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1 Introduction

1.1 Motivation

To a greater extent than other mathematical disciplines, statistics is a product

of its time. If Francis Galton, Karl Pearson, Ronald Fisher, and Jerzy Neyman

had had access to computers, they may have created an entirely different

field. Classical statistics relies on simplistic assumptions (linearity, indepen-

dence), in-sample analysis, analytical solutions, and asymptotic properties

partly because its founders had access to limited computing power. Today,

many of these legacy methods continue to be taught at university courses and

in professional certification programs, even though computational methods,

such as cross-validation, ensemble estimators, regularization, bootstrapping,

and Monte Carlo, deliver demonstrably better solutions. In the words of

Efron and Hastie (2016, 53),

two words explain the classic preference for parametric models: mathema-

tical tractability. In a world of sliderules and slow mechanical arithmetic,

mathematical formulation, by necessity, becomes the computational tool of

choice. Our new computation-rich environment has unplugged the mathe-

matical bottleneck, giving us a more realistic, flexible, and far-reaching body

of statistical techniques.

Financial problems pose a particular challenge to those legacy methods,

because economic systems exhibit a degree of complexity that is beyond the

grasp of classical statistical tools (López de Prado 2019b). As a consequence,

machine learning (ML) plays an increasingly important role in finance. Only a

few years ago, it was rare to find ML applications outside short-term price

prediction, trade execution, and setting of credit ratings. Today, it is hard to find

a use case where ML is not being deployed in some form. This trend is unlikely

to change, as larger data sets, greater computing power, and more efficient

algorithms all conspire to unleash a golden age of financial ML. The ML

revolution creates opportunities for dynamic firms and challenges for anti-

quated asset managers. Firms that resist this revolution will likely share

Kodak’s fate. One motivation of this Element is to demonstrate how modern

statistical tools help address many of the deficiencies of classical techniques in

the context of asset management.

Most ML algorithms were originally devised for cross-sectional data sets. This

limits their direct applicability to financial problems, where modeling the time

series properties of data sets is essential. My previous book, Advances in Financial

Machine Learning (AFML; López de Prado 2018a), addressed the challenge of

modeling the time series properties of financial data sets withML algorithms, from

the perspective of an academic who also happens to be a practitioner.
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Machine Learning for Asset Managers is concerned with answering a differ-

ent challenge: how can we use ML to build better financial theories? This is not

a philosophical or rhetorical question. Whatever edge you aspire to gain in

finance, it can only be justified in terms of someone else making a systematic

mistake from which you benefit.1 Without a testable theory that explains your

edge, the odds are that you do not have an edge at all. A historical simulation of

an investment strategy’s performance (backtest) is not a theory; it is a (likely

unrealistic) simulation of a past that never happened (you did not deploy that

strategy years ago; that is why you are backtesting it!). Only a theory can pin

down the clear cause–effect mechanism that allows you to extract profits against

the collective wisdom of the crowds – a testable theory that explains factual

evidence as well as counterfactual cases (x implies y, and the absence of y

implies the absence of x). Asset managers should focus their efforts on research-

ing theories, not backtesting trading rules. ML is a powerful tool for building

financial theories, and the main goal of this Element is to introduce you to

essential techniques that you will need in your endeavor.

1.2 Theory Matters

A black swan is typically defined as an extreme event that has not been observed

before. Someone once told me that quantitative investment strategies are use-

less. Puzzled, I asked why. He replied, “Because the future is filled with black

swans, and since historical data sets by definition cannot contain never-seen-

before events, ML algorithms cannot be trained to predict them.” I counter-

argued that, in many cases, black swans have been predicted.

Let me explain this apparent paradox with an anecdote. Back in the year

2010, I was head of high-frequency futures at a large US hedge fund. OnMay 6,

we were running our liquidity provision algorithms as usual, when around 12:30

ET, many of them started to flatten their positions automatically. We did not

interfere or override the systems, so within minutes, our market exposure

became very small. This system behavior had never happened to us before.

My team and I were conducting a forensic analysis of what had caused the

systems to shut themselves down when, at around 14:30 ET, we saw the S&P

500 plunge, within minutes, almost 10% relative to the open. Shortly after, the

systems started to buy aggressively, profiting from a 5% rally into the market

close. The press dubbed this black swan the “flash crash.” We were twice

surprised by this episode: first, we could not understand how our systems

1 This is also true in the context of factor investing, where the systematic mistake can be explained

in terms of behavioral bias, mismatched investment horizons, risk tolerance, regulatory con-

straints, and other variables informing investors’ decisions.
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predicted an event that we, the developers, did not anticipate; second, we could

not understand why our systems started to buy shortly after the market bottomed.

About five months later, an official investigation found that the crash was

likely caused by an order to sell 75,000 E-mini S&P 500 futures contracts at a

high participation rate (CFTC 2010). That large order contributed to a persistent

imbalance in the order flow, making it very difficult for market makers to flip

their inventory without incurring losses. This toxic order flow triggered stop-out

limits across market makers, who ceased to provide liquidity. Market makers

became aggressive liquidity takers, and without anyone remaining on the bid,

the market inevitably collapsed (Easley et al. 2011).

We could not have forecasted the flash crash by watching CNBC or reading the

Wall Street Journal. To most observers, the flash crash was indeed an unpredictable

black swan. However, the underlying causes of the flash crash are very common.

Order flow is almost never perfectly balanced. In fact, imbalanced order flow is the

norm, with various degrees of persistency (e.g., measured in terms of serial correla-

tion). Our systems had been trained to reduce positions under extreme conditions of

order flow imbalance. In doing so, they were trained to avoid the conditions that

shortly after caused the black swan. Once the market collapsed, our systems

recognized that the opportunity to buy at a 10% discount offset previous concerns

fromextremeorderflow imbalance, and they took longpositions until the close.This

experience illustrates the two most important lessons contained in this Element.

1.2.1 Lesson 1: You Need a Theory

Contrary to popular belief, backtesting is not a research tool. Backtests can never

prove that a strategy is a true positive, and they may only provide evidence that a

strategy is a false positive. Never develop a strategy solely through backtests.

Strategies must be supported by theory, not historical simulations. Your theories

must be general enough to explain particular cases, even if those cases are black

swans. The existence of black holeswas predicted by the theory of general relativity

more than five decades before the first black hole was observed. In the above story,

our market microstructure theory (which later on became known as the VPIN

theory; see Easley et al. 2011b) helped us predict and profit from a black swan. Not

only that, but our theoretical work also contributed to themarket’s bounce back (my

colleagues used to joke that we helped put the “flash” into the “flash crash”). This

Element contains some of the tools you need to discover your own theories.

1.2.2 Lesson 2: ML Helps Discover Theories

Consider the following approach to discovering new financial theories. First,

you apply ML tools to uncover the hidden variables involved in a complex
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phenomenon. These are the ingredients that the theory must incorporate in

order to make successful forecasts. The ML tools have identified these

ingredients; however, they do not directly inform you about the exact equation

that binds the ingredients together. Second, we formulate a theory that con-

nects these ingredients through a structural statement. This structural

statement is essentially a system of equations that hypothesizes a particular

cause–effect mechanism. Third, the theory has a wide range of testable

implications that go beyond the observations predicted by the ML tools in

the first step.2 A successful theory will predict events out-of-sample.

Moreover, it will explain not only positives (x causes y) but also negatives

(the absence of y is due to the absence of x).

In the above discovery process, ML plays the key role of decoupling the

search for variables from the search for specification. Economic theories are

often criticized for being based on “facts with unknown truth value” (Romer

2016) and “generally phony” assumptions (Solow 2010). Considering the

complexity of modern financial systems, it is unlikely that a researcher will be

able to uncover the ingredients of a theory by visual inspection of the data or by

running a few regressions. Classical statistical methods do not allow this

decoupling of the two searches.

Once the theory has been tested, it stands on its own feet. In this way, the

theory, not the ML algorithm, makes the predictions. In the above anecdote, the

theory, not an online forecast produced by an autonomous ML algorithm, shut

the position down. The forecast was theoretically sound, and it was not based on

some undefined pattern. It is true that the theory could not have been discovered

without the help of ML techniques, but once the theory was discovered, the ML

algorithm played no role in the decision to close the positions two hours prior to

the flash crash. The most insightful use of ML in finance is for discovering

theories. Youmay useML successfully for making financial forecasts; however,

that is not necessarily the best scientific use of this technology (particularly if

your goal is to develop high-capacity investment strategies).

1.3 How Scientists Use ML

An ML algorithm learns complex patterns in a high-dimensional space with

little human guidance on model specification. That ML models need not be

specified by the researcher has led many to, erroneously, conclude that MLmust

2 A theory can be tested with more powerful tools than backtests. For instance, we could investigate

which market makers lost money during the flash crash. Did they monitor for order flow

imbalance? Did market makers that monitor for order flow imbalance fare better? Can we find

evidence of their earlier retreat in the FIX messages of that day? A historical simulation of a

trading rule cannot give us this level of insight.
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be a black box. In that view, ML is merely an “oracle,”3 a prediction machine

from which no understanding can be extracted. The black box view of ML is a

misconception. It is fueled by popular industrial applications of ML, where the

search for better predictions outweighs the need for theoretical understanding.

A review of recent scientific breakthroughs reveals radically different uses of

ML in science, including the following:

1 Existence: ML has been deployed to evaluate the plausibility of a theory

across all scientific fields, even beyond the empirical sciences. Notably, ML

algorithms have helped make mathematical discoveries. ML algorithms

cannot prove a theorem, however they can point to the existence of an

undiscovered theorem, which can then be conjectured and eventually proved.

In other words, if something can be predicted, there is hope that a mechanism

can be uncovered (Gryak et al., forthcoming).

2 Importance: ML algorithms can determine the relative informational con-

tent of explanatory variables (features, in ML parlance) for explanatory and/

or predictive purposes (Liu 2004). For example, the mean-decrease accuracy

(MDA) method follows these steps: (1) Fit a ML algorithm on a particular

data set; (2) derive the out-of-sample cross-validated accuracy; (3) repeat

step (2) after shuffling the time series of individual features or combinations

of features; (4) compute the decay in accuracy between (2) and (3). Shuffling

the time series of an important feature will cause a significant decay in

accuracy. Thus, although MDA does not uncover the underlying mechanism,

it discovers the variables that should be part of the theory.

3 Causation: ML algorithms are often utilized to evaluate causal inference

following these steps: (1) Fit a ML algorithm on historical data to predict

outcomes, absent of an effect. This model is nontheoretical, and it is purely

driven by data (like an oracle); (2) collect observations of outcomes under the

presence of the effect; (3) use the ML algorithm fit in (1) to predict the

observation collected in (2). The prediction error can be largely attributed to

the effect, and a theory of causation can be proposed (Varian 2014; Athey

2015).

4 Reductionist: ML techniques are essential for the visualization of large,

high-dimensional, complex data sets. For example, manifold learning algo-

rithms can cluster a large number of observations into a reduced subset of

peer groups, whose differentiating properties can then be analyzed (Schlecht

et al. 2008).

3 Here we use a common definition of oracle in complexity theory: a black box that is able to

produce a solution for any instance of a given computational problem.
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5 Retriever: ML is used to scan through big data in search of patterns that

humans failed to recognize. For instance, every night ML algorithms are fed

millions of images in search of supernovae. Once they find one image with a

high probability of containing a supernova, expensive telescopes can be

pointed to a particular region in the universe, where humans will scrutinize

the data (Lochner et al. 2016). A second example is outlier detection. Finding

outliers is a prediction problem rather than an explanation problem. A ML

algorithm can detect an anomalous observation, based on the complex

structure it has found in the data, even if that structure is not explained to

us (Hodge and Austin 2004).

Rather than replacing theories, ML plays the critical role of helping scientists

form theories based on rich empirical evidence. Likewise, ML opens the

opportunity for economists to apply powerful data science tools toward the

development of sound theories.

1.4 Two Types of Overfitting

The dark side of ML’s flexibility is that, in inexperienced hands, these algo-

rithms can easily overfit the data. The primary symptom of overfitting is a

divergence between a model’s in-sample and out-of-sample performance

(known as the generalization error). We can distinguish between two types of

overfitting: the overfitting that occurs on the train set, and the overfitting that

occurs on the test set. Figure 1.1 summarizes how ML deals with both kinds of

overfitting.

1.4.1 Train Set Overfitting

Train set overfitting results from choosing a specification that is so flexible that

it explains not only the signal, but also the noise. The problemwith confounding

signal with noise is that noise is, by definition, unpredictable. An overfit model

will produce wrong predictions with an unwarranted confidence, which in turn

will lead to poor performance out-of-sample (or even in a pseudo-out-of-

sample, like in a backtest).

ML researchers are keenly aware of this problem, which they address in three

complementary ways. The first approach to correct for train set overfitting is

evaluating the generalization error, through resampling techniques (such as

cross-validation) and Monte Carlo methods. Appendix A describes these

techniques and methods in greater detail. The second approach to reduce train

set overfitting is regularization methods, which prevent model complexity

unless it can be justified in terms of greater explanatory power. Model

6 Machine Learning for Asset Managers
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parsimony can be enforced by limiting the number of parameters (e.g., LASSO)

or restricting the model’s structure (e.g., early stopping). The third approach to

address train set overfitting is ensemble techniques, which reduce the variance

of the error by combining the forecasts of a collection of estimators. For

example, we can control the risk of overfitting a random forest on a train set

in at least three ways: (1) cross-validating the forecasts; (2) limiting the depth of

each tree; and (3) adding more trees.

In summary, a backtest may hint at the occurrence of train set overfitting,

which can be remedied using the above approaches. Unfortunately, backtests

are powerless against the second type of overfitting, as explained next.

1.4.2 Test Set Overfitting

Imagine that a friend claims to have a technique to predict the winning ticket at

the next lottery. His technique is not exact, so he must buy more than one

ticket. Of course, if he buys all of the tickets, it is no surprise that he will win.

How many tickets would you allow him to buy before concluding that his

method is useless? To evaluate the accuracy of his technique, you should

adjust for the fact that he has bought multiple tickets. Likewise, researchers

running multiple statistical tests on the same data set are more likely to make a

false discovery. By applying the same test on the same data set multiple times,

it is guaranteed that eventually a researcher will make a false discovery. This

selection bias comes from fitting the model to perform well on the test set, not

the train set.

Another example of test set overfitting occurs when a researcher backtests a

strategy and she tweaks it until the output achieves a target performance. That

backtest–tweak–backtest cycle is a futile exercise that will inevitably end with

an overfit strategy (a false positive). Instead, the researcher should have spent

her time investigating how the research process misled her into backtesting a

false strategy. In other words, a poorly performing backtest is an opportunity to

fix the research process, not an opportunity to fix a particular investment

strategy.

Most published discoveries in finance are likely false, due to test set over-

fitting. ML did not cause the current crisis in financial research (Harvey et al.

2016). That crisis was caused by the widespread misuse of classical statistical

methods in finance, and p-hacking in particular. ML can help deal with the

problem of test set overfitting, in three ways. First, we can keep track of how

many independent tests a researcher has run, to evaluate the probability that at

least one of the outcomes is a false discovery (known as familywise error rate, or

FWER). The deflated Sharpe ratio (Bailey and López de Prado 2014) follows

8 Machine Learning for Asset Managers
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a similar approach in the context of backtesting, as explained in Section 8. It

is the equivalent to controlling for the number of lottery tickets that your

friend bought. Second, while it is easy to overfit a model to one test set, it is

hard to overfit a model to thousands of test sets for each security. Those

thousands of test sets can be generated by resampling combinatorial splits of

train and test sets. This is the approached followed by the combinatorial

purged cross-validation method, or CPCV (AFML, chapter 12). Third, we

can use historical series to estimate the underlying data-generating process,

and sample synthetic data sets that match the statistical properties observed in

history. Monte Carlo methods are particularly powerful at producing syn-

thetic data sets that match the statistical properties of a historical series. The

conclusions from these tests are conditional to the representativeness of the

estimated data-generating process (AFML, chapter 13). The main advantage

of this approach is that those conclusions are not connected to a particular

(observed) realization of the data-generating process but to an entire distri-

bution of random realizations. Following with our example, this is equivalent

to replicating the lottery game and repeating it many times, so that we can rule

luck out.

In summary, there aremultiple practical solutions to the problem of train set and

test set overfitting. These solutions are neither infallible nor incompatible, and my

advice is that you apply all of them.At the same time, I must insist that no backtest

can replace a theory, for at least two reasons: (1) backtests cannot simulate black

swans – only theories have the breadth and depth needed to consider the never-

before-seen occurrences; (2) backtests may insinuate that a strategy is profitable,

but they do not tell us why. They are not a controlled experiment. Only a theory

can state the cause–effect mechanism, and formulate a wide range of predictions

and implications that can be independently tested for facts and counterfacts. Some

of these implications may even be testable outside the realm of investing. For

example, the VPIN theory predicted that market makers would suffer stop-outs

under persistent order flow imbalance. Beyond testing whether order flow imbal-

ance causes a reduction in liquidity, researchers can also test whether market

makers suffered losses during theflash crash (hint: they did). This latter test can be

conducted by reviewing financial statements, independently from the evidence

contained in exchange records of prices and quotes.

1.5 Outline

This Element offers asset managers a step-by-step guide to building financial

theories with the help of ML methods. To that objective, each section uses what

we have learned in the previous ones. Each section (except for this introduction)

9Elements in Quantitative Finance
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contains an empirical analysis, where the methods explained are put to the test

in Monte Carlo experiments.

The first step in building a theory is to collect data that illustrate how some

variables relate to each other. In financial settings, those data often take the

form of a covariance matrix. We use covariance matrices to run regressions,

optimize portfolios, manage risks, search for linkages, etc. However, financial

covariance matrices are notoriously noisy. A relatively small percentage of

the information they contain is signal, which is systematically suppressed by

arbitrage forces. Section 2 explains how to denoise a covariance matrix

without giving up the little signal it contains. Most of the discussion centers

on random matrix theory, but at the core of the solution sits an ML technique:

the kernel density estimator.

Many research questions involve the notion of similarity or distance.

For example, we may be interested in understanding how closely related

two variables are. Denoised covariance matrices can be very useful

for deriving distance metrics from linear relationships. Modeling nonlinear

relationships requires more advanced concepts. Section 3 provides an infor-

mation-theoretic framework for extracting complex signals from noisy data.

In particular, it allows us to define distance metrics with minimal assumptions

regarding the underlying variables that characterize the metric space. These

distance metrics can be thought of as a nonlinear generalization of the notion

of correlation.

One of the applications of distance matrices is to study whether some

variables are more closely related among themselves than to the rest, hence

forming clusters. Clustering has a wide range of applications across finance,

like in asset class taxonomy, portfolio construction, dimensionality reduction,

or modeling networks of agents. A general problem in clustering is finding

the optimal number of clusters. Section 4 introduces the ONC algorithm,

which provides a general solution to this problem. Various use cases for this

algorithm are presented throughout this Element.

Clustering is an unsupervised learning problem. Before we can delve into

supervised learning problems, we need to assess ways of labeling financial data.

The effectiveness of a supervised ML algorithm greatly depends on the kind of

problem we attempt to solve. For example, it may be harder to forecast

tomorrow’s S&P 500 return than the sign of its next 5% move. Different

features are appropriate for different types of labels. Researchers should

consider carefully what labeling method they apply on their data. Section 5

discusses the merits of various alternatives.

AFML warned readers that backtesting is not a research tool. Feature impor-

tance is. A backtest cannot help us develop an economic or financial theory.
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In order to do that, we need a deeper understanding of what variables are

involved in a phenomenon. Section 6 studies ML tools for evaluating the

importance of explanatory variables, and explains how these tools defeat

many of the caveats of classical methods, such as the p-value. A particular

concern is how to overcome p-value’s lack of robustness under multicollinear-

ity. To tackle this problem, we must apply what we learned in all prior sections,

including denoising (Section 2), distance metrics (Section 3), clustering

(Section 4), and labeling (Section 5).

Once you have a financial theory, you can use your discovery to develop an

investment strategy. Designing that strategy will require making some invest-

ment decisions under uncertainty. To that purpose, mean-variance portfolio

optimization methods are universally known and used, even though they are

notorious for their instability. Historically, this instability has been addressed in

a number of ways, such as introducing strong constraints, adding priors, shrink-

ing the covariance matrix, and other robust optimization techniques. Many asset

managers are familiar with instability caused by noise in the covariance matrix.

Fewer asset managers realize that certain data structures (types of signal) are

also a source of instability for mean-variance solutions. Section 7 explains why

signal can be a source of instability, and how ML methods can help correct it.

Finally, a financial ML book would not be complete without a detailed

treatment of how to evaluate the probability that your discovery is false, as a

result of test set overfitting. Section 8 explains the dangers of backtest over-

fitting, and provides several practical solutions to the problem of selection bias

under multiple testing.

1.6 Audience

If, like most asset managers, you routinely compute covariance matrices, use

correlations, search for low-dimensional representations of high-dimensional

spaces, build predictive models, compute p-values, solve mean-variance opti-

mizations, or apply the same test multiple times on a given data set, you need to

read this Element. In it, you will learn that financial covariance matrices are

noisy and that they need to be cleaned before running regressions or computing

optimal portfolios (Section 2). You will learn that correlations measure a very

narrow definition of codependency and that various information-theoretic

metrics are more insightful (Section 3). You will learn intuitive ways of redu-

cing the dimensionality of a space, which do not involve a change of basis.

Unlike PCA, ML-based dimensionality reduction methods provide intuitive

results (Section 4). Rather than aiming for implausible fixed-horizon predic-

tions, you will learn alternative ways of posing financial prediction problems

that can be solved with higher accuracy (Section 5). You will learn modern
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alternatives to the classical p-values (Section 6). You will learn how to

address the instability problem that plagues mean-variance investment port-

folios (Section 7). And you will learn how to evaluate the probability that

your discovery is false as a result of multiple testing (Section 8). If you work

in the asset management industry or in academic finance, this Element is

for you.

1.7 Five Popular Misconceptions about Financial ML

Financial ML is a new technology. As it is often the case with new technologies,

its introduction has inspired a number of misconceptions. Below is a selection

of the most popular.

1.7.1 ML Is the Holy Grail versus ML Is Useless

The amount of hype and counterhype surrounding ML defies logic. Hype

creates a set of expectations that may not be fulfilled for the foreseeable future.

Counterhype attempts to convince audiences that there is nothing special about

ML and that classical statistical methods already produce the results that ML-

enthusiasts claim.

ML critics sometimes argue that “caveat X in linear regression is no big

deal,” where X can either mean model misspecification, multicollinearity,

missing regressors, nonlinear interaction effects, etc. In reality, any of these

violations of classical assumptions will lead to accepting uninformed vari-

ables (a false positive) and/or rejecting informative variables (a false nega-

tive). For an example, see Section 6.

Another common error is to believe that the central limit theorem some-

how justifies the use of linear regression models everywhere. The argument

goes like this: with enough observations, Normality prevails, and linear

models provide a good fit to the asymptotic correlation structure. This

“CLT Hail Mary pass” is an undergrad fantasy: yes, the sample mean con-

verges in distribution to a Gaussian, but not the sample itself! And that

converge only occurs if the observations are independent and identically

distributed. It takes a few lines of code to demonstrate that a misspecified

regression will perform poorly, whether we feed it thousands or billions of

observations.

Both extremes (hype and counterhype) prevent investors from recognizing

the real and differentiated value that ML delivers today. ML is modern statistics,

and it helps overcome many of the caveats of classical techniques that have

preoccupied asset managers for decades. See López de Prado (2019c) for

multiple examples of current applications of ML in finance.
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1.7.2 ML Is a Black Box

This is perhaps the most widespread myth surrounding ML. Every research

laboratory in the world uses ML to some extent, so clearly ML is compatible

with the scientific method. Not only is ML not a black box, but as Section 6

explains, ML-based research tools can be more insightful than traditional

statistical methods (including econometrics). ML models can be interpreted

through a number of procedures, such as PDP, ICE, ALE, Friedman’s H-stat,

MDI, MDA, global surrogate, LIME, and Shapley values, among others. See

Molnar (2019) for a detailed treatment of ML interpretability.

Whether someone applies ML as a black box or as a white-box is a matter of

personal choice. The same is true of many other technical subjects. I personally

do not care much about how my car works, and I must confess that I have never

lifted the hood to take a peek at the engine (my thing is math, not mechanics).

So, my car remains a black box to me. I do not blame the engineers who

designed my car for my lack of curiosity, and I am aware that the mechanics

who work at my garage see my car as a white box. Likewise, the assertion that

ML is a black box reveals how some people have chosen to apply ML, and it is

not a universal truth.

1.7.3 Finance Has Insufficient Data for ML

It is true that a few ML algorithms, particularly in the context of price predic-

tion, require a lot of data. That is why a researcher must choose the right

algorithm for a particular job. On the other hand, ML critics who wield this

argument seem to ignore that many ML applications in finance do not require

any historical data at all. Examples include risk analysis, portfolio construction,

outlier detection, feature importance, and bet-sizing methods. Each section in

this Element demonstrates the mathematical properties of ML without relying

on any historical series. For instance, Section 7 evaluates the accuracy of an

ML-based portfolio construction algorithm via Monte Carlo experiments.

Conclusions drawn from millions of Monte Carlo simulations teach us some-

thing about the general mathematical properties of a particular approach. The

anecdotal evidence derived from a handful of historical simulations is no match

to evaluating a wide range of scenarios.

Other financialML applications, like sentiment analysis, deep hedging, credit

ratings, execution, and private commercial data sets, enjoy an abundance of

data. Finally, in some settings, researchers can conduct randomized controlled

experiments, where they can generate their own data and establish precise

cause–effect mechanisms. For example, we may reword a news article and

compare ML’s sentiment extraction with a human’s conclusion, controlling for
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various changes. Likewise, we may experiment with the market’s reaction to

alternative implementations of an execution algorithm under comparable

conditions.

1.7.4 The Signal-to-Noise Ratio Is Too Low in Finance

There is no question that financial data sets exhibit lower signal-to-noise ratio

than those used by other ML applications (a point that we will demonstrate in

Section 2). Because the signal-to-noise ratio is so low in finance, data alone are

not good enough for relying on black box predictions. That does not mean that

ML cannot be used in finance. It means that we must use ML differently, hence

the notion of financial ML as a distinct subject of study. Financial ML is not the

mere application of standard ML to financial data sets. Financial ML comprises

ML techniques specially designed to tackle the specific challenges faced by

financial researchers, just as econometrics is not merely the application of

standard statistical techniques to economic data sets.

The goal of financial ML ought to be to assist researchers in the discovery of

new economic theories. The theories so discovered, and not the ML algorithms,

will produce forecasts. This is no different than the way scientists utilize ML

across all fields of research.

1.7.5 The Risk of Overfitting Is Too High in Finance

Section 1.4 debunked this myth. In knowledgeable hands, ML algorithms

overfit less than classical methods. I concede, however, that in nonexpert

hands ML algorithms can cause more harm than good.

1.8 The Future of Financial Research

The International Data Corporation has estimated that 80% of all available data

are unstructured (IDC 2014). Many of the new data sets available to researchers

are high-dimensional, sparse, or nonnumeric. As a result of the complexities of

these new data sets, there is a limit to how much researchers can learn using

regression models and other linear algebraic or geometric approaches. Even

with older data sets, traditional quantitative techniques may fail to capture

potentially complex (e.g., nonlinear and interactive) associations among vari-

ables, and these techniques are extremely sensitive to the multicollinearity

problem that pervades financial data sets (López de Prado 2019b).

Economics and finance have much to benefit from the adoption of ML

methods. As of November 26, 2018, the Web of Science4 lists 13,772 journal

4 www.webofknowledge.com.
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articles on subjects in the intersection of “Economics” and “Statistics &

Probability.” Among those publications, only eighty-nine articles (0.65%)

contain any of the following terms: classifier, clustering, neural network, or

machine learning. To put it in perspective, out of the 40,283 articles in the

intersection of “Biology” and “Statistics & Probability,” a total of 4,049

(10.05%) contained any of those terms, and out of the 4,994 articles in the

intersection of “Chemistry, Analytical” and “Statistics & Probability,” a total of

766 (15.34%) contained any of those terms.

The econometric canon predates the dawn of digital computing. Most econo-

metric models were devised for estimation by hand and are a product of their time.

In the words of Robert Tibshirani, “people use certainmethods because that is how

it all started and that’s what they are used to. It’s hard to change it.”5 Students in the

twenty-first century should not be overexposed to legacy technologies. Moreover,

the most successful quantitative investment firms in history rely primarily on ML,

not econometrics, and the current predominance of econometrics in graduate

studies prepares students for academic careers, not for jobs in the industry.

This does not mean that econometrics has outlived its usability. Researchers

asked to decide between econometrics and ML are presented with a false

choice. ML and econometrics complement each other, because they have

different strengths. For example, ML can be particularly helpful at suggesting

to researchers the ingredients of a theory (see Section 6), and econometrics can

be useful at testing a theory that is well grounded on empirical observation. In

fact, sometimes we may want to apply both paradigms at the same time, like in

semiparametric methods. For example, a regression could combine observable

explanatory variables with control variables that are contributed by an ML

algorithm (Mullainathan and Spiess 2017). Such approach would address the

bias associated with omitted regressors (Clarke 2005).

1.9 Frequently Asked Questions

Over the past few years, attendees at seminars have asked me all sorts of

interesting questions. In this section I have tried to provide a short answer to

some of the most common questions. I have also added a couple of questions

that I am still hoping that someone will ask one day.

In Simple Terms, What Is ML?

Broadly speaking, ML refers to the set of algorithms that learn complex patterns

in a high-dimensional space without being specifically directed. Let us break

5 https://qz.com/1206229/this-is-the-best-book-for-learning-modern-statistics-its-free/.
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that definition into its three components. First, ML learns without being speci-

fically directed, because researchers impose very little structure on the data.

Instead, the algorithm derives that structure from the data. Second, ML learns

complex patterns, because the structure identified by the algorithm may not be

representable as a finite set of equations. Third,ML learns in a high-dimensional

space, because solutions often involve a large number of variables, and the

interactions between them.

For example, we can train an ML algorithm to recognize human faces by

showing it examples. We do not define what a face is, hence the algorithm learns

without our direction. The problem is never posed in terms of equations, and in

fact the problem may not be expressible in terms of equations. And the algo-

rithm uses an extremely large number of variables to perform this task, includ-

ing the individual pixels and the interaction between the pixels.

In recent years, ML has become an increasingly useful research tool through-

out all fields of scientific research. Examples include drug development, gen-

ome research, new materials, and high-energy physics. Consumer products and

industrial services have quickly incorporated these technologies, and some of

the most valuable companies in the world produce ML-based products and

services.

How Is ML Different from Econometric Regressions?

Researchers use traditional regressions to fit a predefined functional form to

a set of variables. Regressions are extremely useful when we have a high

degree of conviction regarding that functional form and all the interaction

effects that bind the variables together. Going back to the eighteenth

century, mathematicians developed tools that fit those functional forms

using estimators with desirable properties, subject to certain assumptions

on the data.

Starting in the 1950s, researchers realized that there was a different way to

conduct empirical analyses, with the help of computers. Rather than imposing a

functional form, particularly when that form is unknown ex ante, they would

allow algorithms to figure out variable dependencies from the data. And rather

than making strong assumptions on the data, the algorithms would conduct

experiments that evaluate the mathematical properties of out-of-sample predic-

tions. This relaxation in terms of functional form and data assumptions, com-

bined with the use of powerful computers, opened the door to analyzing

complex data sets, including highly nonlinear, hierarchical, and noncontinuous

interaction effects.

Consider the following example: a researcher wishes to estimate the survival

probability of a passenger on the Titanic, based on a number of variables, such
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as gender, ticket class, and age. A typical regression approach would be to fit a

logit model to a binary variable, where 1 means survivor and 0 means

deceased, using gender, ticket class, and age as regressors. It turns out that,

even though these regressors are correct, a logit (or probit) model fails to

make good predictions. The reason is that logit models do not recognize that

this data set embeds a hierarchical (treelike) structure, with complex interac-

tions. For example, adult males in second class died at a much higher rate than

each of these attributes taken independently. In contrast, a simple “classifica-

tion tree” algorithm performs substantially better, because we allow the

algorithm to find that hierarchical structure (and associated complex interac-

tions) for us.

As it turns out, hierarchical structures are omnipresent in economics and

finance (Simon 1962). Think of sector classifications, credit ratings, asset

classes, economic linkages, trade networks, clusters of regional economies,

etc. When confronted with these kinds of problems, ML tools can complement

and overcome the limitations of econometrics or similar traditional statistical

methods.

How Is ML Different from Big Data?

The term big data refers to data sets that are so large and/or complex that

traditional statistical techniques fail to extract and model the information

contained in them. It is estimated that 90% of all recorded data have been

created over the past two years, and 80% of the data is unstructured (i.e., not

directly amenable to traditional statistical techniques).

In recent years, the quantity and granularity of economic data have

improved dramatically. The good news is that the sudden explosion of admin-

istrative, private sector, and micro-level data sets offers an unparalleled

insight into the inner workings of the economy. The bad news is that these

data sets pose multiple challenges to the study of economics. (1) Some of

the most interesting data sets are unstructured. They can also be nonnumerical

and noncategorical, like news articles, voice recordings, or satellite images.

(2) These data sets are high-dimensional (e.g., credit card transactions.)

The number of variables involved often greatly exceeds the number of obser-

vations, making it very difficult to apply linear algebra solutions. (3) Many of

these data sets are extremely sparse. For instance, samples may contain a large

proportion of zeros, where standard notions such as correlation do not work

well. (4) Embedded within these data sets is critical information regarding

networks of agents, incentives, and aggregate behavior of groups of people.

ML techniques are designed for analyzing big data, which is why they are

often cited together.
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How Is the Asset Management Industry Using ML?

Perhaps the most popular application of ML in asset management is price

prediction. But there are plenty of equally important applications, like hedging,

portfolio construction, detection of outliers and structural breaks, credit ratings,

sentiment analysis, market making, bet sizing, securities taxonomy, and many

others. These are real-life applications that transcend the hype often associated

with expectations of price prediction.

For example, factor investing firms use ML to redefine value. A few years

ago, price-to-earnings ratios may have provided a good ranking for value, but

that is not the case nowadays. Today, the notion of value is much more

nuanced. Modern asset managers use ML to identify the traits of value, and

how those traits interact with momentum, quality, size, etc. Meta-labeling

(Section 5.5) is another hot topic that can help asset managers size and time

their factor bets.

High-frequency trading firms have utilized ML for years to analyze

real-time exchange feeds, in search for footprints left by informed traders.

They can utilize this information to make short-term price predictions or to

make decisions on the aggressiveness or passiveness in order execution.

Credit rating agencies are also strong adopters of ML, as these algorithms

have demonstrated their ability to replicate the ratings generated by credit

analysts. Outlier detection is another important application, since financial

models can be very sensitive to the presence of even a small number of

outliers. ML models can help improve investment performance by finding

the proper size of a position, leaving the buy-or-sell decision to traditional or

fundamental models.

And Quantitative Investors Specifically?

All of the above applications, and many more, are relevant to quantitative

investors. It is a great time to be a quant. Data are more abundant than ever,

and computers are finally delivering the power needed to make effective use of

ML. I am particularly excited about real-time prediction of macroeconomic

statistics, following the example of MIT’s Billion Prices Project (Cavallo and

Rigobon 2016). ML can be specially helpful at uncovering relationships that

until now remained hidden, even in traditional data sets. For instance, the

economic relationships between companies may not be effectively described

by traditional sector-group-industry classifications, such as GICS.6 A network

approach, where companies are related according to a variety of factors, is likely

6 www.msci.com/gics.
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to offer a richer and more accurate representation of the dynamics, strengths,

and vulnerabilities of specific segments of the stock or credit markets (Cohen

and Frazzini 2008).

What Are Some of the Ways That ML Can Be Applied
to Investor Portfolios?

Portfolio construction is an extremely promising area for ML (Section 7). For

many decades, the asset management industry has relied on variations and

refinements of Markowitz’s efficient frontier to build investment portfolios. It

is known that many of these solutions are optimal in-sample, however, they can

perform poorly out-of-sample due to the computational instabilities involved in

convex optimization. Numerous classical approaches have attempted, with

mixed success, to address these computational instabilities. ML algorithms

have shown the potential to produce robust portfolios that perform well out-

of-sample, thanks to their ability to recognize sparse hierarchical relationships

that traditional methods miss (López de Prado 2016).

What Are the Risks? Is There Anything That Investors Should
Be Aware of or Look Out For?

Finance is not a plug-and-play subject as it relates to ML. Modeling financial

series is harder than driving cars or recognizing faces. The reason is, the signal-

to-noise ratio in financial data is extremely low, as a result of arbitrage forces

and nonstationary systems. The computational power and functional flexibility

of ML ensures that it will always find a pattern in the data, even if that pattern is

a fluke rather than the result of a persistent phenomenon. An “oracle” approach

to financial ML, where algorithms are developed to form predictions divorced

from all economic theory, is likely to yield false discoveries. I have never heard

a scientist say “Forget about theory, I have this oracle that can answer anything,

so let’s all stop thinking, and let’s just believe blindly whatever comes out.”

It is important for investors to recognize that ML is not a substitute for

economic theory, but rather a powerful tool for building modern economic

theories. We needML to develop better financial theories, and we need financial

theories to restrict ML’s propensity to overfit. Without this theory–ML inter-

play, investors are placing their trust on high-tech horoscopes.

How Do You Expect ML to Impact the Asset Management
Industry in the Next Decade?

Today, the amount of ML used by farmers is staggering: self-driving tractors,

drones scanning for irregular patches of land, sensors feeding cattle and
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administering nutrients as needed, genetically engineered crops, satellite images

for estimating yields, etc. Similarly, I think in ten years wewill look back, andML

will be an important aspect of asset management. And just like in the farming

industry, although this transformation may not happen overnight, it is clear that

there is only one direction forward.

Economic data sets will only get bigger, and computers will only get more

powerful. Most asset managers will fail either by not evolving or by rushing into

the unknown without fully recognizing the dangers involved in the “oracle”

approach. Only a few asset managers will succeed by evolving in a thoughtful

and responsible manner.

How Do You Expect ML to Impact Financial Academia
in the Next Decade?

Imagine if physicists had to produce theories in a universe where the

fundamental laws of nature are in a constant flux; where publications

have an impact on the very phenomenon under study; where experimen-

tation is virtually impossible; where data are costly, the signal is dim, and

the system under study is incredibly complex . . . I feel utmost admiration

for how much financial academics have achieved in the face of paramount

adversity.

ML has a lot to offer to the academic profession. First, ML provides the

power and flexibility needed to find dim signals in the sea of noise caused by

arbitrage forces. Second, ML allows academics to decouple the research

process into two stages: (1) search for important variables irrespective of

functional form, and (2) search for a functional form that binds those vari-

ables. López de Prado (2019b) demonstrates how even small specification

errors mislead researchers into rejecting important variables. It is hard to

overstate the relevance of decoupling the specification search from the vari-

ables search. Third, ML offers the possibility of conducting simulations on

synthetic data. This is as close as finance will ever get to experimentation, in

the absence of laboratories. We live an exciting time to do academic research

on financial systems, and I expect tremendous breakthroughs as more finan-

cial researchers embrace ML.

Isn’t Financial ML All about Price Prediction?

One of the greatest misunderstandings I perceive from reading the press is the

notion that ML’s main (if not only) objective is price prediction. Asset pricing is

undoubtedly a very worthy endeavor, however its importance is often over-

stated. Having an edge at price prediction is just one necessary, however entirely
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insufficient, condition to be successful in today’s highly competitive market.

Other areas that are equally important are data processing, portfolio construc-

tion, risk management, monitoring for structural breaks, bet sizing, and

detection of false investment strategies, just to cite a few.

Consider the players at the World Series of Poker. The cards are shuffled

and distributed randomly. These players obviously cannot predict what cards

will be handed to players with any meaningful accuracy. And yet, the same

handful of players ends up in top positions year after year. One reason is, bet

sizing is more important than card prediction. When a player receives a good

hand, he evaluates the probability that another player may hold a strong hand

too, and bets strategically. Likewise, investors may not be able to predict

prices, however they may recognize when an out-of-the-normal price has

printed, and bet accordingly. I am not saying that bet sizing is the key to

successful investing. I am merely stating that bet sizing is at least as important

as price prediction, and that portfolio construction is arguably even more

important.

Why Don’t You Discuss a Wide Range of ML Algorithms?

The purpose of this Element is not to introduce the reader to the vast popula-

tion of ML algorithms used today in finance. There are two reasons for that.

First, there are lengthy textbooks dedicated to the systematic exposition of

those algorithms, and another one is hardly needed. Excellent references

include James et al. (2013), Hastie et al. (2016), and Efron and Hastie

(2016). Second, financial data sets have specific nuisances, and the success

or failure of a project rests on understanding them. Once we have engineered

the features and posed the problem correctly, choosing an algorithm plays a

relatively secondary role.

Allow me to illustrate the second point with an example. Compare an

algorithm that forecasted a change of 1, but received a realized change of 3,

with another algorithm that forecasted a change of −1, but received a realized

change of 1. In both cases, the forecast error is 2. In many industrial applica-

tions, we would be indifferent between both errors. That is not the case in

finance. In the first instance, an investor makes one-third of the predicted

profit, whereas in the second instance the investor suffers a loss equal to the

predicted profit. Failing to predict the size is an opportunity loss, but failing to

predict the sign is an actual loss. Investors penalize actual losses much more

than opportunity losses. Predicting the sign of an outcome is often more

important than predicting its size, and a reason for favoring classifiers over

regression methods in finance. In addition, it is common in finance to find that

the sign and size of an outcome depend on different features, so jointly
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forecasting the sign and size of an outcome with a unique set of features can

lead to subpar results.7 ML experts who transition into finance from other

fields often make fundamental mistakes, like posing problems incorrectly, as

explained in López de Prado (2018b). Financial ML is a subject in its own

right, and the discussion of generic ML algorithms is not the heart of the

matter.

Why Don’t You Discuss a Specific Investment Strategy,
Like Many Other Books Do?

There are plenty of books in the market that provide recipes for

implementing someone else’s investment strategy. Those cookbooks

show us how to prepare someone else’s cake. This Element is different.

I want to show you how you can use ML to discover new economic and

financial theories that are relevant to you, on which you can base your

proprietary investment strategies. Your investment strategies are just the

particular implementation of the theories that first you must discover

independently. You cannot bake someone else’s cake and expect to retain

it for yourself.

1.10 Conclusions

The purpose of this Element is to introduce ML tools that are useful for

discovering economic and financial theories. Successful investment strategies

are specific implementations of general theories. An investment strategy that

lacks a theoretical justification is likely to be false. Hence, a researcher should

concentrate her efforts on developing a theory, rather than of backtesting

potential strategies.

ML is not a black box, and it does not necessarily overfit. ML tools

complement rather than replace the classical statistical methods. Some

of ML’s strengths include (1) Focus on out-of-sample predictability over

variance adjudication; (2) usage of computational methods to avoid

relying on (potentially unrealistic) assumptions; (3) ability to “learn”

complex specifications, including nonlinear, hierarchical, and noncontin-

uous interaction effects in a high-dimensional space; and (4) ability to

disentangle the variable search from the specification search, in a manner

robust to multicollinearity and other substitution effects.

7 See López de Prado (2018a) for a discussion of meta-labeling algorithms, where the sign and size

decision is made by independent algorithms.

22 Machine Learning for Asset Managers

Marcos Lopez de Prado

www.cambridge.org/9781108792899
www.cambridge.org


Cambridge University Press
978-1-108-79289-9 — Machine Learning for Asset Managers
Marcos M. López de Prado 
More Information

www.cambridge.org© Cambridge University Press

1.11 Exercises

1 Can quantitative methods be used to predict events that never happened

before? How could quantitative methods predict a black swan?

2 Why is theory particularly important in finance and economics? What is the

best use of ML in finance?

3 What are popular misconceptions about financial ML? Are financial data sets

large enough for ML applications?

4 How does ML control for overfitting? Is the signal-to-noise ratio too low in

finance for allowing the use of ML?

5 Describe a quantitative approach in finance that combines classical and ML

methods. How is ML different from a large regression? Describe five appli-

cations of financial ML.
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