. Table 10 shows the parameter estimates for the 𝐶 model.
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As the tables with the descriptive statistics already show, the estimate for 𝜑 is higher for
the pair Vale & Petrobras than for Itau-Unibanco & Bradesco. Looking at the graphs
actually 𝜑 is also quite high for Itau-Unibanco & Bradesco most of the time, but at few
estimation points the value of 𝜑 drops significantly. This might have been caused by
idiosyncratic events on these specific dates. As happened in the estimates in the paper
1, the estimates for the volatility of the state space innovation (𝜎2

𝜂,0 here) oscilate jointly
with the estimates for 𝜑. Whenever the estimates for 𝜑 falls, the estimates for 𝜎2

𝜂,0 rises.

The estimates for 𝜌 oscilated through the year with no interesting dynamics. Regarding the
seasonality, the changes in 𝛽0, 𝛽1 and 𝛽2 suggest that the correlation seasonality changed
slightly during the year and at the end of the year the correlation appeared the be relatively
higher at the end of the day and lower at the middle of the day.

Table 10 – Estimates for parameters in C model

Itau & Bradesco Vale & Petrobras Itau & Bradesco Vale & Petrobras

𝜑 𝜎2
𝜂,0

𝜌 𝛽0

𝛽1 𝛽2

Tables 11 and 12 shows the parameter estimates for the 𝐶𝑆 model.
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Table 11 – Estimates for parameters a and b in CS model

Itau & Bradesco Vale & Petrobras Itau & Bradesco Vale & Petrobras

𝑎0 𝑎1

𝑎2 𝑏0

𝑏1 𝑏2

Table 12 – Estimates for parameters 𝑤 and 𝜃0 in CS model

Itau & Bradesco Vale & Petrobras Itau & Bradesco Vale & Petrobras

𝑤0 𝑤1

𝑤2 𝜃0
0

𝜃0
1 𝜃0

2

2.7.2 Seasonality

In this sub-section we analyze the descriptive statistics for the volatility seasonality.

Figure 18 shows the seasonality for the C model, showing the mean and two percentiles
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for the log of the seasonality factor for each time of the day. Observe that for both pair of
stocks the correlation starts low, rises during the day and falls in the end of the day. This
effect is mentioned in Koopman et al. (2018)).

As mentioned before, one possible explanation is that most idiosyncratic news related to
stocks are released when the market is closed.

Figure 15 – Average Seasonality for model C in 2018

(a) Itau-Unibanco & Bradesco (b) Vale & Petrobras

2.7.3 Filtered Correlation Forecasts

We now show an example of the filtered correlation obtained by the Bootstrap Particle
Filter applied for the C model and by applying the appropriate transformation to 𝜃𝑐𝑡 for
the CS model. Figure 16 shows the path of the filtered correlation for the day July 6, 2018
for both models. Observe that the correlation starts low, rises during the day and falls in
the end of the day, as predicted by the mean seasonality in the previous sub-section. This
effect clear on the Vale and Petrobras pair for this day.

It also worth mentioning that altough the dynamics of both models are different during
this day (with the correlation of the C model being smoother), the movements and levels
are similar. This is a robustness check on the procedure of both models, as they are totally
different.
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Figure 16 – Filtered Correlation Forecast for July 6, 2018

(a) Itau-Unibanco & Bradesco (b) Vale & Petrobras

2.8 Forecasting Performance Comparison
To assess the forecasting performance of the two models we conduct a forecasting exercise
for all 5-days periods of 2018. For the forecast of time 𝑡 and for all models, we use only
data up to 𝑡− 1. To compare the performance we estimate the joint bivariate pmf by using
empirical forecasting models for the copula and marginal parameters. The models are:

𝑀1: 𝜎𝑡 is estimated non-parametrically by a moving average process using a rolling window
of the past 90 returns. 𝜇 and 𝛾 are set to zero

𝑀2: 𝜎𝑡 is estimated non-parametrically by a moving average process using a rolling window
of the past 900 returns. 𝜇 and 𝛾 are set to zero

E: the pmf of 𝑦𝑡 is determined by the empirical probabilities of 𝑦𝑡 on the fit sample.

We estimate all the models for each 5-day period of 2018 and calculated the pmf forecasts
for the next 5-days iteratively by filtering the states while keeping the parameters fixed.
To assess the forecasting performance we follow Koopman, Lit and Lucas (2017) and used
the log-likelihood loss function, which is simply minus the log of the pmf obtained by each
model.

In the table 13 we show the main statistics for the forecasting performance comparison of
the models. For each stock pair we report the mean log-loglikelihood loss function value for
each time on the whole sample ( for all periods of 5-day taken together). We also report
the Diebold-Mariano Statistics comparing all models to the C Model (DM[C] column) and
comparing all models to the CS model (DM[CS] column). In both cases a negative number
means that the model in the columns outperforms the model on the row and a positive
number means the opposite.
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The Diebold-Mariano statistic follow a standard normal distribution. So our exercise
suggest that C outperforms all other models for forecasting the pmf by a large margin for
both pairs of stocks. The CS model also outperforms all other models for both pairs of
stocks (with the exception of the C model), but with a lower margin.

Table 13 – Forecasting Results

Bradesco - Itau Vale - Petrobras
Log Loss DM[C] DM[CS] Log Loss DM[C] DM[CS]

C 3.435 - 217.6 3.269 - 99.47
CS 3.666 -217.6 - 3.496 -99.47 -
𝑀1 3.680 -225.8 26.10 3.511 -105.7 -33.54
𝑀2 3.740 -220.7 85.98 3.563 -122.0 -85.24
E 3.690 -297.1 20.33 3.542 -121.8 -46.12

Finally, we also calculate the DM statistic individually for each 5-day period. We show the
results for the comparison with the CS model in figure 17 and the comparison with the C
model in figure 18. We can see in the figures that all previously reported out-performances
are consistent through all the 5-days samples.

Figure 17 – Weekly DM Score comparison for CS Model

(a) Itau-Unibanco & Bradesco (b) Vale & Petrobras
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Figure 18 – Weekly DM Score comparison for C Model

(a) Itau-Unibanco & Bradesco (b) Vale & Petrobras

2.9 Final Remarks
In this paper we developed a new model for forecasting discrete high-frequency bi-variate
conditional densities and covariance. The model is composed of two marginals modelled like
in the paper 1 (State Space model using a modified Skellam distribution) and a dynamic
Gaussian copula with the correlation dynamics also modeled by a state space model. The
model was estimated by using the estimation procedure described in paper 1.

The model for the correlation was composed of a state space dynamic factor and a
seasonality factor. The model was estimated for two pairs of stocks for the entire year of
2018. Analyzing the estimates for the seasonality factor coefficients through the year, we
were able to show that on average the correlation is lower on the starting and on the ending
of the day and higher in the middle of the day. This stylized fact was already mentioned
in Koopman et al. (2018), but the authors used an entirely different methodology.

We conducted and extensive forecasting exercise comparing the forecasting performance
for the proposed model for the conditional bivariate densities with other models, including
the Score Driven model proposed in Koopman et al. (2018). The tests were conducted on
a walk-forward basis for the entire year of 2018. We found that the proposed model had
superior forecasting performance using the log-likelihood loss when compared to all other
models, including the score Driven. We also found that the Score Driven was superior to
all other models, except for the new proposed one.



3 Forecasting Intraday Volatility and Densi-
ties using Deep Learning

Abstract

In this paper we develop a new model for forecasting high-frequency intraday conditional
discrete return densities and volatility by using deep learning. Specifically, we model the
conditional distribution by a modified Skellam distribution with the mean following an
auto-regressive specification and train feedforward neural networks in order to generate
predictions for the underlying high-frequency volatility. Four different specifications are
tested including different set of features and parameters. Then we conduct a comprehensive
walk-forward forecasting experiment in order to compare the forecasting accuracy for the
proposed models. All the proposed models beat the empirical non-parametric forecasting
rules considered. The new forecasting procedure also provides better out-of-sample forecasts
compared to all Space State Models considered in the thesis. We also conclude that new
variables have predictive power for the volatility process: the bid-ask spread, high-low
interval spread and the volume traded. According to our model estimates, all these variables
appear to have a positive non-linear S shaped relation with volatility.

Keywords: volatility models; high frequency data; discrete price changes; deep learning;
neural networks; Skellam; non-Gaussian time series models; dynamic discrete data
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3.1 Introduction
As argued in paper 1, modelling and predicting asset returns distributions is a principal
research goal in finance. In the last decades this topic received a growing attention,
especially regarding the measurement of the second moment - the volatility. And in more
recent years the topic expanded to intraday volatility measuring and forecasting. There
are many studies using intraday prices to forecast daily volatility (see Andersen et al.
(2001),Barndorff-Nielsen and Shephard (2002), and Hansen and Lunde (2006)) and, more
recently, papers using this data to analyse and forecast the intraday price dynamics itself
(see Engle and Sokalska (2012) and Koopman, Lit and Lucas (2017)).

In the first paper we modelled the intraday price dynamics by using the Modified Skellam
distribution for the conditional density of the intraday returns, while using non-linear
non-Gaussian state space models for modelling the volatility dynamics, in a similar way
to Koopman, Lit and Lucas (2017). The characteristics that motived this choice are that
volatility is unobservable, changes through time and possess a clustering pattern. This
features are well-known for a long time for daily volatility (see Shephard (2005) for a
review).

In this paper we also model intraday conditional return densities with focus on volatility
dynamics modelling, but we emphasize the non-linearity of the volatility response to its
own past and usual explanatory variables. In order to capture such features we model the
volatility dynamics through deep neural networks. Previous works have shown evidence for
non-linearities for the volatility process not captured by traditional Garch-Like processes
which can be captured by such networks. They also show the ability for such networks
in dealing with other non-traditional explanatory variables for predicting volatility. See
Donaldson and Kamstra (1997), Hajizadeh et al. (2012), Kristjanpoller, Fadic and Minutolo
(2014), Bucci (2019)).

Our work contributes to this literature first by extending the deep neural network modelling
to the intraday high-frequency time frame. To the best of authors knowledge there is no
previous comprehensive work analyzing the intraday volatility forecast at a time frame
lower than 1 minute and considering Skellam-like distributions. We believe that actually
this time frame is more suitable for neural networks than the daily time frame, as the
distributions are non-Gaussian and the data is abundant and noisy.

Our approach is more flexible than the State-Space and Garch -like approaches, in the
sense that is easier to include new explanatory variables as we do not need to specify
a ‘correct’ functional form for the input variable’s impact on the volatility process. The
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neural network approach is motived by its ability to universally approximate non-linear
functions, so we learn the functional form during the estimation. Building on this advantage
we include new explanatory variables (bid-ask spread, high-low spread and volume) and
test for their impact on the forecasts. We analyze the sensivity of changes of these input
variables in the forecasts and analyzing the changes in the predictive power added for the
inclusion of these variables.

Lastly, we use the neural network not only to forecast volatility, we actually forecast
conditional densities in a similar way to Koopman, Lit and Lucas (2017), Koopman et al.
(2018). And we compare the results with models derived from from the approach of such
papers, which are tougher benchmarks than the usual Garch-like models. We show the
ability for the networks for forecasting the conditional densities and volatilities, testing for
the forecasting performance in a comprehensive walk-forward forecasting study.

The rest of this paper is organized as follows. Section 2 gives a brief overview on the Deep
Learning approach, describing neural networks, the optimization process and design issues.
Section 3 describes the base model and its variants. Section 4 describes the data. Section
5 gives details on the Training (optimization) procedure. Section 6 and 7 describes the
estimation results and results related to the forecasting exercise. Section 8 concludes.

3.2 Deep Learning Approach: an Overview
According to Goodfellow, Bengio and Courville (2016), machine learning is essentially a
form of applied statistics with increased emphasis on the use of computers to statistically
estimate complicated functions and a decreased emphasis on proving confidence intervals
around these functions. Machine learning is more concerned about making models to
forecast, rather than learning about parameters.

The central challenge in machine learning is that models must perform well on new,
previously unseen inputs — not just those on which our model was trained. The ability
to perform well on previously unobserved inputs is called generalization. A model has its
hyper-parameters chosen in a validation set, is typically trained (fitted) to a training set
(in-sample) and tested on the test set (out-sample). The objective is thus designing the
model that has the lowest test (generalization) error.

All the emphasis in machine learning is on making models that have low test error. There
is no need to attain a maximum likelihood estimate, for instance, and for many machine
learning algorithms there are no guaranties that any in-sample estimates are optimal in any
sense. The terminology ’optimizing’ or ’fitting’ is substituted by ’learning’ to emphasize
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such difference.

3.2.1 Neural Networks and Deep Learning

Deep learning is the part of machine learning that use models that rely on Deep Artificial
Neural Networks. We now motivate the use of such procedure.

One might presume that learning a nonlinear function requires designing a specialized
model family for the kind of nonlinearity this function presents. Our interest in feedforward
networks with hidden layers for this paper is based on the fact that they provide a universal
approximation framework. The universal approximation theorem (see Hornik, Stinchcombe
and White (1989) and Cybenko (1989)) states that a feedforward network with a linear
output layer and at least one hidden layer with any “squashing” activation function (like
the logistic sigmoid activation function) can approximate any Borel measurable function
between finite-dimensional spaces with any non-zero amount of error, provided that the
network has enough hidden units. The derivatives of the feedforward network can also
approximate the derivatives of the function arbitrarily well (see Hornik, Stinchcombe and
White (1990)).

The existence of such approximating neural network does not mean we can feasibly
attain such network by training a network design with just one layer. The approximating
network might involve a too large width to be feasible. Goodfellow, Bengio and Courville
(2016) argue that for many problems increasing the depth of the network results in better
approximating function, reducing the width needed. More complex relations can be modeled
this way with less network nodes. The authors compare this structure with a prior that
the function being modeled is composed of chain composition of simpler transformations.
And in practice deeper modern neural networks have shown a better generalization error.

3.2.2 Optimization

As mentioned, the objective of machine learning is different from classical statistics and
this reflects on how optimization is done in machine learning, especially for Deep Learning.
Finding the global minimum on the training set is unfeasible for most neural network
designs, as the optimization problem involved is complex. And this is not actually the
objective, which is in fact generating the model with the lower generalization error possible.
So training a deep learning model is significantly reducing a loss function 𝐿1 in the training
sample with the hope that this procedure will reduce other loss function 𝐿2 in the test
sample.

The typical optimization procedure in Deep Learning is described in the algorithm below.
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The typical loss function consists of a sum through samples. At each step a ‘mini-batch’ of
samples is taken from the training set (possibly at random) and the gradient for the loss is
calculated using only these samples. If all the training sample is used on the ‘mini-batch’,
we call the optimization method ‘batch’ gradient descent (otherwise it is called ‘minibatch’
gradient descent).

Then the model parameters are updated using the gradient times some ‘Learning Rate’,
which might be a fixed parameter (in case of the Stochastic Gradient Descent) or may
be adaptive (in the case of Adam or RMSprop, for instance). This procedure is repeated
for a number of times, until the training set is passed by the procedure for a maximum
number of times. The ’number of epochs’ is such number of passages. Some procedures
also specify some early stopping criteria, often related to the loss function applied in some
other test set.

Algorithm 1: Basic Deep Learning Optimization Algorithm
Result: Trained Network parameters 𝜃
input : learning rate 𝜖𝑘 (or adaptive method for generating it)
input : Method for calculating gradients from minibatchs, 𝜃 and previous gradients
input : Maximum number of epochs: maxEpochs
input : Starting 𝜃: 𝜃0

𝑘 ← 0 ;
𝜃 ← 𝜃0 ;
while 𝑘 < 𝑚𝑎𝑥𝐸𝑝𝑜𝑐ℎ𝑠 do

while can sample from training set do
Sample m minibatch samples from training set (without replacement);
Compute gradient 𝑔 ;
apply update: 𝜃 ← 𝜃 − 𝜖𝑘𝑔 ;
if early stopping criteria met then

return 𝜃;
end

end
𝑘 ← 𝑘 + 1 ;
reset training set returning all samples to it;

end
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3.3 Model
In this section we develop the base model used in the rest of this paper, its variants, the
features and the network design.

Let 𝑦𝑡 ∈ Z be the integer-valued variable representing the price changes for the asset at
time 𝑡. We represent the price changes by integers as we are focused in high frequency
price changes. At high frequency the price changes are discrete as stocks are traded in
multiples of a tick size. So we represent again the price changes as integer multiples of the
tick size for each stock.

Let 𝑝(𝑦𝑡|ℱ𝑡−1; 𝜃𝑡) be the time-varying conditional pmf’s, where ℱ𝑡 := {𝑋1, . . . , 𝑋𝑡} is the
filtration (information set) at time 𝑡 and 𝜃𝑡 collects all the pmf’s parameters. The 𝑋𝑡 is
a vector of variables that might include 𝑦𝑡. Our main goal in this paper is to find 𝑝, 𝑋𝑡

and 𝜃𝑡 that provide best out of sample forecasts for the distribution of 𝑦𝑡. That is, we
are searching for the best conditional density forecasts, which are also functions of the
volatility forecasts.

3.3.1 Base Model

Like in Koopman, Lit and Lucas (2017) and Koopman et al. (2018), we consider only
the case where 𝑝 is given by the Modified Skellam Distribution. As shown in the first
paper, this distribution has a good match for the intraday return’s distribution and
have a parameterization that turns easier to study volatility. So we have 𝑝(𝑦𝑡|ℱ𝑡−1; 𝜃𝑡) =
𝑝𝐼𝐼(𝑦𝑡; 𝑖, 𝑗, 𝑘, 𝜇𝑡, 𝜎2

𝑡 , 𝛾), where 𝑝𝐼𝐼 is given by

𝑝𝐼𝐼(𝑦𝑡; 𝑖, 𝑗, 𝑘, 𝜇, 𝜎2, 𝛾) :=

⎧⎪⎪⎪⎨⎪⎪⎪⎩
𝑝𝑠(𝑦𝑡;𝜇, 𝜎2) for 𝑦𝑡 /∈ {𝑖, 𝑗, 𝑘}
𝑝𝑠(𝑦𝑡;𝜇, 𝜎2)− 𝛾Δ/2 for 𝑦𝑡 ∈ {𝑖, 𝑗}
𝑝𝑠(𝑦𝑡;𝜇, 𝜎2) + 𝛾Δ for 𝑦𝑡 = 𝑘,

(3.1)

where 𝛾 satisfies 2 min(𝑝𝑠(𝑖, 𝜇, 𝜎2), 𝑝𝑠(𝑗, 𝜇, 𝜎2)) > 𝛾Δ > −𝑝𝑠(𝑘, 𝜇, 𝜎2) and 𝑝𝑠 denotes the
Skellam pmf. As in the paper 1 we set (𝑖, 𝑗, 𝑘) = (−1, 1, 0). The Skellam pmf is given by

𝑝𝑠(𝑦;𝜇, 𝜎2) := exp(−𝜎2)
(︃
𝜎2 + 𝜇

𝜎2 − 𝜇

)︃
𝐼|𝑦|(

√︁
𝜎4 − 𝜇2), (3.2)

where 𝐼|𝑦| is the Bessel I Function with |𝑦| degrees of freedom.
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Now we need only to specify the functional forms of 𝜎𝑡 and 𝜇𝑡. All models considered in
this paper, including the ones used for comparison follow the structure described so far.
And this includes the models in paper 1. The functional for for 𝜇𝑡 is also the same of that
paper. Thus 𝜇𝑡 is given by:

𝜇𝑡 = 𝛿𝑦𝑡−1 (3.3)

We model 𝜎𝑡 by a nonlinear function of 𝑋𝑡 that will be approximated by a deep Feed
Forward Neural Network. So the functional form of 𝜎𝑡 is simply

𝜎𝑡 = 𝐹 (𝑋𝑡−1) (3.4)

where 𝐹 function represents the Neural Network. In the Machine Learning nomenclature,
𝑋𝑡 represents the features we consider in our model. The features themselves might be
generated by another model, making a Hybrid model.

3.3.2 The Features

We follow Donaldson and Kamstra (1997), Hajizadeh et al. (2012), Kristjanpoller, Fadic
and Minutolo (2014) and use a Hybrid model, using outputs from another model as a
feature for the neural network. In particular we used the output of a simple EWMA model,
with its 𝜆 parameter estimated in-sample. The EWMA model is given by

𝜎̂2
𝑡 = 𝜆𝑦2

𝑡−1 + (1− 𝜆)𝜎̂2
𝑡−1 (3.5)

we also denote EWMA forecast for time 𝑡 by 𝑒𝑤𝑡, that is, 𝑒𝑤𝑡 := 𝜎̂2
𝑡 .

We also include 𝑦𝑡 and 𝑦2
𝑡 as features. The idea for including 𝑦2

𝑡 is that the simple EWMA
process might be unable to capture all the (possibly nonlinear) impact of the innovation
𝑦2
𝑡 , even if it does already include such input. The 𝑦𝑡 is included to capture asymmetric

reactions of the volatility process regarding the sign of the return that have long being
documented in the daily volatility forecasting literature (see Glosten, Jagannathan and
Runkle (1993) and Engle and Ng (1993)).

Following Harvey and Koopman (1993), Koopman, Lit and Lucas (2017) and the discussion
on paper 1, we include the seasonality splines as features (𝑊𝑡). We proceed exactly as in
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the paper 1, generating the curves 𝑊𝑡 according to Poirier (1973). But instead of using
fixed coefficients 𝛽 like in equation (1.6), the splines join the features of the neural network.
So they might interact in a non-linear way with all other features in determining the
volatility forecast. As in the case of paper 1 we considered 𝐾 = 3 for generating 𝑊𝑡,
and the four resulting spline knots are fixed at the times 10:00, 12:00, 13:30 and 17:00,
representing the market open, lunch time and market close. So 𝑊𝑡 has dimension 3 and
we denote the three resulting features as 𝑊1,𝑊2,𝑊3.

Last set of features is composed of 3 new variables not considered in previous papers,
which are not traditionally considered in volatility models. The first is the closing bid-ask
spread, denoted by 𝑏𝑎. When the volatility rises market liquidity providers including market
makers, traders and HFT algorithms tend to be less aggressive in attending the market
final orders. In the case of high frequency data, a large bid-ask spread also mechanically
affect the volatility by increasing the bid-ask bounce effect. In any case this variable is
expected to affect the volatility and is included for this reason. See Wyart et al. (2008) for
a reference on this effect.

The second variable form this set is the High-Low interval spread for the last 10 seconds,
denoted by ℎ𝑙. There is a vast literature relating the daily high-low interval to the volatility,
and though our time frame is short (10 seconds), this variable is also expected to have some
predictive value for the volatility. The intuition is simple: the more volatile the market,
the wider this range should be. This is true for a continuous Brownian Motion (i.e. by the
Reflection Principle) and is also expected for the discrete setting we are interested. See
Yang and Zhang (2000), for instance, for the usage of this data for volatility forecasting in
the daily time frame.

The last variable we consider is the volume of trade for the last 10 seconds, denoted by
𝑣. The volume of trade is related to the intensity of the market activity and is reported
to rise/fall leading and lagging volatility rises and falls (see Xu, Chen and Wu (2006)).
The relation between volume and price changes is so relevant that some authors argue
that intraday bar time series (like ones considered in this paper) are better analyzed by
making regular intervals in terms of volume traded instead of time in order to make the
return distributions more close do iid (see Prado (2018)). There are also data vendors that
offer the data formed this way.

All the features above are z-score normalized before entering the Neural Network input. The
parameter for such normalization (mean and standard deviation) are estimated in-sample
and kept unchanged for the test-sample.
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3.3.3 Network Design

As the objective is to approximate an arbitrary non-linear function on the features, and
there are just a few of them, we use a fully connected feedforward neural network. This type
of network is characterized by the fact that information flows from the input layer, passing
to hidden layers and arriving at the output layer without any cycles. Fully connected
means that between any two layers all nodes are connected.

Following the modern deep learning practice, we choose a large depth (number of layers)
and width (neurons per layer). We use 20 layers, each with 10 neurons. As the other hyper-
parameters for the model, these parameters were tested on a validation, set prior to the
data used for estimating the models. They are not necessarily the best hyper-parameters
for a forecasting network, but in our tests the forecasting capabilities do not change much
for large networks.

As the network is fully connected, this design means that we have 2000 weight parameters
to estimate and 20 bias parameters. Although it might seem that are too many parameters,
each training sample we use for this paper consists of about 20.000 data points.

Networks with a larger depth are usually harder to train, but are able to capture more
complex relations between the input variables. Depending on the activation function, the
depth can make problems associated with vanishing gradients worse (Goodfellow, Bengio
and Courville (2016)) and are more computationally expensive - which was a problem in
the past, but not nowadays.

In order to compensate for the difficulty in training these deep networks, we make three
design choices:

1. A relatively high width (10 neurons)

2. Use the Leaky ReLU activation function

3. Use a customized initiation procedure

The first choice, picking a high width, alleviates the problem of vanishing gradients by
simply adding more terms to the output expression, adding more paths so that the
information can flow from the input layer to the output layer. So this choice makes less
likely that the dead neurons (neurons with too low gradient) affect the entire network.
See Zagoruyko and Komodakis (2016) for a discussion on the effects of network width on
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training.

The second choice tackles the vanishing gradients problem directly, by using an activation
function whose gradient never vanishes. The LeakyReLU activation function (Maas, Hannun
and Ng (2013)) is defined as:

LeakyReLU(𝑥) :=

⎧⎨⎩𝑥 𝑥 ∈ (0,∞),
0.01𝑥 otherwise

(3.6)

The gradient of LeakyReLU never vanishes, attaining a minimum value that is strictly
greater than zero. This is different than the more standard activation functions tanh,
sigmoid and ReLU. Worth mentioning that even tough the gradient never vanishes
completely, it can be as low as 1e-40 on the composition of the 20 layers, so that although
this choice alleviates the problem, we can still have dead neurons in practice.

The third choice refers to the initiation of the weights for the network, which will be
described in greater detail in section 5. In short we initiated an entire path of weights
from the input feature 𝑒𝑤 to the output as ones, setting all bias coefficients as zero, except
for the last one, which was set to a positive number. This choice of initiation made the
starting parameters of the network resemble 𝑒𝑤, making the gradients not vanishing and
the computations for the log-likelihood loss derived from (3.1) more stable.

Let 𝐼 = 8 be the number of features, 𝐿 = 20 the number of layers and 𝐻 = 10 the width
of the network. The final definition for the neural network, that is, for the function 𝐹 is
given by the following equations:

ℎ
(0)
𝑡 = leakyReLU(𝑊 (𝑖𝑛)𝑋𝑡 + 𝑏(𝑖𝑛))

ℎ
(𝑖)
𝑡 = leakyReLU(𝑊 (𝑖)ℎ

(𝑖−1)
𝑡 + 𝑏(𝑖)), for 𝑖 ∈ {1, . . . , 𝐿}

𝜎2
𝑡+1 = 𝐹 (𝑋𝑡) = |𝑊 (𝑜𝑢𝑡)ℎ

(𝐿)
𝑡 + 𝑏(𝑜𝑢𝑡)|

(3.7)

where 𝑊 (𝑖𝑛) is (𝐼 ×𝐻), 𝑊 (𝑖) is (𝐻 ×𝐻),𝑊 (𝑜𝑢𝑡) is (𝐻 × 1), 𝑏(𝑖𝑛) is (𝐻 × 1), 𝑏(𝑖) is (𝐻 × 1)
and 𝑏(𝑜𝑢𝑡) is (1× 1).

3.3.4 Model Variants

In order to measure the impact of different components of our model, we estimate a total
of 4 versions of the model, including the final model and 3 simplified versions.
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The table 14 resumes the characteristics of the models. The most basic is NN0, in which
we force 𝛾 and 𝛿 to zero and we use the same features used in paper 1 (that is, we exclude
𝑏𝑎, ℎ𝑙 and 𝑣). So this model use the standard Skellam distribution, with no model for the
mean (𝜇𝑡 = 0).

The next is NN𝑣, which is like NN0, except that we include the variables 𝑏𝑎, ℎ𝑙 and 𝑣. In
NN𝑣,𝛾 we allow 𝛾 to be different than zero. The final model is NN𝑣,𝛾,𝜇, in which we also
model the mean using equation (3.3).

Table 14 – Model Variant description

model Features 𝛾 𝛿

NN0 all except 𝑏𝑎,ℎ𝑙, and 𝑣 𝛾 = 0 𝛿 = 0
NN𝑣 all 𝛾 = 0 𝛿 = 0
NN𝑣,𝛾 all estimated 𝛿 = 0
NN𝑣,𝛾,𝜇 all estimated estimated

3.4 Data
Like in paper 1, our dataset is formed by intraday prices for four Brazilian Stocks: Petrobras
(PETR4), Vale (VALE3), Itau-Unibanco (ITUB4) and Bradesco (BBDC4) for the entire
year of 2018. These stocks are among the most liquid Brazilian stocks. The data used in
this paper consists of the closing trading prices for the intraday interval of 10 seconds
obtained from B3 exchange by using Thomson Reuters Datascope service. Taking all four
stocks together, our dataset consists of more than 2.3 billion prices.

It is worth noting that even using the 10 seconds time frame (instead of the 1 second) we
still have to deal with a lot of missing values, as the stocks do not necessarily trade every
10 seconds interval. Regarding this issue we also take the same approach of Koopman et
al. (2018), by only updating the model when trading activity occurs. So we do not pad
missing price changes with 0 price changes as done in Koopman, Lit and Lucas (2017).
We consider not trading as different event than trading at the last price and we also want
to make the analysis in this paper comparable to the analysis on the rest of the thesis.

We consider all prices ranging from the market opening at 10:00 to the market closing at
17:00. We model the intraday price changes, so we discard the overnight price changes
in the cases where we estimate the model through more than one day. We apply a data-
cleaning procedure before the analysis, in order to clean for exchange reporting errors, as
recommended by Brownlees and Gallo (2006).
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For descriptive statistics on the dataset refer to the data section of the paper 1.

3.5 Training Procedure
In this section we describe in more detail the training procedure applied for the networks,
along with the estimation of other parameters. The network parameters and the parameters
𝛾 and 𝛿 are estimated together using the procedure described in this section.

3.5.1 Loss Function and Regularization

As the objective is to forecast a conditional density along with the volatility, we choose the
base loss function to be the log-likelihood loss for both the training and testing procedures.
In order to avoid over-fitting we add 𝐿2 norm penalization to the loss function, commonly
know as weight decay. So the loss function expression is given by

𝐿(𝑦) = −
∑︁
𝑡

log (𝑝(𝑦𝑡|ℱ𝑡−1; 𝜃𝑡))−
𝛼

2 ‖𝑊‖
2
2 (3.8)

where 𝑊 = {𝑊 (𝑖𝑛),𝑊 (𝑜𝑢𝑡)} ∪ {𝑊 (𝑖)}𝑖∈{1,...,𝐿} is the vector containing all weights in the
model.

The coefficient for the 𝐿2 penalty is a model hyper-parameter and was obtained using a
presample in 2017 by trial and error. We used 𝛼 = 100.

3.5.2 Optimization Algorithm

The Stochastic Gradient Descent (SGD) and its variants are probably the most used
optimization algorithms for machine learning in general and for deep learning in particular.
It consists in estimating the gradient using a mean of the minibatchs gradient estimates
over a batch of data. The parameters are then updated using a hyper-parameter called
learning rate times the gradient estimate. So it is a first order gradient descent method
where the estimates are updated using just a sub-sample of data.

The main difficulty in using SGD is appropriately setting the learning rate hyper-parameter
as its choice greatly determines the predictive power of the trained model (according to
Goodfellow, Bengio and Courville (2016)). If the learning rate is too high the algorithm
makes the objective function to decay faster but becomes non-robust, failing to keep the
objective function decaying. If it is too low, the optimization simply gets too much time to
finish. And as one can see by the Newton’s Method, it is better to have a lower learning
rate when the curvature is higher and conversely.
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In order to avoid such difficulties associated with the SGD method, we use the Adamax
algorithm. It is an adaptive method introduced in Kingma and Ba (2014) in which the
gradients are re-scaled by using the inverse of the weighted 𝐿∞ norm applied to the
previous calculated gradients. Adamax is a version of the Adam algorithm introduced in
the same paper, which in its usual form uses the 𝐿2 instead of 𝐿∞.

Regarding the batch size, we used all the sample at once for each step of the optimization,
so we actually used a ‘batch gradient descent’ method. As discussed in greater detail in
the appendix, we used GPU for training the networks so having a greater batch size did
not impact significantly the processing time. By using all data the gradients are calculated
with more precision. We used 2000 epochs for optimizing each network, with no early
stopping.

This above algorithm performed well in our pre-sample tests and was selected.

3.5.3 Initialization

Initialization is an important and not well understood part of the optimization process in
deep learning. The starting values for the neural network heavily affects the results of the
optimization process. In our case, the loss function used both for training and testing may
not be numerically stable depending on the network outputs, which increases the concern
regarding the initialization.

One standard initialization for the weights, which is default in many Deep Learning
frameworks is given in equation (3.9)

𝑊
(𝑘)
𝑖,𝑗 ∼ 𝑈

(︃
− 1
√
𝑚𝑘

,
1
√
𝑚𝑘

)︃
(3.9)

where 𝑘 ∈ {in, 1, . . . , 𝐿, out} is the layer, 𝑖, 𝑗 are matrix coordinates and 𝑚𝑘 is the number
of columns for the matrix 𝑊 (𝑘).

We tested this initialization in our procedures and the results were unstable. For concluding
the forecasting exercise in the next section we need to estimate more than a thousand
different networks, so we need a robust optimization procedure.

So we changed this initialization scheme replacing the first column for matrices 𝑊 (𝑘)
𝑖,𝑗 by

the vector (0, . . . , 0, 1)𝑇 . This makes the output for the first neuron for all layers to be
exactly the first feature, 𝑒𝑤. We also set the bias 𝑏 to zero for all layers except for the first
one, which had a positive value in order to make sure that the value is positive. This is
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needed because 𝑒𝑤 is a z-score, and could be negative and we need to keep the value in
domain where leakyRelu is the identity function.

With this new initialization scheme the output for the network resembles the output for the
EWMA model at the starting of the optimization and the optimization became much more
robust, converging for the solutions presented in this paper with just one optimization
trial.

Regarding the parameters outside the neural network, we initialized both 𝛾 and 𝛿 as zero.

3.6 Training and Forecasting Exercise
We applied the procedure in the previous section for training all the model variants in
table 14. As done in paper 1, we estimated the models for all 5 consecutive business days
periods of 2018, testing the model forecasts for the following 5 business days. The 5 days
period was chosen so that the daily volatility seasonality can be better captured by the
models.

In order to compare for the forecasts of the neural network models we used estimates for
the models used in the paper 1:

SSM: State space model described in paper 1 with 𝜇𝑡 = 𝛿𝑦𝑡−1

SS: State space model described in paper 1 with 𝜇𝑡 = 0

EW: 𝜎𝑡 is estimated by an EWMA process: 𝜎̂2
𝑡 = 𝜆𝑦2

𝑡−1 + (1− 𝜆)𝜎̂2
𝑡−1. 𝜆 is estimated using

the fit sample (previous week). 𝜇 and 𝛾 are set to zero

𝑀1: 𝜎𝑡 is estimated non-parametrically by a moving average process using a rolling window
of the past 90 returns. 𝜇 and 𝛾 are set to zero

𝑀2: 𝜎𝑡 is estimated non-parametrically by a moving average process using a rolling window
of the past 900 returns. 𝜇 and 𝛾 are set to zero

E: the pmf of 𝑦𝑡 is determined by the empirical probabilities of 𝑦𝑡 on the fit sample.

The results for the exercise are described in the next two sections. The computational
details of the implementation is described at the appendix.
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3.7 Estimation Results
In this section we describe the main in-sample results for the training exercise described
in last section. We compare the results obtained in paper 1

3.7.1 Parameter Estimates

Now we describe the estimation results for the most complete model NN𝑣,𝛾,𝜇. The model
was estimated for 48 different 5 business days periods for all the four equities in our list.

We report the descriptive statistics for the parameter estimates at the table 15. For each
equity / parameter we report the sample mean for the parameter estimates on the first row
and the standard deviation in parenthesis on the second row. Notice that these statistics
refer to estimates in different samples, so the mean and standard deviations are only
indicative of common estimated values through the year.They should not be interpreted
as estimates and significance test statistics.

Table 15 – Descriptive Statistics for the NN parameter estimates

Bradesco Itau-Unibanco Petrobras Vale

𝛿 -0.200 -0.186 -0.225 -0.173
(0.034) (0.036) (0.075) (0.041)

𝛾 0.125 0.346 -0.103 0.307
(0.111) (0.136) (0.089) (0.174)

We notice that 𝛿 is negative for all stocks, exactly as in the paper 1. This implies a negative
dependency of the mean on previous returns, which is the expected value as noted in paper
1. We notice also that 𝛾 is only negative for Petrobras, also like in paper 1. In fact the
estimates show different but similar values when compared to the estimates for SSM and
SS models.

The similarities are more prominent when we compare the point estimates for each sample.
Figures 19 and 20 shows the estimates for 𝛾 and 𝛿 respectively for both NN𝑣,𝛾,𝜇 and SSM
models.
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Figure 19 – Estimates for 𝛾

(a) Itau-Unibanco (b) Bradesco

(c) Petrobras (d) Vale

On both cases the lines plotted are similar for both models, although the level for the SSM
model tended to be a little bit lower than for the neural network. This similarity shows
the robustness of both estimation procedures, as the estimation procedures are totally
different and the models are in fact also different.
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Figure 20 – Estimates for 𝛿

(a) Itau-Unibanco (b) Bradesco

(c) Petrobras (d) Vale

3.7.2 Filtered Volatility Example

We now compare volatility estimates from the Neural Network model NN𝑣,𝛾,𝜇 and the
SSM model. For the SSM model we used the Bootstrap Particle Filter in order to obtain
the filtered forecasts. Figure 23 shows the path of the filtered volatility for the day July 6,
2018 for both models. Observe that the volatility decreases during the day as predicted by
the mean seasonality in paper 1.

Note also that the volatility estimates for both models are strikingly similar, which is
again a robustness check on the procedure of both models - as the models and procedures
are totally different in both case. The volatility forecast for the Neural network appears to
be little less volatile than the volatility forecast for the SSM model.
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Figure 21 – Filtered Forecast Volatility for July 6, 2018

(a) Itau-Unibanco (b) Bradesco

(c) Petrobras (d) Vale

3.7.3 Intraday Seasonality

In this sub-section we analyze the descriptive statistics for the volatility seasonality. Figure
22 depicts the seasonality for the NN𝑣,𝛾,𝜇 model, showing the mean and two percentiles
for the volatility predicted by the model for each time of the day in the entire sample.
Observe that for all stocks have a sharp decrease in the mean volatility predicted from the
opening to the end of the day. This effect is also documented in Koopman, Lit e Lucas
(2017). As stated in paper 1, one possible reason is that on the starting of the trading
session there is more information for the markets to digest, including all the overnight
news and economic releases, that are more common in the morning.
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Figure 22 – Average Seasonality for 2018

(a) Itau-Unibanco (b) Bradesco

(c) Petrobras (d) Vale

The concept show in the figures is different however than the one show in paper 1, figure 11.
In that paper we plotted the theoretical seasonality arriving from the seasonality splines
estimated in that model. Now we show percentiles for the model prediction directly. So
we have more variability in the sample now, as the volatility varies not only because of
the seasonality - the variability is also related to shocks. The curves are also less smooth
beacuse there is no spline structure behind this estimates.

We can see in this figure an interesting pattern not captured by the splines: A spike in the
volatility at the very ending of the trading session. This is actually the close auction, that
happens on the last 5 minutes of the trading session for Brazilian equities. The splines are
not able to capture this because of the smoothness imposed by such structure.

3.7.4 Non-linear Sensivity Analysis

As discussed in section 2, Deep Learning method is focused in building models that are
good for forecasting. It is usually hard to get a deeper understanding on how the networks
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deal with each input feature, especially because the output of the network might be a
highly non-linear function of the inputs. And the inputs interact with themselves inside
the network, making interpretations harder.

Besides such difficulties, our objective in this section is to get a better understanding on
how the trained networks react to changes in the features, on average. We want to answer
questions about what to expect in terms of volatility when the bid-ask spread rises, or if
there is any detected relation between volume and volatility.

We make two exercises. First, we shock all input variables by adding one standard deviation,
one at a time keeping the other constant, for the whole training sample. Then we compute
the changes in the prediction for the volatility for each stock, for each sample time. Table
16 reports the descriptive statistics for these sensibilities, reporting means and standard
deviations aggregating through time. The standard deviations are reported below the
means, in parenthesis.

Table 16 – Standardized Sensivity to shock in variables

𝑒𝑤 𝑦 𝑦2 𝑏𝑎 ℎ𝑙 𝑣 𝑊0 𝑊1 𝑊2

Itau-Unibanco 0.30 -0.0023 0.078 0.13 0.090 0.036 0.082 0.028 -0.012
(0.12) (0.021) (0.036) (0.044) (0.028) (0.033) (0.060) (0.033) (0.027)

Bradesco 0.26 -0.0039 0.060 0.095 0.061 0.022 0.067 0.021 -0.011
(0.083) (0.022) (0.033) (0.051) (0.025) (0.025) (0.042) (0.022) (0.026)

Vale 0.35 -0.0094 0.083 0.11 0.092 0.076 0.12 0.051 -0.0016
(0.13) (0.024) (0.037) (0.059) (0.033) (0.054) (0.088) (0.038) (0.030)

Petrobras 0.20 -0.0092 0.032 0.033 0.049 0.053 0.036 0.0098 -0.0023
(0.11) (0.015) (0.021) (0.019) (0.031) (0.036) (0.038) (0.026) (0.014)

We observe that, on average, the models estimated point to a positive relation between
the 𝑒𝑤 variable and the volatility output of the network, with a one standard deviation
shock in that variable changing the volatility forecast between 0.20 and 0.35 depending on
the stock.

The relation with 𝑦 is negative on average, which is the expected sign for this sensibility,
but with a low average value and a high dispersion. So the networks do not appear to be
highly sensible to this variable, at least for a shock keeping all other variables constant.
But as the relations modelled are non-linear, this input feature can interact with others
leveraging its effects.
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The relation with 𝑦2 is clearly positive for all stocks, but with a impact below 𝑒𝑤. The
variables 𝑏𝑎, ℎ𝑙 and 𝑣 all have positive effects in the output volatility, on average, for all
stocks. As discussed before, this is the expected sign for the impact of these variables
according to the literature.

The last three features, 𝑊0, 𝑊1 and 𝑊2 are the seasonality splines. The first two tend
to have positive values, with a higher values for the first, while the latter small negative
values (with high relative dispersion). This is similar to the estimates of the coefficients
𝛽0, 𝛽1 and 𝛽2 for the model SSM in the table 4, although in that table coefficients for 𝛽1

are small negative on average.

In the second exercise we shock the input features by values ranging from -10 standard
deviations and 10 standard deviations, keeping all other features constant. We shock all
features, except for the seasonality splines. These shocks were again computed for the whole
training sample, like in the previous exercise. The objective is to get an understanding on
the non-linearities in the impact of each variable, holding all else constant. Observe that
most input variables are fat tailed, so that shocks with 10 standard deviations actually
happen frequently in the sample. The results are reported on the figures collected a table
17.

The solid line reflects the mean effect for the shock for each variable, while the dashed
lines represent the 25% and 75% percentiles for the shocks. Looking at the figures in table
17 we can readily see that the higher relative dispersion of the impact is attained at the
variable 𝑦. The other variables have a relatively lower dispersion.

Regarding the non-linearity of the effects, most variables have a S shaped impact format,
where the effect for the impact is diminished for high absolute valued shocks. Perhaps
the most salient effect is for the 𝑒𝑤 feature, where the impact seems to have a floor for
negative values. The concavity for negative values is also salient for ℎ𝑙, 𝑏𝑎 and 𝑣, for most
stocks.
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Table 17 – Non-linear sensivity to standardized shocks of selected variables

Itau-Unibanco Bradesco Petrobras Vale

𝑒𝑤

𝑦2

𝑦

ℎ𝑙

𝑏𝑎

𝑣

3.8 Forecasting Exercise Results
We now report the results for the walk-forward forecasting exercise described at section 6.
We follow Koopman, Lit and Lucas (2017) and compare the forecasting performance of the
models using log-likelihood loss. This measure is used because it takes into account the
entire conditional density forecast into account, being able to compare models regarding
not only the volatility forecasts but also forecasts for the mean and the format of the
conditional distributions, including the tails and the frequency of zeros. So we are evaluating
the capacity for the models to forecast not only the volatility, but their ability to forecast
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the conditional densities. For the forecast of time 𝑡 and for all models, we use only data
up to 𝑡− 1.

Also following Koopman, Lit and Lucas (2017) and the methodology applied in paper
1, we compare the forecast performance by using Diebold-Mariano (DM) Statistics. In
tables 18 and 19 we compute the mean log-likelihood Loss (column Log Loss) for each
10 seconds interval and the Diebold Mariano statistics comparing each model with the
models NN𝑣,𝛾 and NN𝑣,𝛾,𝜇 (columns DM𝑣,𝛾 and DM𝑣,𝛾,𝜇). We used all the 2018 sample
for computing this statistic, using the density prediction and the realized return 𝑦𝑡 for
every 10 seconds period - so this is a huge sample (more than 500,000 points) for each
comparison. A positive number means that the model in the row outperforms the model
in the column, while a negative number means the opposite.

Table 18 – Forecasting Results - Itau-Unibanco and Bradesco

Bradesco Itau-Unibanco
Log Loss DM𝑣,𝛾 DM𝑣,𝛾,𝜇 Log Loss DM𝑣,𝛾 DM𝑣,𝛾,𝜇

NN0 1.761 -30.13 -69.49 1.945 -46.35 -73.06
NN𝑣 1.755 -6.379 -63.01 1.936 -32.07 -63.85
NN𝑣,𝛾 1.754 - -62.03 1.933 - -53.62
NN𝑣,𝛾,𝜇 1.737 62.03 - 1.919 53.62 -
EW 1.764 -28.19 -61.14 1.949 -41.11 -64.28
𝑀1 1.772 -37.02 -63.15 1.959 -49.34 -68.00
𝑀2 1.801 -78.92 -98.27 1.987 -83.51 -97.81
E 1.789 -53.56 -71.86 1.968 -50.97 -65.34
SS 1.761 -19.09 -53.49 1.948 -37.34 -61.49
SSM 1.742 23.71 -11.68 1.932 1.640 -28.56

Looking at the columns Log Loss and DM𝑣,𝛾,𝜇 for both tables 18 and 19, we can see that
the model NN𝑣,𝛾,𝜇 outperforms all other neural network specifications and also outperform
all other comparing models, including the SS and SSM models. This out-performance is
highly statistically significant as the DM statistic closest to zero is -11.68 and the this
statistic has a standard normal distribution asymptotically.

Looking at the columns Log Loss and DM𝑣,𝛾 we also see that the final NN version with no
mean modelled NN𝑣,𝛾 outperforms all models except for the models with mean modelled
(NN𝑣,𝛾,𝜇 and SSM). This shows the importance of modelling the mean for this kind of
models, which is a novelty of the present work - regarding discrete high-frequency densities.
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It also worth noting that this consistency in outperforming this set of models were not
obtained by the SS model. This model actually did not outperform the EWMA model for
Vale at the same sample, as pointed by the table 6 in paper 1. Another interesting point
to note is that although NN𝑣,𝛾 did not outperform SSM for all stocks, it did outperform
for one of them (Vale).

Table 19 – Forecasting Results - Petrobras and Vale

Petrobras Vale
Log Loss DM𝑣,𝛾 DM𝑣,𝛾,𝜇 Log Loss DM𝑣,𝛾 DM𝑣,𝛾,𝜇

NN0 1.476 -32.03 -75.98 2.018 -35.09 -62.28
NN𝑣 1.473 -17.88 -71.08 2.012 -24.47 -57.65
NN𝑣,𝛾 1.471 - -68.67 2.010 - -52.60
NN𝑣,𝛾,𝜇 1.448 68.67 - 1.997 52.60 -
EW 1.480 -35.90 -75.36 2.023 -31.29 -53.89
𝑀1 1.486 -46.21 -80.39 2.033 -41.99 -59.74
𝑀2 1.500 -71.67 -98.33 2.065 -82.16 -94.76
E 1.517 -98.75 -119.1 2.046 -45.70 -58.24
SS 1.477 -26.17 -71.23 2.027 -37.60 -57.88
SSM 1.453 31.53 -12.58 2.015 -9.123 -36.13

We arrange the comparing DM Statistic for comparing all the models individually in table
20. The calculation is exactly the same as the tables 18 and 19, but now we can compare
all pair of models. A positive number means (again) that the model in the row outperforms
the model in the columns, where a negative number means the opposite.

We can see that even the simplest neural network model considered, NN0, outperforms the
𝐸𝑊 model for all stocks - which does not happen even for the SS model, that underperforms
𝐸𝑊 for Vale. NN0 also outperforms SS for all stocks, altough the outperformance for
Bradesco is not statistically significant (DM=-0.5). Recall that this model does not even
allow 𝛾 to be different from zero and uses the same input variables as SS.

Comparing the performance of NN𝑣 and NN0 we see that the newly added variables (𝑏𝑎,
ℎ𝑙 and 𝑣) significantly enhances the predictive power for the model. NN𝑣 beats NN0 by a
high margin, with DM statitics above 20 in absolute value terms.

Comparing NN𝑣,𝛾 and NN𝑣 we also see that including the 𝛾 the forecasts’ loss becomes
significantly lower, also by a large margin. Finally, comparing NN𝑣,𝛾,𝜇 and NN𝑣,𝛾 we see
again the importance of modelling the mean. This appear to be the single most important
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feature comparing the forecasting performance, as the DM statistics of this last comparison
is even higher in absolute terms then the last comparisons.

Table 20 – DM Statistics Results

Itau-Unibanco

NN𝑣,𝛾,𝜇 NN𝑣,𝛾 NN𝑣 NN0 EW SS

SSM -28.6 1.6 7.9 24.8 27.5 42.6
SS -61.5 -37.3 -27.5 -7.3 3.1 -
EW -64.3 -41.1 -33.6 -14.7 - -
NN0 -73.1 -46.4 -35.0 - - -
NN𝑣 -63.9 -32.1 - - - -
NN𝑣,𝛾 -53.6 - - - - -

Bradesco

NN𝑣,𝛾,𝜇 NN𝑣,𝛾 NN𝑣 NN0 EW SS

SSM -11.7 23.7 24.5 37.3 41.4 46.0
SS -53.5 -19.1 -17.3 -0.5 9.2 -
EW -61.1 -28.2 -27.0 -12.4 - -
NN0 -69.5 -30.1 -28.9 - - -
NN𝑣 -63.0 -6.4 - - - -
NN𝑣,𝛾 -62.0 - - - - -

Petrobras

NN𝑣,𝛾,𝜇 NN𝑣,𝛾 NN𝑣 NN0 EW SS

SSM -12.6 31.5 34.7 40.7 47.4 45.6
SS -71.2 -26.2 -15.3 -4.3 12.8 -
EW -75.4 -35.9 -29.6 -20.9 - -
NN0 -76.0 -32.0 -24.2 - - -
NN𝑣 -71.1 -17.9 - - - -
NN𝑣,𝛾 -68.7 - - - - -

Vale

NN𝑣,𝛾,𝜇 NN𝑣,𝛾 NN𝑣 NN0 EW SS

SSM -36.1 -9.1 -5.4 5.8 10.9 33.5
SS -57.9 -37.6 -32.3 -19.6 -7.9 -
EW -53.9 -31.3 -26.8 -13.4 - -
NN0 -62.3 -35.1 -27.2 - - -
NN𝑣 -57.7 -24.5 - - - -
NN𝑣,𝛾 -52.6 - - - - -
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We also computed the DM statistic individually for each 5-day period. We show the results
for the comparison with the NN𝑣,𝛾 model in figure 23 and the comparison with the NN𝑣,𝛾,𝜇

model in figure 24. We can see in the figures that all previously reported out-performances
are consistent through most of the 5-days samples, with few points of exception.

Each point in these figures represent the statistics applied to the 5-days period, which
constitutes more than 20.000 data points. In figure 23 we see that the test statistics are
similar for all models compared to NN𝑣,𝛾, and they oscillate around the level of -5.

Figure 23 – Weekly DM Score for NN𝑣,𝑔 Model

(a) Itau-Unibanco (b) Bradesco

(c) Petrobras (d) Vale

In figure 24 we see that the test statistics are similar for all models compared to NN𝑣,𝛾,𝜇,
except for the SSM model, and they oscillate around the level of -10. The comparison with
the SSM yields a smaller statistic (in absolute value terms), mostly ranging from -2 to -5.
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Figure 24 – Weekly DM Score for NN𝑣,𝑔,𝑚 Model

(a) Itau-Unibanco (b) Bradesco

(c) Petrobras (d) Vale

3.9 Final Remarks
In this paper we developed a new model for forecasting discrete high-frequency densities
and volatility. The model is composed of a deep feed-forward neural network to forecast
volatility, an AR model for the mean and uses the Modified-Skellam distribution for
computing densities. We are unaware of any other works using Deep Learning to predict
volatility at this time-scale. Besides the forecasting performance, this model is easier to
implement and computationally faster than the State Space counterparts.

We used this model to forecast conditional intraday discrete high-frequency densities and
volatilities, contributing to the nascent literature on this subject. In this new model we
added new variables not present in previous papers on high frequency volatility forecasting,
including the bid-ask spread, the high-low interval spread and the volume traded. We
conducted a sensibility analysis of the networks estimated and found that these variables
affected the volatility forecasts, finding a positive relation between all of them and the
volatility. We also showed that this relation is not linear, appearing to have an S shape
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(with more concavity on for negative shocks). We also included the previous price change
in the model, but sensibility analysis was not conclusive. We show that the inclusion of
these variables increase the prediction power of the model.

We compare the in-sample filtered volatilities, seasonality, and common parameters obtained
with the Neural Network Model with the State Space models derived at paper 1 - and
find many similarities. But, more interestingly, we conducted an extensive out-sample
walk-forward forecasting exercise, involving the entire year of 2018 and about 2 billion data
points of price changes of four distinct stocks. The new Neural Network model showed the
best forecasting performance for all the stocks when compared to State Space Models and
EWMA models. This outperformance was consistent between all the stocks, across time
and with and without modeling the mean of the density.
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APPENDIX A – Computational Aspects

The computations needed for the exercises in this thesis would be very hard to carry a few
years ago. Recent advances in IT, both for hardware and software made the tasks in this
work less difficult. In this appendix we describe the technologies used in this work.

A.1 Working in Parallel with GPU and CUDA
One of the main advances in hardware for the last decade is the cheap availability of
parallel processing. First, we now have access to GPU units, that were popularized in
along the 2000’s decade. And they were specialized for deep learning tasks over the last
decade.

A graphics processing unit (GPU) is a specialized processor unit initially designed to
accelerate the creation of images for output to a display device. GPUs are used in embedded
systems, mobile phones, personal computers, workstations, and game consoles. Their highly
parallel structure makes them more efficient than general-purpose central processing units
(CPUs) for algorithms that process large blocks of data in parallel. In a personal computer,
a GPU can be present on a video card or embedded on the motherboard.

The chip maker NVIDIA created the CUDA (Compute Unified Device Architecture), which
is a parallel computing platform and application programming interface (API) model.
It allows software developers and software engineers to use a graphics processing unit
(GPU) for general purpose processing. The CUDA platform is a software layer that gives
direct access to the GPU’s virtual instruction set and parallel computational elements, for
the execution of compute kernels. In top of CUDA, nVidia maintains a set of specialized
libraries. Three of them are of great interest for the computations involved in this work:
cuBLAS, cuSOLVER and cuDNN.

The NVIDIA cuBLAS library is a fast GPU-accelerated implementation of the standard
basic linear algebra subroutines (BLAS). NVIDIA cuSOLVER library provides a collection
of dense and sparse direct solvers with the intent of providing useful LAPACK-like features,
such as common matrix factorization and triangular solve routines for dense matrices, a
sparse least-squares solver and an eigenvalue solver. Lastly, the NVIDIA CUDA Deep
Neural Network library (cuDNN) is a GPU-accelerated library of primitives for deep
neural networks. The cuDNN library provides highly efficient implementations for standard
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routines such as forward and backward convolution, pooling, normalization, and activation
layers.

The CUDA framework became the standard framework for general processing in GPU’s.
Fortunately end users do not need to deal with this infrastructure directly. The availability
of cuBLAS, cuSOLVER and cuDNN made easy for software developers to develop high
level packages that build in the CUDA architecture in order to make scientific computing.
As in the case of BLAS and LAPACK for the CPU’s, most users actually access the
libraries transparently, using high level wrappers. This is the case for Pytorch, Tensorflow
and MXNet, which are deep learning frameworks backed by Google, Facebook and Apache
Foundation, respectively. They provide generic access to classes implementing Deep Learn-
ing features that can run either in CPU or GPU, with almost the same code. They also
provide generic matrix / tensor libraries that make the use of BLAS, LAPACK, cuBLAS
and cuSOLVER transparent to the user, computing the transformations on both CPU
and GPU with the same interface.

For the present work we computed all the Neural Network training procedures on the
GPU, running four training problems at the same time. We used a gaming notebook
with a CUDA enabled NVIDIA GeForce GPU. The networks were coded using Pytorch
framework. We trained four models, for four stocks and 48 periods (768 models) for 2000
epochs. The training took less then 1 day to complete. We estimate that using the CPU
the computation wold be about 20 times slower.

A.2 Distributed Computing: AWS EC2 Cluster
Parallelizing computations over the GPU is a great and economical way of processing
many tasks in a short period of time. However, this approach is no panacea: there are
limitations and practical difficulties in using GPU.

First, not all problems are well suited for processing in parallel. A great example is
time series analysis. Most time series models contain some time dependency, which likely
involves a recurrence that usually must be computed sequentially. The task of computing
an AR model for 20.000 timestamps or running a Kalman filter for the same lenght cannot
be parallelized. And these applications were ubiquitous in papers 1 and 2 computations.
When the task cannot be parallelized, it makes absolutely no sense to use GPU’s, as each
processor in the GPU has limited capabilities when compared with the CPU. In these
cases computing in GPU is actually slower. The GPU main advantage is the number of
processors and this advantage is not relevant in these scenarios.
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Second, some times it is hard to write a code that runs entirely on the GPU even when
the problem can be parallelized. Taking the example of the Kalman filtering, one cannot
parallelize the filtering procedure from one time series, but could make the filtering of
several time-series at the same time. And this would be the case of the Kalman Simulator
Smoothing algorithm used to sample for Gaussian distribution obtained by the NAIS
procedure. So that part of the algorithm could be parallelized. But in order to do this on
the GPU, one would need to write extremely efficient compiled functions for the Kalman
Filtering over the GPU, with custom Kernels, which is hard and time consuming. Another
difficulty faced is the possible unavailability of certain specialized mathematical functions
over the GPU.

So we opted to compute the models of the first two papers on the CPU. The computations
involved the optimization of 2 models for 4 stocks over 48 periods in the first paper, and
2 models for 2 pairs of stocks over 48 periods in the second paper. The forecasting part
was also computationally expensive for the State Space models in both papers, as the
Bootstrap Particle Filter was used. These two papers involved the computation of the
estimation procedure of 960 models and the computation of the particle filtering for 768
models. Computing all these models over a single desktop using one CPU would take many
days to complete, possibly some weeks. So we opted to use a cluster on Amazon AWS EC2
to make such computations, distributing the computing process through 5 instances, each
with 72 processors each. we used the c5.18xlarge instance type. The computations took
about 1 day to complete.

A.3 Approximating Functions
Another difficulty faced is the unavailability of certain specialized mathematical functions
over the GPU. This is the case for the modified Bessel I function, needed for the Skellam
pmf computation. Actually, even the computation of this function on the CPU is too slow,
as it involves the expansion of series for computing each value. The function might not be
numerically stable also, even when using the exponential scaled version.

So we opted to approximate this function by splines. The same was done with the 2
dimensional Gaussian CDF function, needed for the Gaussian copula computation. The im-
plementations became faster and more numerically stable, maintaining the differentiability
needed for the optimizations.
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A.4 Compiling Python Code
A final important topic concern how to generate low level efficient code for implementing
specialized algorithms needed for the paper. The language of choice for this paper was
python because of its easy of use, it does have large scientific and generic computing
libraries and because it is open source. But the language is not particularly fast. This is
not a problem if the problem at hand is not computationally intensive or if most of the
computation can be done by calling compiled code already available in python libraries.
Unfortunately the computations for this work did not fell into any of these two categories.

Using python to write the time-series loops needed for the algorithms in this work would
lead to implementations 5 to 10 times slower than low level code implementations, making
the computations unfeasible in practice. Writing this code directly in a low level language
would be too time consuming for the purposes of the current work. Our solution involved
generating low level compiled code using python package Numba. Numba allows on-the-
fly/transparent compilation of python code, approaching low level C/Fortran Speed. Only
a subset of the Python language is supported, so some effort compatible code is needed.
But it involves much less effort than writing C/Fortran specialized functions.
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