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Abstract

We find economically and statistically significant gains from using machine learn-
ing to dynamically allocate between the market index and the risk-free asset. We
model the market price of risk to determine the optimal weights in the portfolio:
reward-risk market timing. This involves forecasting the direction of next month’s
excess return, which gives the reward, and constructing a dynamic volatility es-
timator that is optimized with a machine learning model, which gives the risk.
Reward-risk timing with machine learning provides substantial improvements in
investor utility, alphas, Sharpe ratios, and maximum drawdowns, after accounting
for transaction costs, leverage constraints, and on a new out-of-sample test set. This
paper provides a unifying framework for machine learning applied to both return-
and volatility-timing.

1 Introduction
We use machine learning to find the optimal portfolio weights between the market index
and the risk-free asset. We model the future market price of risk as the weight of the
equity index in our portfolio. The weight is proportional to the reward component, given
by the return forecast based on the probability of the excess market return being positive.
The market exposure is inversely proportional to the risk component, an estimate of
prevailing volatility. This procedure is simultaneously return- and volatility-timing the
market and can be called ’reward-risk timing’1. Our results document that a portfolio
allocation strategy that employs machine learning to reward-risk time the market gives
an 95% improvement in investor utility and earns a large alpha of 4%. We motivate
our analysis from the vantage point of a utility-maximizing investor, who adjusts the
allocation according to the attractiveness of the risk-reward trade-off. The results of this

1This term is from Kirby and Ostdiek (2012), who propose weighting by individual price of risks in a
multi-asset portfolio. Our paper focuses on the portfolio with the market index and risk-free asset. Another
difference is Kirby and Ostdiek (2012) use several-year-long rolling window estimates of the conditional
mean and volatility while we look at the dynamic nine-months rolling data window for machine learning
strategies.
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paper can be applied by industry practitioners, institutional investors, or the individual
investor.

A number of papers have been written on predicting returns and volatilities with
machine learning and large numbers of features. See as a review (Yoo et al., 2005).
Machine learning methods have been shown to be suitable and advantageous for the
difficult task of identifying the regimes in the markets (Gu et al., 2018). Gu et al. find a
benefit of using machine learning for market timing with return forecasts of 26% and
18% increases in Sharpe ratios relative to that of the buy-hold with neural networks
and Random Forest, respectively. Our results document a 40% increase when using
Random Forest for both returns and volatilities in combination. Taking advantage of
the allowance for nonlinear predictor interactions in machine learning models gives
better return forecasts and parameter values in a volatility estimator based on market
conditions. An approach with machine learning that considers both expected return-
and volatility-timing leads to a profitable trading strategy, without an extensive set of
predictors. This paper studies how the machine learning method of Random Forest can
forecast the sign of the risk premia with past dividend yields. Then a separate Random
Forest model is employed to predict the optimal parameters of a volatility estimator.
Specifically, we apply the model to estimate the volatility reference window as a function
of lagged volatilities. Comparing the performance of linear regression for reward-risk
timing, we show that machine learning outperforms by a significant margin.

Expected-return or reward-timing involves adjusting portfolio allocation according
to beliefs about future asset returns. This is akin to benchmark timing, the active
management decision to vary themanaged portfolio’s beta with respect to the benchmark
(Grinold and Kahn, 1999). Merton (1981) derived the economic value of return forecasts.
Campbell and Thompson (2008) show thatmany predictive regressions beat the historical
average return, once weak restrictions are imposed on the signs of coefficients and return
forecast.

Volatility- or risk-timing is a newer idea. While there is a wide array of volatility-
based portfolio allocation strategies, this paper derives directly from the utility maxi-
mization principle a strategy that naturally depends on both the return and volatility.
With this methodology, the portfolio weight in the risky asset is inversely proportional
to the recent volatility, which turns out to be similar to the assumption in Moreira and
Muir (2017). Intuitively, by avoiding high-volatility times the investor avoids risks, but
if the risk-return trade-off is strong one also sacrifices expected returns, leaving the
volatility timing strategy with no edge. Most commonly, the volatility estimator is the
realized volatility for the past few months. We propose a dynamic volatility estimator
that changes the look-back window length with machine learning that is based on the
optimal portfolio weight. To best respond to market conditions, one needs a volatility
estimator that itself responds to market conditions as well. Varying the length of the
volatility reference period in the standard square-sum of squared returns formula gives
a more accurate reflection of market conditions that filters out noise better than static
volatility estimators. The results show that the benefits from volatility-timing are
enhanced when using this proposed measure for volatility.

Reward-risk timing is the combination of both return- and volatility-timing. Return-
timing can be profitable with superior forecasting ability, yet ignoring the risk associated
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with a high return, for instance, would lead to poor risk-adjusted performance. The
incorrect forecasts are not mitigated by their risk. On the other hand, volatility-timing
is advantageous if the risk is not compensated fully by the reward, yet there may be
cases when in fact the reward overcompensates the risk. Timing the market with the
price of risk accounts for the drawbacks of these individual approaches. The role of
machine learning is to provide more accurate estimates by taking advantage of complex
non-linear relationships between market variables and help make optimal decisions.
With this, we provide a unifying framework for return- and volatility-timing as well as
machine learning in finance.

An outline of the paper follows. Section 2 reviews the literature. Section 3 describes
the portfolio allocation methodology, including the utility-maximization problem and
model descriptions. Section 4 demonstrates the results of using the machine learning
portfolio allocation strategy. Section 5 contains theoretical interpretations of the results,
and Section 6 concludes.

2 Literature
Abundant work can be found on two strands of market timing, via expected returns

and volatilites. Work can also be found on approaches combining the two, yet none to
our knowledge integrate machine learning.

There is a long literature on expected-return timing. Kandel and Stambaugh
(1995) examine equity return predictability and find that the optimal stock-versus-cash
allocation can depend importantly on a predictor variable such as the dividend yield.
Goyal and Welch (2008) comprehensively examine the performance of variables that
have been suggested by the academic literature to be good predictors of the equity
premium, and they find contradictory results. Johannes et al. (2014), however, find
strong evidence that investors can use predictability to improve out-of-sample portfolio
performance provided they incorporate time-varying volatility and estimation risk into
their optimal portfolio problems.

There has also been a sizable interest in volatility-timing. Moreira and Muir
(2017) showed volatility-managed factors outperform their buy-and-hold counterparts,
modeling the optimal weight as a constant over the realized volatility for the previous
month. Fleming et al. (2007) discussed the economic value of volatility timing, and
Moreira and Muir (2019) derived that investors who volatility time earn 2.4% more
annually than those who do not. Numerous papers have been written in response. Liu
et al. (2019) found that Moreira and Muir’s strategy is subject to look-ahead bias since
they choose the constant based on the full sample and it is not easy to outperform the
market with volatility timing alone. One finding in this paper is that simply replacing
the constant with the expanding estimate of the unconditional mean, which stays close
to the constant chosen by Moreira, leads to nearly the same performance2. Another
criticism of Moreira and Muir’s paper raised by Cederburg et al. (2019) is that a strategy
that has a positive alpha will not necessarily add to the investment value for an investor;
the investment value increases only if the strategy yields a greater Sharpe ratio or

2Our weight is constrained by a 150% leverage limit so the alphas are not the same in the main results.
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higher investor utility when it is combined with the market or the investor’s existing
portfolio.

Our main aim is to simultaneously perform expected return- and volatility-timing.
Johannes et al. (2014) find statistically and economically significant out-of-sample
portfolio benefits for an investor who uses models of return predictability when forming
optimal portfolios, when accounting for estimation risk and allowing for time-varying
volatility. We do so, however, not with typical regression-based approaches but with
machine learning.

Kirby and Ostdiek (2012) develop volatility- and reward-risk-timing strategies for
the portfolio with many assets. Our paper considers the problem for the risk-free asset
and the market while applying machine learning.

Gu et al. (2018) showed the benefit from using machine learning for empirical asset
pricing, tracing the predictive gains to the allowance of non-linear predictor interactions.
Trees and neural nets were the most successful in predicting returns.

An article by Hallac et al. (2018) proposes an approach to dynamic asset allocation
using Hidden Markov Models that is based on detection of change points without fitting
a model with a fixed number of regimes to the data, without estimating any parameters,
and without assuming a specific distribution of the data. Our approach also does not
assume a number of regimes, yet it does not discretize the portfolio weights.

To our knowledge, this is the first paper written on a machine learning approach
to simultaneous return- and volatility-timing.

3 Methodology
We perform two tasks with machine learning that give the weight of the market

index in our portfolio. First, we predict if the market excess return next month will
be positive with lagged net payout yields and risk-free rates as the predictor variables.
Second, we estimate the prevailing volatility with lagged values for a volatility proxy.
The weight of the equity index is proportional to the probability that the next month’s
return exceeds that of the risk-free asset and inversely proportional to the volatility
estimate. This gives us a series of out-of-sample portfolio returns and corresponding
performance metrics. Finally, the same procedure is performed on a holdout set, data
that provides a final estimate of the models’ performance after they have been trained
and validated, to test against backtest-overfitting (Bailey et al., 2015) 3. Algorithm 1
describes the general portfolio allocation approach.

3Holdout sets are never used to make decisions about which algorithms to use or for improving or tuning
algorithms. Therefore, the performance on the holdout set is indicative of investment performance if an
investor starts trading with the models and strategy today.
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Algorithm 1: Portfolio Allocation Approach
for each month t = 1 to T do

1. Update machine learning models with the data until the most
recent returns and predictors at time t− 1

2. Forecast the class probabilities of the sign of the excess return at
time t and the optimal reference window length for the volatility
estimate

3. Compute the optimal weight in the stock index for time t and
return to step 1

end

The strategies begin on January, 1952. The reason for this is two-fold. First,
it is important that the data that trains a machine learning model is large enough.
Trying to forecast with a model that has seen too few observations is problematic. As
such, one can expect the overall accuracy of the models to improve with time. Second,
the unconditional mean is highly sensitive to large changes in returns when over few
observations. In particular, the Great Depression period contains both extreme negative
and positive returns that lead to volatile estimates.

We conduct an extensive array of tests to evaluate the robustness of our results. A
key result is that the typical investor can benefit from reward-risk timing even if subject
to realistic transaction costs and tight leverage constraints. A comparison of the Sharpe
ratio of similar strategies that do not employ machine learning finds less impressive
performance. Furthermore, examining the results of a series of time-series regressions
gives additional evidence for positive alphas. Finally, we derive the theoretical alpha
generation process to help explain these findings.

3.1 Portfolio Allocation
Most models of portfolio allocation with exact, closed-form solutions assume ex-

pected returns or stochastic volatility evolve continuously through time, a constant
investment opportunity set, or single-period optimization. Our problem is harder due
to the presence of time-varying risk premia and volatility across a discretized time
horizon with periodic rebalancing. To find tractable solutions that are applicable to
real-life investors, one can first consider the one-period problem in Merton (1969) and
Samuelson (1969) with a constant market price of risk, the ratio of reward above the
risk-free relative to risk, followed by stylized cases with time-varying volatility and
time-varying price of risk which give our optimal weights.

We focus our attention on a power utility investor of terminal wealthWt+∆t.

U(Wt+∆t) =
W

(1−γ)
t+∆t − 1

1− γ
, (1)

where γ > 0 is the coefficient of relative risk-aversion. For γ = 1, U(Wt+∆t) = lnWt+∆t.
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The investment universe with a risky and riskless asset and a constant market
price of risk (mean and variance) constrained by a budget is defined by

rt = µ+ σ · zt (2)
Wt = Wt−1(wt · exp(rt) + (1− wt) · exp(rft )), (3)

where µ is the expected return on the risky asset, σ is the volatility, zt is a normal
random variable with mean zero and E[zt|zt−1] = E[zt], Wt is the investor’s wealth at
time t, rft is the risk-free asset log return, and wt is the portfolio weight in the risky
asset at time t. While the return on the risk-free asset is realized at time t, the rate is
locked in at time t− 1. Samuelson (1969) showed the optimal investment fraction in the
risky asset to maximize the expected utility of wealth is given by:

w∗t =
µ− rft
γσ2

, (4)

It is well known that the investment opportunities are not constant throughout
time. Therefore, consider the following model where the market price of risk changes
according to two non-linear functions of lagged predictor variables and volatilities.

rt = µt + σt · zt (5)
µt = gt(xt−1, ..., xt−9, r

f
t−1, .., r

f
t−5) + εt (6)

σ2
t = ht(σ

2
t−1, ..., σ

2
t−9) + st, (7)

where xt−1, ..., xt−9 are the nine lagged values of predictor variable, σ2
t−1, ..., σ

2
t−9 are the

nine lagged volatilities, zt, εt, and st are potentially correlated normal random variables
with mean zero, E[zt|zt−1] = E[zt], E[εt|εt−1] = E[εt], and E[st|st−1] = E[st]. In certain
stylized cases, there exist closed-form solutions to multi-period investment problems
when variables at the current time are unknown. As Johannes et al. (2004) point out,
however, for an analytical solution, expected returns can be unknown only if the current
volatility is known, for instance, by the quadratic variation process. Because both future
returns and volatility are predicted, to solve the optimal portfolio problem, we follow the
existing literature and simplify the allocation problem by considering a single-period
problem:

J(Ft−1) = max
wt

E[U(Wt)|Ft−1] = max
wt

∫
U(Wt)P (rt|Ft−1)drt, (8)

where P (rt|Ft−1) is the predictive distribution of future returns andFt−1 = {xt−1, ..., xt−9

, rft−1, .., r
f
t−5, σ

2
t−1, ..., σ

2
t−9}. This is similar to the approach taken in Kandel and Stam-

baugh (1996) and Johannes et al. (2004).
The difference between single and multi-period problems is that in the latter,

hedging demands arising from changes in variables determining the attractiveness
of future investment opportunities. Brandt (1999) showed that hedging demands are
typically very small terms in the optimal weight. Additionally, portfolio choice will be
myopic if the investor has power utility and returns are IID.

6



To derive the optimal portfolio weight, let us assume that U(Wt) is twice differen-
tiable, monotonically increasing, and concave in the weight (which is the case for the
power utility investor). Then by Eq. 3, the optimal portfolio is given by the first order
condition

E[U
′
(Wt)(rt − rft )|Ft−1] = 0, (9)

where the expectation is taken over the predictive distribution of future returns. By the
definition of covariance and Eq. 9,

cov[U
′
(Wt), rt − rft |Ft−1] + E[U ′(Wt)|Ft−1]E[rt − rft |Ft−1] = 0, (10)

To separate the effects of risk and return on utility, realize that Wt and rt − rft
are jointly normally distributed. In this case, Stein’s lemma allows us to re-write the
covariance term as

cov[U
′
(Wt), rt − rft |Ft−1] = E[U

′′
(Wt)|Ft−1]cov[Wt, rt|Ft−1]

= wtE[U
′′
(Wt)|Ft−1]var[rt|Ft−1]. (11)

Solving for the optimal weight,

w∗t =
E[rt − rft |Ft−1]

γ · var[rt|Ft−1]
, (12)

where γ = −E[U
′
(Wt)|Ft−1]/E[U

′′
(Wt)|Ft−1]. This provides a justification for using a

conditional mean-variance rule.
As a final case, consider constant returns and time-varying volatility:

rt = µ+ σt · zt (13)
σ2
t = ht(σ

2
t−1, ..., σ

2
t−9) + st (14)

Starting from Eq. 10, using the fact that E[rt − rft |Ft−1] = E[rt − rft ], and applying the
same logic, the optimal weight is given by

w∗t =
E[rt − rft ]

γ · var[rt|Ft−1]
. (15)

The two functions gt(Ft−1) = rt−rft and ht(Ft−1) = σ2
t give the return and variance,

respectively, at time t given the information set Ft−1 at the previous time. In this paper,
we learn gt and ht with the machine learning algorithm Random Forest discussed in
Section 3.3.

With this portfolio allocation framework in mind, we examine three reward-risk
strategies based on the optimal weight. The first strategy is reward-risk timing with an
expanding window estimate of the reward, the numerator in Eq. 15. It assumes time-
varying volatility, but the investor has no superior knowledge about the risk premium,
defined as the excess market return, at time t. Specifically, in this base strategy, volatility
is computed as the realized volatility for the past month but the risk premia with the

7



sample until time t− 1. Therefore, the strategy is driven by 1
t−1

∑t−1
i=1(rt − rft )/(γ · σ2

t−1),
an estimate of the prevailing price of risk. The second and third, full reward-risk
timing strategies employ machine learning (linear regression) models to 1) forecast the
probabilities of the signs of the excess return for the next month with lagged dividend
yields (the absolute return), giving the respective estimates for the numerator in Eq. 12
and 2) estimate the best length of the reference window to use in the volatility calculation
with lagged volatilities, giving the variance in the denominator of Eq. 12.

Given the excess return class probabilities, the numerator in the optimal weight is
adjusted with a more accurate view of the expected reward. A correct return direction
prediction 55% of the time, on average, signifies an advantage over using the uncondi-
tional mean. By varying the length of the reference window, the volatility estimate can
be adjusted and improved4. The length determines which months’ realized returns are
included in the estimate, and in effect the magnitude of the volatility estimate. Correctly
scaling the volatility in terms of the actual future excess return is the result.

The reward-risk timing strategies avoid investing during periods of low market
reward and high risk. It is not surprising that the performance of the base reward-risk
timing strategy is better relative to the buy-and-hold given that it is an extension of the
risk-managed portfolio literature discussed in the next subsection. The full strategy
employing machine learning achieves better results than both strategies. Next, we look
more closely at the volatility-timing strategy in the literature and the modification that
is made to arrive at the base strategy.

3.1.1 Volatility-Timing

Moreira and Muir (2017) examine a volatility-managed portfolio constructed by
scaling the portfolio weight of the market or factor wt by the inverse of the past month’s
realized daily return variance. The strategy is motivated by the observation that changes
in volatility over time are not offset by proportional changes in returns. The authors
find that this volatility-timing strategy improves investment performance relative to
the original market and factors by reducing risk exposure when volatility is high (Liu
et al., 2019). In this volatility-managed portfolio, the weight in the index is inversely
proportional to the volatility.

wt =
c

σ̂2
t−1

, (16)

where c is a constant and σ̂2
t−1 is the realized return variance in month t− 1 computed

from the 22 average daily returns over the month, σ̂2
t−1 is computed as

σ̂2
t (f) = RV 2

t (f) =

1∑
d=1/22

(
ft+d −

∑1
d=1/22 ft+d

22

)2

, (17)

where f = r − rf is the daily excess return. The constant c is set in Moreira and Muir
(2017) such that the strategy’s standard deviation matches that of the buy-and hold

4We improve the volatility estimate in the sense that the estimate gives a higher expected return when
using it to determine portfolio weights.
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for ease of interpretation. Liu et al. (2019) point out that choosing c based on the
unconditional volatility over the entire period is an in-sample approach and is thus
subject to look-ahead bias. While this is correct, simply using the historical average
excess return forecast as the constant gives the same or better performance results.
This is not surprising since the historical mean divided by the risk-aversion coefficient
γ = 4 produces a numerator that stays consistently close to the the exact value of c, the
constant which makes the standard deviation of the volatility-managed strategy equal
to that of the buy-and-hold5. Figure 1 displays the unconditional mean scaled by 1/γ
from 1952 to 2010, along with the value of c.

Figure 1: Volatility-timing with a constant versus with expanding window estimate
of excess return. The constant c, which gives the volatility-timing strategy the same ending
standard deviation as the buy-and-hold, is plotted in red versus the numerator obtained from
using the expanding excess return mean over a risk-aversion coefficient γ = 4 in black.

The historical estimate slightly exceeds c for most of 1952 to 1970 and falls below c
for the rest of the period.

The discussion above provides an intuition for why this modified version of volatility-
timing, or base reward-risk timing, achieves similar investment performance for the
market portfolio to volatility-timing in Moreira and Muir (2017). The results are dis-
cussed in Section 4. To come to the full strategy, we first look at the regression and
machine learning models in the next sections.

3.2 Regression
We consider a linear regression model with extensions as a comparison to machine

learning. Only the first task of risk premia estimation is used in this comparison, with
the volatility estimate of this strategy set equal to that of the machine learning model.

Starting with the simple model of monthly excess returns, ft, as a function of the
5Because our data has a slightly shorter sample period, the value here does not exactly match that in

the papers above.
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lagged payout yields and risk-free rates,

ft = α+
9∑
i=1

βixt−i +
14∑
j=10

βjr
f
t−j+9 + εt (18)

we find that the residuals are serially correlated. For this reason, we model the residuals
as an ARMA process.

εt = φ1εt−1 + · · ·+ φpεt−p + θ1zt−1 + · · ·+ θqzt−q + zt, (19)

where zt is white noise. The number of AR and MA terms, p and q, are chosen at
each time with AICc. One alternative to this specification is an ARMAX model that is
estimated with maximum likelihood. However, the coefficients are harder to interpret.
Regression with ARMA errors can capture the residual persistence, if it is present, while
allowing rapid changes in the dependent variable. This modification slightly improves
predictive performance.

3.3 Random Forest
A Random Forest is an ensemble machine learning algorithm developed by Breiman

(2001). The prediction by the Random Forest is the majority vote across all the individual
decision tree learners (Hastie et al., 2017). The default tree bagging procedure draws B
different bootstrap samples of the training data and fits a separate classification tree to
the bth sample. The forecast is the average of the trees’ individual forecasts. Trees for a
bootstrap sample are usually deep overfit, meaning each has low bias but is inefficiently
variable. Averaging over B predictions reduces the variance and stabilizes the trees’
forecast performance. Algorithm 2 gives the procedure used to construct a Random
Forest with the implementation by Liaw and Wiener (2002).

Algorithm 2: Random Forest
Result: The ensemble of trees {Tb}B
for b = 1 to B do

1. Draw a bootstrap sample Z∗ of size n from the training data.

2. Grow a random-forest tree Tb to the bootstrapped data, by
recursively repeating the following steps for each terminal node
of the tree, until the minimum node size smin is reached.

(a) Select m variables at random from the p variables
(b) Pick the best variable/split-point among the m.
(c) Split the node into two child nodes.

To make a prediction at a new point, ~x, let Ĉb(~x) ∈ {−1, 1} be the class prediction of
the bth random-forest tree, and then Ĉ(~x) = sign(

∑B
b=1 Ĉb(~x)), the weighted major-

ity vote. For a binary model, the class probabilities are
∑B+

i=1 Ĉi(~x)/
∑B

b=1 Ĉb(~x) and∑B−
j=1 Ĉi(~x)/

∑B
b=1 Ĉb(~x), the proportion of votes for each class, with B+ +B− = B.
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Random forests give an improvement over bagging with a variation designed to
reduce the correlation among trees grown from different bootstrap samples. If most
of the bootstrap samples are similar, the trees trained on these sample sets will be
highly correlated. Then the average estimators of similar decision trees can be more
robust but do not perform much better than a single decision tree. If, for example,
last month’s dividend yield is the dominant predictor of the return direction out of the
variables, then most of the bagged trees will have low-depth splits on the most recent
yield, resulting in a large correlation among their predictions. Trees are de-correlated
with a method known as "random subspace" or "attribute bagging," which considers
only a random subset of m predictors out of p for splitting at each potential branch. In
the example, attribute bagging will ensure early branches for some trees will split on
predictors other than the most recent dividend yield. Since each tree is grown with
different sets of predictors, the average correlation among trees further decreases and
the variance reduction relative to standard bagging is larger (Gu et al. 2018)6. The
number of variables allowed to choose from m, number of bootstrap samples B, and the
minimum fraction of observations in the terminal nodes smin are the tuning parameters
optimized with validation. A detailed algorithm for classification trees can be found in
the Appendix.

The parameters m and smin are tuned with the sample from 1952 to 2010. To test
against parameter over-fitting, the final values are kept on the holdout time period from
2011 to 2017.

3.4 Risk Premia Direction Prediction
Forecasting absolute returns is explored extensively in Gu et al. (2018). For better

model intelligibility, we consider an alternative task, predicting whether excess returns
will be positive or negative, which is a binary classification problem. For optimal portfolio
construction, the weight should increase when the investor expects a positive excess
return and vice versa, holding all else constant.

To classify each month, we borrow from the standard literature and use the lagged
dividend payout ratios as the predictors. The importance of the dividend yield in the
allocation is robust to the "data-mining" consideration (Kandel and Stambaugh, 1995),
and it has been shown to explain equity return predictability in Johannes et al. (2004)
for example. In traditional theory, the dividend yield can explain equity prices since
prices are the discounted future cash flows.

The probability that the sign of the excess return, Yt, will be positive or negative is

P (Yt = yt) = gt(xt−1, ..., xt−9, r
f
t−1, ..., r

f
t−5) =

∑Byt
j=1 Ĉj(~x)∑B
b=1 Ĉb(~x)

, (20)

where yt is + or −, gt is the Random Forest model fit at time t, xt−1, ..., xt−9 are the
nine last values of the payout yield, Ĉb is an individual decision tree, and ~x is the
feature vector consisting of the payout yields and risk-free rates7. With our portfolio

6Because this makes Random Forest a non-deterministic algorithm, we average the results for multiple
different seeds.

7While the class vote proportions are not exactly the the class probabilities, we use them as a proxy.
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allocation strategy, being correct more than half of the time is sufficient for the investor
to benefit. There is information in the dividend yield up to three quarters ago and
the presence of interaction effects between dividend yields at different months. In
traditional literature, a higher past month’s dividend yield is indicative of a higher
chance of a positive excess return (Fama and French, 1988). Yet the yield in the month
before that still has information about the overall trend in the market. We trace the
predictive gains of our approach to these reasons.

For the base reward-risk timing strategy, the expected excess return E[r − rf ] in
w∗ is kept as the mean of the expanding window of excess returns until time t − 1,
r − rf = 1

t−1

∑t−1
i=1(ri − rfi ). If an investor knows with some probability P and some level

of confidence 1− δ that the excess return will be positive or negative, the investor can
adjust the expectation to

E[rt − rft |P (rt − rft > 0), δt] =

(1− δt) · (r − rf
+
· P (rt − rft > 0) · π+ + r − rf

−
· P (rt − rft ≤ 0) · π−)

+ δt · r − rf , (21)

where π is the proportion of returns that were historically positive or negative multiplied
by two, r − rf+ and r − rf− are the means conditional on a positive or negative excess
return, and P (rt − rft > 0) + P (rt − rft ≤ 0) = 1. Here, δt is the test accuracy rate of
the Random Forest model8. The fitted models are able to predict the correct direction
of the return approximately 55% of the time. In other words, the numerator of the
weight becomes the sum of the conditional expectations weighted by class prediction
probabilities and the expectation without any knowledge of the future. The sum of
conditional expectations and the unconditional expectation is itself weighted by the
confidence in the machine learning model. The numerator is equal to the unconditional
expectation when the probabilities of positive and negative excess returns are equal.
Using a weighted average of the historical mean and Random Forest prediction reduces
the frequency of large shifts in the portfolio yet allows for the share in the equity index
to grow when the model is highly confident that the equity premium will be high. For
the full reward-risk timing portfolio, the expectation of the risk premia is Eq. 21.

3.5 Volatility Estimation
Volatility has a central role in optimal portfolio selection, derivatives pricing, and

risk management. These applications motivate an extensive literature on volatility
modeling. Starting with Engle (1982), researchers have fit a variety of autoregres-
sive conditional heteroskedasticity (ARCH), generalized ARCH (Bollerslev, 1986), and
stochastic volatility models to asset returns (Fleming et al., 2001). GARCH models are
widely used for their ability to permit a wide range of behavior, in particular, more
persistent periods of high or low volatility than seen in an ARCH process (Ruppert and
Matteson, 2015). We choose an alternate route and model the discrete parameter of

8The accuracy rate fluctuates slightly at each iteration and is therefore updated with the expanding
window of predictions until the current time.
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the simple volatility estimator defined as the standard deviation of the past N daily
log returns. The motivation behind this approach is the varying choice of N in the
risk-managed factors literature9.

σt =

√√√√22

N

N∑
d=1

(
ft+1−d/N −

∑N
d=1 ft+1−d/N

N

)2

. (22)

The number of returns to use in the volatility calculation, N , is the output of
the Random Forest model trained on an expanding window of data until time t − 1
and is restricted to values that include no partial month so the problem is multi-class
classification. Another restriction on the values ofN is 1 month or multiples of 3 months
until 9, i.e. N

22 ∈ {1, 3, 6, 9} to limit the frequency of changes. Since the optimal weight
of the market index at time t is inversely proportional to the volatility, the optimal
number of returns to include in the estimate, N∗t , is defined as the value which makes
the volatility estimate the maximum or the minimum under the previous constraints
depending on the sign of the excess return:

If rt > rft , N
∗
t := arg minN

22
N

∑N
d=1

(
ft+1−d/N −

∑N
d=1 ft+1−d/N

N

)2

,

else N∗t := arg maxN
22
N

∑N
d=1

(
ft+1−d/N −

∑N
d=1 ft+1−d/N

N

)2

.

σt with N∗t is the return-maximizing volatility σ∗t in our portfolio allocation framework.
The future excess return, and thus N∗t , is unknown at time t − 1. We can, however,
estimate the relationship between past values of N∗t and some predictor variables at
time t− 1.

The predictor variables are lagged realized volatilities for the past nine months

acting as proxies, σ̂t =
∑22

d=1

(
ft+1−d/22 −

∑22
d=1 ft+1−d/22

22

)2

, and

Nt = ht(σ̂
2
t−1, ..., σ̂

2
t−9). (23)

The reference window length is a function of the lagged volatilities. Thus, the investor’s
estimate of the squared return-maximizing volatility σ∗2t given the estimated optimal
reference window length N̂t becomes

E[σ∗2t |N̂t] = σ̄2
t−1, (24)

where σ̄2
t−1 = 22

N̂t

∑N̂t
d=1

(
ft−d/N̂t

−
∑N̂t

d=1 ft−d/N̂t

N̂t

)2

. If N̂t = 22, the average number of

trading days in a month, the volatility estimate is simply equal to the last month’s
9Barroso and Santa-Clara (2014) use a 6-month estimate of realized volatility to construct their risk-

managed momentum strategy. On the other hand, Moreira and Muir (2017) use a single month for a
number of factors including momentum, indicating the choice for N could be optimized. We delegate the
decision to machine learning and find an advantage to automating the task based on prevailing market
conditions.
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realized volatility. The advantage of this measure over simply the last month’s volatility
is that it contains information about the future excess return. The majority of the time,
Nt takes either the values of 1 month or 9 months, and changes in the window length
are usually persistent.

The test, or out-of-sample, accuracy for the Random Forest is defined as

∆ =
1

t

t∑
i=1

1{hi(·) = N∗i }. (25)

The accuracy of these Random Forest models is on average 40% because classification
correctness is a harsh metric for multi-class models. Because there are four classes, the
40% attained by the model should be measured against 25% on average with random
guessing and is a substantial improvement. This accuracy, however, is sufficient for a
benefit in performance. See Section 4.

4 Empirical Results
4.1 Data Description

This paper uses monthly data from Kenneth French’s website on the market return
(Mkt) and risk-free asset return (Rf). Daily returns are retrieved to compute the realized
volatilties.

We also use data on the payout yield fromMichael Robert’s website, which is derived
from all firms continuously listed on the NYSE, AMEX, or NASDAQ indices. The payout
yield here is a more inclusive measure of total payouts than standard dividend yields
and is achieved via the ‘net payout’ of Boudoukh et al. (2007). It includes share issuances
and repurchases in addition to the traditional cash dividend yields. For the payout yield
after 2010, CRSP monthly data at the firm-level and the same aggregation procedure to
form the yields is used.

4.2 Predictive Performance
To assess the predictive performance for excessmarket return forecasts, we calculate

the out-of-sample R2 over 1952-2017 as

R2
oos = 1−

∑
t∈T (fAt − f̂At )2∑

t∈T f
A2
t

(26)

where T denotes the set of points not used for model training and fA are annual market
excess returns. The forecasts, f̂A, are formed with an average of the monthly forecasts.

The annual R2
oos is 19.0% for the Random Forest model. This is 14.3% greater than

that of linear regression. Gu et al. (2018) attain an annual, stock-level out-of-sample R2

of 15.7% with Neural Networks on an optimized set of predictors.
In papers with market forecasting applications, the mean squared forecast error

(MSFE) is often used to measure statistical accuracy. We explain why this is not an
appropriate measure for our models.
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First, our objective is to maximize investor utility and risk-adjusted returns, not
predict the precise magnitude of returns. To attain a good monthly MSFE, forecasts
must match the magnitude approximately. Our forecasts, given by a sum of the historical
negative and positive returns weighted by probabilities, are less variable and stay close
to the long-run mean. Subtracting these small fitted values from the actual returns
and summing the squared results gives a MSFE that is essentially insensitive to model
quality. Second, the expected return forecast is only part of the optimal trading strategy.
The excess return only composes the numerator in the optimal weight given by Eq.
12. With these forecasting characteristics in mind, we next discuss the risk-adjusted
performance of the strategies and models.

4.3 Risk-Adjusted Returns
This section discuss the out-of-sample investment performance formachine learning

reward-risk timing and makes the relevant comparisons. We invest $1 in 1952 as an
investor with a coefficient of relative-risk aversion γ = 4 and plot the cumulative returns
to each strategy on a log scale in Figures 2 and 3 without short-selling and with 100%
and 50% leverage constraints, respectively. For the rest of the paper, we impose the
more realistic portfolio constraint, preventing the investor from taking more than 50%
leverage as in Campbell and Thompson (2008): that is, confining the portfolio weight on
the market index to lie between 0% and 150%.

Figure 2: Cumulative returns of reward-risk timing to market index (200% leverage
limit). This figure plots the cumulative returns of the base reward-risk timing strategy in blue
and machine learning reward-risk timing in black against the market index in green from 1952
to 2010. The vertical axis is in log-scale.
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Figure 3: Cumulative returns of reward-risk timing to market index (150% leverage
limit). This figure plots the cumulative returns of the base reward-risk timing strategy in blue
and machine learning reward-risk timing in black against the market index in green from 1952
to 2010. The vertical axis is in log-scale.

The investments that reward-risk time realize relatively steady gains. The final
wealth accumulates to around $1,500 and $500 at the end of the sample for the machine
learning and base (expanding samplemean reward estimate and previousmonth realized
volatility risk estimate) strategies, respectively, versus about $400 for the buy-and-
hold. At the start of the period, the machine learning models have seen three-hundred
observations as part of the training data, and the investment performance improves
with the size of the training set and the classification accuracy becomes more stable.
The ’break-away’ moment from the base reward-risk timing strategy is around 1970.
Because the Random Forest models’ parameters are determined within this period, it
is necessary to also look at the cumulative returns for the holdout period from 2011 to
2017 in Figure 4.

An investors who starts with $1 in 2011 and reward-risk times with machine
learning achieves outperformance relative to the market and other strategies again.
Therefore, the results cannot be easily explained by the particular choice of machine
learning model parameters.

Figure 5 plots the drawdown of the two strategies relative to the market, which
helps us understand when our strategies lose money relative to the buy-and-hold. The
base reward-risk strategy take relatively more risk when volatility is low (e.g., the
1970s) and thus, not surprisingly, its largest losses are concentrated in these times. The
machine learning analog has a pattern of losses close to reward-risk timing with no
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Figure 4: Cumulative returns of reward-risk timing to market index (150% leverage).
This figure plots the cumulative returns of the base reward-risk timing strategy in blue and
machine learning reward-risk timing in black against the market index in green from 2011 to
2017, the unseen sample period. The vertical axis is in log-scale.

predictive model, yet it diminishes the severity of many losses and to a high degree for
some of the most extreme negative returns. For the sharp market losses starting in 1962,
the first major drawdown, the return direction machine learning model’s response is
delayed, due to the very sudden drop. Yet for the next two major drawdowns in 1969 and
1973, our machine learning models are able to recognize the incoming negative returns
because the drops are more staggered, cutting the losses felt by investors greatly. This
is seen even more clearly in the Dot-com bubble, where using machine learning allows
investors to almost completely avoid losses during this time. In the last recession of 2007-
2008, due to the extremely sharp onset, our return direction machine learning models
reduce risk exposure slightly too late, yet the information in the volatility estimate
still correctly steers market exposure down. Reward-risk timing never has a drawdown
greater than 40% of the portfolio value and greatly mitigates three of the four largest
losses during severe recessions.

Before proceedingwith the numerical results, we define the various strategyweights
and give descriptions:

• w1 = max(min(ERF [r− rf |Ft−1]/(γ ·ERF [σ∗2|Ft−1]), 1.5), 0). This is using Random
Forest for the reward and risk estimates and a leverage limit of 50%.

• w2 = max(min(ELR[r−rf |Ft−1]/(γ·ERF [σ∗2|Ft−1]), 1.5), 0). This is using regression
for the reward estimate and Random Forest for the risk estimate and a leverage
limit of 50%.
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Figure 5: Drawdowns of reward-risk timing to market index. This figure plots the draw-
down of the base reward-risk timing strategy in blue, machine learning reward-risk timing in
black against the market index in green from 1952 to 2010.

• w3 = max(min(E[r − rf ]/(γσ2
t−1), 1.5), 0). This is using the expanding window

estimate as the reward and the previous month’s realized volatility as the risk
(discussed in Section 3.1), with a leverage limit of 50%.

• w4 is the same as w1 but the 1.5 limit is decreased to 1, no leverage.

• w5 is w2 after the same change as in w4.

• w6 is w3 after the same change as in w4.

The risk-adjusted returns from machine learning portfolio allocation are substan-
tially higher than reward-risk timing with no model and the buy-and-hold. Table 1
displays the Sharpe ratios for each portfolio allocation strategy and different time pe-
riods. The sample from 2011 to 2017 is a holdout set, meaning we run the portfolio
allocation process on it with the same parameters and seeds as the previous sample
after they are finalized.

All the active strategies outperform the buy-and-hold on a risk-adjusted basis for
each out-of-sample period. Reward-risk timing with Random Forest gives the highest
Sharpe ratio of 0.60 from 1952-2010, which is a 40% increase from the buy-and-hold.
An investor who reward-risk times with machine learning gains more than 2 percentage
points on return per year relative to passively investing, without increasing the risk.

To quantify the economic relevance of our results and facilitate comparison, we
consider the perspective of a mean-variance investor. From the frame of an investor
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Table 1: Sharpe Ratios

In this table are the out-of-sample annual returns, standard deviations, and Sharpe ratios for
the initial period from 1952 to 2010, the holdout period from 2011 to 2017, and the full sample
period for the various strategies. Mkt denotes the buy-and-hold.

Sample Strategy Annual Return (%) Standard Deviation (%) Sharpe Ratio
Mkt 11.17 15.05 0.43

1952 - w3 11.53 14.82 0.47
2010 w2 11.08 12.24 0.53

w1 13.55 14.92 0.60

Mkt 14.22 11.29 1.25
2011 - w3 14.02 9.21 1.51
2017 w2 13.39 8.75 1.51

w1 18.05 11.61 1.54

Mkt 11.52 14.70 0.50
1952 - w3 11.84 14.33 0.53
2017 w2 11.32 11.72 0.61

w1 14.15 14.72 0.68

with mean-variance utility, the percentage utility gain of a strategy with Sharpe ratio a
from one with Sharpe ratio b is

∆UMV (%) =
SR2

a − SR2
b

SR2
b

. (27)

From Eq. 27, a mean-variance investor who trades the market index with the help of
machine learning and reward-risk timing increases lifetime utility by 95% relative to
buying and holding the index.

Machine learning reward-risk timing generates large gains relative to solely focus-
ing on either the reward or the risk component. Campbell and Thompson (2008) estimate
that the utility gain of timing expected returns is 35% of lifetime utility. Moreira and
Muir (2017) find that a mean-variance investor who can only trade the market portfolio
can increase lifetime utility by 65% through volatility timing. Next, we run a series of
time-series regression of the strategies on each other and the market index,

fat+1 = α+ βf bt+1 + εt+1, (28)

where ft+1 are the monthly excess returns. A positive intercept implies that the strategy
a increases Sharpe ratios relative to strategy b. When this test is applied to systematic
factors (e.g., the market portfolio) that summarize pricing information for a wide cross-
section of assets and strategies, a positive alpha implies that our portfolio-allocation
strategy expands the mean-variance frontier.

Table 2 reports results from running regressions of the machine learning reward-
risk timing strategy on the market index and the other strategies. The intercepts

19



Table 2: Strategy Alphas

In this table, we run time-series regressions of each strategy on the market and on one another
fat+1 = α + βf bt+1 + εt+1. The superscripts denote the three variations of strategies: RF for
random forest, LR for linear regression, and base using no model. The data are monthly and
the sample period is 1952 to 2010. Standard errors are in parentheses and are adjusted for
heteroskedasticity (White, 1980). The alphas and errors are annualized in percent per year by
multiplying monthly values by 12.

Univariate Regressions
fa fb Beta (β) Alpha (α) R2 Nobs

MktRF Mkt 0.74
(0.05)

4.13
(1.32) 0.56 706

MktRF MktBase 0.85
(0.04)

2.75
(1.08) 0.70 706

MktRF MktLR 0.78
(0.06)

3.71
(1.56) 0.37 706

MktLR Mkt 0.50
(0.04)

3.18
(1.32) 0.37 706

MktBase Mkt 0.83
(0.04)

1.47
(1.08) 0.72 706

(Jensen’s α’s) (Jensen, 1968) are positive and statistically significant in all cases, except
for the base. The machine learning strategy has an annualized alpha of 4.13% and a beta
of only 0.74. The machine learning strategy over base and linear regression reward-risk
timing has annualized alphas of 2.75% and 3.71%, respectively. For the comparisons,
the regressions also look at the alphas attained from using linear regression and model
to forecast the excess return. The alphas earned are markedly smaller at 3.18% and
1.47%, respectively.

The next finding is that our strategies survive transaction costs, given in Table
3. Specifically, we evaluate our portfolio allocation strategy for the reward-risk timing
portfolios when accounting for empirically realistic transaction costs as in (Moreira and
Muir, 2017). Strategies that capture reward-risk timing but reduce trading activity
include capping the strategy’s leverage at 1 compared to the case with a weight limit of
1.5. These leverage limits reduce trading and hence total transaction costs. We report
the average absolute change in monthly weights, expected return, and Jensen’s alpha
of each strategy before transaction costs. The next columns contain the alphas when
including various transaction cost assumptions. Finally, the last column derives the
implied trading costs in basis points such that the alphas are zero in each of the cases.

The results indicate that machine learning reward-risk timing survives transac-
tions costs, even with high volatility episodes where such fees rise. Overall, the annual-
ized alpha of the reward-risk timing portfolio allocation strategy decreases slightly, but
is still very large. Reward-risk timing with machine learning does not require extreme
leverage or drastic portfolio rebalancing to be profitable.

The empirical results overall indicate a significant advantage in using machine
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Table 3: Transaction Costs of Machine Learning Portfolio Allocation

In this table, we evaluate our reward-risk timing strategies for the market when including
transaction costs. Lower leverage limits reduce trading activity. Specifically, we consider
restricting risk exposure to be between 0 and 1 (i.e., no leverage) or 1.5. The alphas are reported
with these assumptions. Following Moreira and Muir (2017), the 1bp cost comes from Fleming et
al. (2003), the 10bps is from Frazzini, Israel, and Moskowitz (2015) when trading approximately
1% of daily volume, and the next column adds an additional 4bps to cover for transaction costs
increasing in high-volatility episodes. The last column backs out the implied trading costs in
basis points needed to drive the alphas to zero in each of the cases.

α After Trading Costs
Weight |∆w| E[R] α 1bps 10bps 14bps Break Even
w1 0.27 13.55% 4.13 3.78 3.43 3.27 118 bps
w2 0.54 11.08% 3.18 3.12 2.53 2.27 49 bps
w3 0.33 11.53% 1.47 1.45 1.19 1.08 57 bps
w4 0.20 11.02% 2.75 2.73 2.51 2.41 75 bps
w5 0.37 9.05% 1.96 1.91 1.51 1.33 30 bps
w6 0.12 9.71% 0.67 0.66 0.52 0.47 32 bps

learning for portfolio allocation. With only standard predictor variables, reward-risk
timing with machine learning models offers economically substantial improvements in
risk-adjusted returns (40% increase in Sharpe ratio). Statistically significant positive
alphas of 4% are found as a result of the superior forecasting ability of machine learning.
Finally, realistic trading costs are applied to gain further insight on real-life applicability,
showing alphas remain large. With this evidence in mind, it is also valuable to look
from a theoretical perspective at why the strategy outperforms.

5 Theoretical Alpha Generation Process
In this section, we provide a theoretical framework to interpret some of our findings.

We first derive the alpha for the base reward-risk timing. Then we do the same process
for machine learning reward-risk timing. Intuitively, the alphas for base portfolio
allocation are proportional to the covariance between the conditional variance and the
asset price of risk. Our alphas for portfolio allocation with machine learning are a
function of models’ performance.

We work in continuous time. Consider the total portfolio value process Rt with
expected return rt and conditional volatility σt. Then dRt = rt · dt+ σt · dzt. Construct
the reward-risk timing version of this return with wt = r−rf

γσ2
t

from Eq. 15,

dR
′
t = dRt · wt + rft dt · (1− wt)

= (dRt − rft dt) ·
r − rf
γσ2

t

+ rft dt, (29)

where rft is the instantaneous risk-free rate and r − rf = 1
t

∑t
i=1(ri−rfi ) is the expanding
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sample mean. The α of a time-series regression of the market-timing portfolio excess
return dR′t − r

f
t dt on the market portfolio excess return dRt − rft dt is given by

α = E[dR
′
t − r

f
t dt]/dt− βE[dRt − rft dt]/dt (30)

Using that E[dR
′
t − r

f
t dt]/dt = r − rf · E[

rt−rft
σ2
t

], β = r−rf
γE[σ2

t ]
by minimizing the sum of

squared deviations, and E[dRt − rft dt]/dt = E[rt − rft ] and simplifying, we obtain a
relationship between the alpha and the covariance between the volatility and the price
of risk.

α = E[
rt − rft
σ2
t

] · r − rf − E[rt − rft ] · r − r
f

E[σ2
t ]

= − r − r
f

γE[σ2
t ]
· cov[σ2

t ,
rt − rft
σ2
t

]

(31)

Thus, the α is positive when the price of risk moves opposite to the volatility. This is
essentially the same result that Moreira and Muir (2017) recover. The difference here is
that the alpha is amplified by the value of the sample mean of the excess return at time
t rather than a constant.

Now, we examine themachine learning reward-risk timing alpha generation process:

dR
′′
t = (dRt − rft dt) ·

E[rt − rft |Ft−1]

γE[σ2
t |Ft−1]

+ rft dt, (32)

where E[rt−rft |Ft−1]

E[σ2
t |Ft−1]

is the estimate of the market price of risk the models give with the
information set Ft−1. The α of a time-series regression of the machine learning market-
timing portfolio excess return dR′′t −r

f
t dt on the market portfolio excess return dRt−rft dt

is again

α = E[dR
′′
t − r

f
t dt]/dt− βE[dRt − rft dt]/dt (33)

Using that E[dR
′′
t − r

f
t dt]/dt = E[

rt−rft
σ2
t

] · E[rt − rft ]/γ by iterated expectations and
independence of the excess return and the machine learning price of risk estimate,
β =

E[rt−rft |Ft−1]

γE[σ2
t |Ft−1]

, and E[dRt − rft dt]/dt = E[rt − rft ], we obtain a relationship between
the alpha and the price of risk expectations.

α =
E[rt − rft ]

γ
· (E[

rt − rft
σ2
t

]− E[rt − rft |Ft−1]

E[σ2
t |Ft−1]

). (34)

In this case, α is positive when the machine learning expectation of the market
price of risk given the information set at the previous time is expected to be cheaper
than the unconditional expectation of the price, if the excess return is positive. If the
excess return is negative, then α is positive if the machine learning estimate is less than
the unconditional, avoiding a high allocation. The result does not depend on the sign of
the return. Not surprisingly, the alpha is positive if the accuracy of the models used to
estimate the market price of risk is good enough to distinguish between positive and
negative risk premia based on the known information set.
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The above results provide a mapping between machine learning reward-risk timing
alphas and the dynamics of the price of risk for an individual asset.

6 Conclusion
Machine learning portfolio allocation offers large risk-adjusted returns and is

feasible to implement in real-time. We perform both return- and volatility-timing,
or reward-risk timing, with and without machine learning, showcasing the relative
advantage machine learning can provide. Furthermore, our strategy’s performance is
informative about the alpha generation process for actively managed portfolios.

At the same time, there are possibilities for improvements. Other machine learning
methods like deep neural networks and gradient boosted trees may allow trading some
interpretability for performance gains. Using predictors beyond lagged dividend yields
and risk-free rates may also be beneficial. Since one of our goals here was to show
that machine learning has an advantage in finance and portfolio allocation outside the
context of big data, the results with standard variables are promising.
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Appendix

A Additional Derivations
The base reward-risk time-series regression is given by

dR
′
t

dt
− rft = α+ β(

dRt
dt
− rft ) + εt, (A.35)

with dR′t given by Eq. 30. Next, define ft = dRt
dt − r

f
t and f ′t as the left-hand side to get

f
′
t = α+ βft + εt (A.36)

To derive β, minimize the sum of squared residuals.

min
α,β

E[(f
′
t − (α+ βft))

2]. (A.37)

Solving the standard first-order conditions gives,

β =
cov[f

′
t , ft]

var[ft]
(A.38)

For the base reward-risk timing,

β =
cov[(rt − rft ) · r − rf/(γσ2

t ), rt − r
f
t ]

var[rt − rft ]
=

r − rf
γE[σ2

t ]
(A.39)

For the machine learning reward-risk timing,

β =
cov[(rt − rft ) · E[rt − rft |Ft−1]/(γE[σ∗2t |Ft−1]), rt − rft ]

var[rt − rft ]

=
E[rt − rft |Ft−1]

γE[σ∗2t |Ft−1]
(A.40)

B Additional Tables
Table B1 shows the results for using only one machine learning model at a time

in risk-adjusted returns. One variant is using a Random Forest model for the excess
return and the realized one-month volatility for risk estimate. The other is substituting
the expanding window mean for the excess return and a Random Forest to choose the
optimal reference window length for the volatility. The additive benefit of machine
learning risk premia forecasts over the expanding historical average are large. While
the improvement in Sharpe ratios when volatility-timing with a varying window length
instead of a constant one month is smaller, it is economically significant. The reason
this benefit is smaller is because the range of values the volatility estimate can take
is narrower, restricted by some average of recent realized volatilties. On one hand,
this reduces the impact of any incorrect forecasts, but on the other, possibly leaves out
potential alpha compared to directly forecasting the conditional volatility next month.
Below are the exact weights for the two additional strategies.
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• w7 = max(min(ERF [r − rf |Ft−1]/(γ · σ2
t−1), 1.5), 0). This is using Random Forest

for the reward estimate and the past month’s realized variance for the risk, with a
leverage limit of 50%.

• w8 = max(min(E[r − rf ]/(γ · ERF [σ∗2|Ft−1]), 1.5), 0). This is using regression for
the reward estimate and Random Forest for the risk estimate and a leverage limit
of 50%.

The machine learning models in terms of Sharpe ratios are ’super-additive’. The
sum of the improvements in Sharpe ratios relative to the base reward-risk timing
when using the standalone models, 0.13, is smaller than the improvement when using
them together for portfolio allocation, 0.14. This difference, however, is not statistically
significant via the two-sample paired Sharpe ratios test (Bao, 2009).

Table B1: Additivity of Reward & Risk Machine Learning Models

In this table are the out-of-sample annual returns, standard deviations, and Sharpe ratios from
1952 to 2010 for the standalone Random Forest models. One variant is using a Random Forest
model for the risk premia and the realized one-month volatility for risk estimate. The other is
substituting the expanding window mean for the excess return and a Random Forest to choose
the optimal reference window length for the volatility.
Sample Strategy Annual Return (%) Standard Deviation (%) Sharpe Ratio

Base Reward-Risk Timing (w3) 11.57 14.82 0.46
1952 - w7 13.25 14.49 0.58
2010 w8 12.03 15.57 0.47

RF Reward-Risk Timing (w1) 12.81 14.95 0.60

The ensemble ofmachine learning algorithms is slightly superior to each in separate,
meaning there are non-linear interactions between the models themselves. Intuitively,
when both models agree that the excess return will be positive, for instance, the weight
is adjusted upwards according to the optimal weight, yet the higher combined market
exposure than the exposure given by each model separately means the strategy is likely
to capture the large positive returns, since the chances that both models are wrong is
not greater than the chances one is. Additionally, the increase in the market portfolio
weight is greater when using the models together than the sum of the increases by each
respective model necessarily. When the models do not agree on the future excess return,
they have opposing effects on the weight, yet the ’say’ of the Random Forest model that
gives the excess return estimate is measured by its confidence. Thee predictions of the
two ’experts’ are balanced out. Therefore, there may be benefits from using the reward
and risk Random Forest models together, which is a question to explore in a future
work.

C Decision Tree Algorithms
Algorithm C1 details how to build a classification tree and is a greedy algorithm

(Breiman et al., 1984). We refer to the recursive version in (Murphy, 2012).
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Algorithm C1: Classification Tree
Initialize stump node, N1(0). Nk(d) is the kth node at depth d. S denotes the data,
and C is the set of unique labels.

function fitTree(Nk(d), S, d)
1. The prediction of the Nk(d) node is the majority vote of its observations,

sign(
∑

i∈Nk(d) yi)

2. Define the cost function as the Gini index. cost({xij , yij}) =
∑|C|

c=1 π̂c(1− π̂c),
where π̂c is the frequency an entry in the leaf belongs to class c.

3. Select the optimal split:
(j∗, t∗) = arg minj∈{1,..,|C|}mint∈Tj (cost({xij , yij : xij ≤ t}) + cost({xij , yij : xij > t})).
Sleft = {xij , yij : xij ≤ t}, Sright = {xij , yij : xij > t}.

4. if notworthSplitting(d, cost, Sleft,Sright) then
return Nk(d)

else
Update the nodes:
N1(d+ 1) = fitTree(Nk(d), Sleft, d+ 1)
N2(d+ 1) = fitTree(Nk(d), Sright, d+ 1)

return Nk(d)

end

Result: The classification tree model f(~x) =
∑2d

m=1wm1{~x ∈ Sm}, where
wm = sign(

∑
i∈Sm

yi)

The function notworthSplitting(d, cost, Sleft,Sright) contains stopping heuristics to pre-
vent overfitting. In our case, the function value is true if the fraction of examples in
either Sleft or Sright is less than smin, the minimum fraction of observations in a node
determined by the user’s parameter optimization.
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