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Abstract

This report investigates the algorithmic trading problem where profit is maxi-
mized while risk is minimized. This problem was posed as a stochastic control
problem in order to design different solutions with various mathematical ma-
chinery. A starting initial capital is invested in different stocks. The capital
is partitioned such that money is invested in each stock, with an additional
option not to invest at all. After an iterative design process, Q-learning tech-
niques were implemented to design the model that would solve the problem.
Testing was then performed on both independently identically distributed and
Markovian simulated data. The algorithm was then applied to historical data
of three stocks. After testing on real data, it was determined that a Markovian
model best resembles the given stock market data, leading to a better design
solution. Throughout the engineering design process, the team considered so-
cial, economic, environmental, and regulatory concerns when making decisions
regarding optimal solutions.
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1 Introduction

1.1 Portfolio Management Problem

Consider a trading environment, where the common goal of any investor is
to obtain added utility or value by buying, selling and holding assets. These
assets can have fixed return rates, like bonds, or be volatile, like stocks, and
are issued by the government or corporations. In this kind of an environment,
the return rate for stocks are erratic and difficult, if not impossible, to predict.
An investor may be able to make informed guesses or assumptions based off
of historical data or trends for specific situations, however, the actual result is
always unknown to everyone since there are so many factors contributing to the
change of stock return rates. These factors include economic fluctuations, large
trade, rumors, or inter-company relationships. Due to this inherent randomness
in return rates, it is a real challenge to determine how one should distribute
their funds between assets, a problem made worse as the amount of assets
available increases. For long term investors, capital is largely allocated into
fixed assets where the return on investment is guaranteed. For other investors,
the distribution of capital into stocks may be desirable to earn larger sums of
money if the investor accepts the risk that is associated with stock trading. This
capital allocation problem to increase value while reducing risk is known as the
portfolio management problem. This paper investigates how an algorithm can
be employed to determine a capital allocation policy to find an optimal solution
to the portfolio management problem.

1.2 Algorithmic Trading

Algorithmic trading is a method of making a large quantity of trades by using
an algorithm to generate trading instructions. It should be noted that algorith-
mic trading is not necessarily just for generating profit from the stock market.
Rather, it is a way to evaluate many options while reducing manual workload
and thus labour costs. Many different forms of algorithmic trading exist, and
one specific example that aims to maximize profit is high frequency trading.
In high frequency trading, a large quantity of stocks are purchased and subse-
quently sold with a high turnover rate. This kind of algorithmic trading will be
the focus for the design solution that is constructed.

1.3 Motivation

The team’s objective is to redesign how an investor manages their portfolio.
For an investor in high frequency trading, their goal is to maximize the capital
attained from a spread of stochastic and fixed assets, while actively trying to
select trade ideas to match risk requirements.

One problem lies within the randomness of various assets in a given portfo-
lio. The value of a given stock is influenced by a multitude of factors such as a



company’s proposed business strategy, debt issuance, news reports, or credit rat-
ings. These assets are of high entropy and the properties that drive investments
are not easily modelled. These properties are the main difficulty encountered
when trading short term stochastic assets.

The other problem an investor encounters is deciding how to spread capital
across a series of financial instruments. While trying to increase the value of
a portfolio, they also have to control the amount of risk accepted. The rate of
return on non-stochastic assets is fixed and therefore will reduce the amount of
risk a portfolio encounters. By hedging some determined fraction of capital, an
investor can control and minimize a portfolio’s risk.

1.4 Existing Practice

Electronic trading started to emerge in 1971 with the National Association of
Securities Dealers Automated Quotation becoming the first electronic stock mar-
ket. By 1990 many major security exchanges were fully electronic and matching
algorithms for determining prices were already being implemented. Over the
years, as stock buyers became increasingly aware of trading costs, brokers intro-
duced methods that would allow for direct market access, such as algorithmic
trading. This eliminated the need for a market intermediary in many cases,
reducing the trading costs for the buyer. Different trading algorithms that are
in place can be qualified and categorized by:

e the strategies they employ
e the algorithmic complexity
e the algorithm’s mechanics

Impact-driven algorithms target trades that could considerably change the mar-
ket price and attempt to minimize the effect of the trade on the asset’s price.
Cost-driven algorithms attempt to minimize the overall trading cost by mini-
mizing implicit costs, like the impact-driven algorithms, as well as the explicit
costs. Newsreader algorithms are a more recent development and like the title
suggests, they perform investment decisions based on inputs like news and other
real-time distributed information [9]. Some of the most popular algorithms for
are called automated market making, low latency arbitrage, and liquidity rebate
trading. These methods employ ”"neural networks” and ”genetic algorithms” so
that the rules and assumptions that the market could operate on can compete
and combine to create the most successful outcomes [8].

2 Design Problem Analysis

The team would like to propose a solution to solve the problem of how a fixed
amount of capital can be best portioned across a set of assets to maximize



the expected value that is returned. The problem naturally gave way to the
following list of constraints:

e the mathematical model for the stock market is unknown since there are
many visible and non-visible factors such as company reputation, economic
stability, large trades, company interactions, etc. that contribute to the
changes of the stock return rates

e the only available information is a set of past return rate data, which may
be limited in the amount of data points available

e the computational memory needed for the solution must be minimized
e the time needed for the solution to operate must be minimized

e the solution of investing in stocks must be more profitable for the user
than just investing in bonds

2.1 [Iterative Design

To design a solution to meet these criterion, the iterative engineering design pro-
cess was used. First due to the constraints and the stochastic nature of stock
price, the problem was framed as a stochastic control problem. A centralized
system where a single decision maker acting on the system will be used. In
this given scenario, the single decision maker will not have access to the exact
probabilistic characterizations of the environment. This follows directly from
the fact that the stock market cannot be predicted.

Next, potential design options were considered and investigated. The decision
maker will examine the data and attempt to determine effective policies for the
stochastic control problem. During the problem solving process, the team inves-
tigated Q-learning and dynamic programming as different tools. Q-Learning is
a known method that can be implemented to determine these policies. Dynamic
programming has also been considered, as its role in high frequency trading has
been documented.

After investigation, the team customized the selected tool, Q-learning, and de-
signed our solution for the problem by applying iterative design process. The
team iteratively tested and evaluated different mathematical model decision and
different quantization methods used in the Q-learning algorithms to best fit the
problem. Finally, analytic tests were conducted to validate the design and to
allow for design adjustments to be made. In summary, following iterative design
process is applied to solve the problem:

e Design mathematical model for the problem
e Research potential solutions

e Simulate the solution with generated data



Evaluate and select optimal solution based on the simulation

Iteratively design and evaluate the solution with real data

— Customize the solution to adapt to this unique problem
— Customize the solution to adapt to the real data scenario

— Evaluate the design and repeat above process

Discuss solution performance and design improvement

Discuss and summarize the economic, environmental, social and regulatory
factor the team has considered when designing the solution for the problem

Please see further discussion in the following sections.

3 Mathematical Design Formulation

3.1 State Space

The physical representation of the variables used in the state space are defined
below.

o Let X; = the amount of capital the portfolio has at time t, X; € R>¢

e Let n, = the number of stocks available for investment, ns; € R>g

Let np = the number of bonds available for investment, n, € R>q

Let n = the total number of investments available, n = ns +n4, n € R>g
e Let i =0,1,...,n be the index of the investments

e Let 7¢ = the return rate of the i'" stock or bond at time t, reasonably
ri € [—1,1], but could exist in R

For formulaic simplification, take r{ to be the return rate for choosing not to
invest. With this definition, ) =0 V¢ € R>o. With all of these statements,
the state space X is then as follows:

X =Rsg x [-1,1]"! (1)

which can be extended to:
X = Rn+2 (2)

This means that an element of the state space at time t has the below form:
= (Xe,rd,rt, rl) (3)

Therefore an element of the state space is an (n+2)-tuple.



3.2 Action Space

For the action space, the only other variable that needs to be defined is u?.

e Let u! = the proportion of capital that is invested into investment i at
time t, uj € [0,1] and Y jui =1

The action space is then:
n
A ={(uo, 1,y un) € 0,1 | Y u; =1} (4)
i=0
This means that an element of the action space at time t has the below form:

w=(ud,uf,...,u) (5)

Therefore an element of the action space is an (n+1)-tuple.

3.3 Tramnsition Kernel

The relation that governs the evolution of the capital from time t to time t+1
is seen in the equation below.

X1 = i:Xt up (L+7i4) (6)
i=0
Let R = 1+ r{, then:
Xi+1 = zn:Xt up Ryyy (7)
i=0
Since X; is independent of i, the proportion X)}—tl is:
X;gl = é U% Ri+1 (8)

3.4 Reward Function

For an investor, the time interval to obtain some utility of capital is often
unknown. The benefit of the amount of capital earned at each time iteration is
also relative to the amount of funds the investor currently has. The team chose
the reward function ¢ : X x A — R to be ¢ = log(z) as part of our design. The
log as a reward function captures the decline of monetary valuation as more
money is accumulated. This function also allows for its unique properties to be
used. For this problem, we are looking for max Eflog(Xy)] for some T € Z>0.



Xr X1 Xy

Ellog(Xr)] = Ellog(-"— =+ S+ Xo)] 9)
= Xkt

= Bllog( [ =) +loa(Xo0)] (10)
k=0 K

Zl ’““ )+ log(Xo)] (11)

Now using Equation 8 from the relation of the future and current capital, the
equation can be rewritten as the following.

Z log( ZukRk+1 + log(Xo)] (12)

= E[Z log(> ujRyy1)] + Ellog(Xo)] (13)
k=0 =0
T-1
= Z Ellog ZukRk+1)] + log(Xo) (14)
k=0 i=0

Equation 14 depicts the general cost function for this system. Let Rj be the
column vector of all the return rates at time k and u; be the vector of all
proportions. By conditioning each past vectoral return rate, the law of iterated
expectations can be used to expand the expression. Allowing each of the tilde
variables to be one possible value the non-tilde variable can obtain, this equation
then becomes:

log U, Rk+1)|Rk, Ri_q1,..., Ro]] + log(XO)

Ellog(uy Ry41)|Ry, = Ry, Ri—1 = Ry—1, ..., Ry = Ro] + log(Xo)

MH OM

k:O
T-—1 ~ ~ _ R
= E| [Z P(Ri41 = Riy1|Rr = Ry, Rp—1 = R—1,..., Ro = Ro)
k=0 Rk~+1

log(uy, Ri11)]] +log(Xo)
(15)
Equation 15 holds true for any distribution of the return rates. If {Ry}}_, is
taken to be a Markov Source with memory M, the equation remains the same.
For a Markov Source with memory M, where M < k, the equation is:

Mem M =E[Y [Y " P(Rps1 = Riq1|Ri = By, ..., Ry = Ri_) "
k=0 Rk~+1

log (uy, Ry11)]] + log(Xo)



This concept can reduce the equation if the source is Markov with a memory of
order 1.

T-1
Mem 1= Z > P(Riy1 = Riya|Re = Ry) - log(uy Ricy1)]] + log(Xo)
=0 Ryt
(17)

If instead the return rates are independent and identically distributed (IID) for
each time step, the equation simplifies to the below equation.

~

IID = E| [Z P(Rjs1 = Rpq1) - log(ug Ri1)]] +log(Xo)  (18)

Ri41

[

i
>—‘O

= ZZPR R) - log(u]] R)]] + log(Xo) (19)

k=0

In this equation the individual Ry 1’s are replaced with just R to symbolize the
identical distribution of all return rates at each time step.

4 Solution Design Tool Selection

4.1 Analytic Solution - Dynamic Programming

After the team derived the evolution model, one of the solution options we
discussed was to use dynamic programming to solve the problem analytically.
Recall that this project aims to determine the optimal policy which maximizes
the overall profit by maximizing the profit gain in each investment episode:

E[IOg(Z UZRZH)‘R[O,t]ﬂfo,Fu] (20)
i=0

We assume that at the end of the time, the investor is no longer investing so
the optimal action at t = T-1 is to not invest. And therefore the reward at t =
T-1 will be 0:

JT—I(XT—l) = ma)ecAE[logXT_ﬂ (21)
ur—1
= Ellog Y i, Rj 22
u;n_E?éA [log £ up_ Rp_q] (22)
= El 2
Jmax, [log ;00 x Ry ]=0 (23)

10



At t = T-2, the optimal policy is to maximize the expecting reward at t = T-2.

Jr_a(Xr_s) = max (Ellog ¥ uf oRi o+ Jr_1(X7_1)|Rjo -2, ujo,r—3)))

ur—2€A —
(24)
= E[l G RS | Rior—a1, _ 25
ufi{:’éA( [Og;UT—Q T2 R0, -2, ujo,r—3]]) (25)
Recursively, the dynamic programming recursion is obtained.
Ji(Xy) = mg{gE[log X (26)
= max (Ellog()_ uj Ry 1)| R0, ufo 1)) (27)

ur €A —o
However, since the model of the stock return rates is unknown, the optimal
policy can not analytically be determined using this method. However, in reality,
we generally cannot have a proper model to actually reflect the financial system,
therefore this dynamic programming stated as above cannot be applied.

4.2 Model-free Solution - Q-learning

Model-based algorithms are heavily dependent on the ability to be able to esti-
mate the model well. If the true transition probabilities are drastically different
from what is assumed, the estimation of the expected value is unlikely to do
well. Therefore, the team began to search for model-free solutions to solve the
problem. By model-free, the team means the solution does not require the
knowledge of transition kernel or reward function. We discovered Q-learning
was one of the most commonly used model-free algorithm in the field. There-
fore, we began to study, testify, and modify Q-learning to adapt our project.

Q-Learning is a stochastic approximation algorithm that is used to determine
an optimal policy given a simulated path[16]. The optimal policy is determined
using a table, called a Q-table, where the rows are states and the columns are
actions. The algorithm calculates an expected reward for each state-action pair
and stores it in the Q-table. The Q-table is updated after every episode of
training. Once training is complete, the optimal policy is the set of state-action
pairs obtaining the maximum expected reward. Q-table update algorithms,
also called Q-functions, are based on a reformulation of the Bellman equation.
The Bellman equation uses the dynamic programming paradigm to provide a
recursive definition for the optimal Q-function.

Qiv1 = Qe(we, up) + cplre(we, ug) + B % max(Q(z4+1,v)) — Qu(2s, ur)]  (28)

Here, Q); represents the Q-table matrix at time t, z; € X is the state at time
t, uy € A is the action taken at time t, r; is the reward of taken action w,

11



after observing state x; at time t., and v is an action that maximizes the future
estimate Q value under state z;y1. Each a4 is a step-size coeflicient which repre-
sents how much the algorithms trust the future estimation. The larger the (ay)
is, the higher trust the algorithms put into the estimate of the future Q-value
for time t. [ is a learning rate coefficient which represents how far in the future
the algorithms is predicting. The larger the § is, the further the algorithms is
predicting the future at time t. Note that, in order for Q-table to converge to
a fixed optimal solution, each state-action pair must be visited infinitely many
times|[15].

Equation 28 is applied to data based on Markovian model. In order to ap-
ply Q-learning to data with an IID model, modifications should be made in
order to address that independence characteristic of the IID model. Therefore,
the Q-function for this model is:

Qi1 = Qe(uy) + ayfre(ug) + B x HL%X(Qt(Ut)) — Q(uy)] (29)

where past states are not observable.

4.3 Comparing Dynamic Programming and Q-learning

When comparing the solution options, the team considered the following factors:
e case of implementation
e efficiency of calculation
e case of interpretation
e performance

In order to determine which model the team should focus on, the following com-
parison was established:

12



Trade-off Analysis

Criteria

Dynamic Programming

Q-learning

Ease of Implemen-
tation

Relatively easy to deter-
mine the analytic func-
tion but impossible to
obtain the proper dis-
tribution model for
the system.

Relatively complex to
implement. Extra effort
is required since the state
space and action space
must be quantized.

Efficiency of Calcu-
lation

High efficiency of calcu-
lation through an ana-
lytic process.

In order for the Q-table
to converge to a fixed
optimal solution, each
state-action pair must be
visited infinitely many
times.  Therefore, the
algorithm requires large
amounts of data and cal-
culation.

Ease of Interpreta-
tion

Easy to interpret due to
its analytic characteris-
tic.

Easy to interpret due the
well-defined analytic Q-
function.

Performance

Provide accurate results
through an analytic pro-

Provide optimal results
given enough training.

cess.

According to the comparison above, we can see that dynamic programming
as an analytic approach can provide more accurate result, is easier to under-
stand and is more efficient in terms of calculation. However, due to fact that no
proper distribution model can be determined for the return rate to accurately
reflect the financial system, the advantages of dynamic programming lose their
value. Therefore, the team decided to choose Q-learning as a part of the design.
The algorithm would need to be modified to better adapt to the system. For
example, to address the constraint that the Q-table must be finite, quantization
of both state space and action space must be performed.

5 Design Experimentation and Simulations

In order to verify the effectiveness of Q-learning for investment problems, the
team first simulated stock data to test the Q-learning algorithm for both the
IID data model and the Markovian data model.

To better address the constraints of Q-learning, the team designed the environ-
ment in the following way. Please note that the assumptions and design used
in this simulation stage might be modified or improved for training and testing
on the real data in the later phases. For example, a more robust quantization
process would be established.

13



5.1 Simulation Assumptions and Design
5.1.1 Modeling the Stock Environment

When modelling the stock environment, the team created four equities. For a
given equity, the team generated its daily return rates to satisfy either IID or
Markov properties. The set of daily return rates for all equities were then fed
into the Q-learning algorithms as the observation of the environment.

When quantizing the state space, the team assumed any return rate r € [—0.05,
0.05] to be r =0, r € [-1,—0.05) to be r = —1 and r € (0.05,1] to be r = 1.
This assumption was made due to the fact that an effective Q-learning process
requires the state space to be a finite space.

5.1.2 Modelling the Interaction with the Environment

In the physical world, stock buyers invest in equities by dividing their existing
capital for each equity. Therefore, the action could be modeled as the propor-
tions of capital for each equity where all proportions sum up to 1. However, to
simplify the experiment, the team simplified the action by limiting the possible
choice of proportion as 100% and 0%. This meant that, for each time step, the
machine would invest 100% of the capital into one of the equities and invest 0%
of the capital into other equity. This assumption was not just to simplify the
situation but also to satisfy the finite action space criterion.

Secondly, the team assumed the investment cycle to be one day. This means
the buyer would not hold any equity for more than one day and he buys or sells
the equities on a daily basis.

For the goal of the interaction, the team assumed the winning condition was to
double the capital. In other words, the team was testing if the Q-learning can
make correct decisions to double the initial capital.

5.1.3 Summary of Key Assumptions in Simulation

e Environment Design: Any return rate r € [—0.05,0.05] was observed to
be r = 0, r € [-1,—0.05) was observed to be r = —1, and r € (0.05,1]
was assumed to be r =1

e The return rate is modeled as daily return rate.

e The proportion of the capital investing can only be 100% or 0%, i.e buyers
can only buy one equity at any time ¢.

e The investment cycle is assume to be one day. The buyer would not hold
any equity for more than one day and he buys or sells the equities in a
daily basis.

14



5.2 IID Model Simulation
5.2.1 Data Simulation Process

In an IID data set, the stock return rate at time ¢ is independent of the stock
return rate at time ¢ — 1 for a given stock. Therefore, when generating the
data points of stocks, the team generated the data points that were uniformly
distributed over the interval [—1, 1]. In other words, any value within the given
interval was equally likely to be generated. When generating the data for bonds,
the team generated a return rate that was consistently » = 0.05. When generat-
ing the data for the dummy equity indicating Not-investing, the team generated
a return rate that was consistently r» = 0.00.

5.2.2 Experiment I: Four IID Equities

In this experiment, the team generated IID equities as four general stocks. Every
one of the stocks has a IID source and so no correlation can be found between
any two data points.

The learning result met the team’s expectation that the Q-learning algorithm’s

strategies demonstrated randomness and could not determine which stock was
the most likely to gain profit.

Capital Attained at Each Decision with 10 Ep of Training
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Figure 1: Four Stocks with IID Source

The result in Figure 1 demonstrated that Q-Learning could not effectively
determine an effective investment policy within 100 days of investment.
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5.2.3 Experiment II: Three IID Stocks with One ITD Dummy Equity

In this experiment, the team generated IID equities as one dummy equity, not-
investing, and three general stocks. The result met the team’s expectation that
the Q-learning algorithm could indicate that consistently choosing dummy eq-
uity was the best strategy - because dummy equity was the most predictable
equity and thus the safest one.

Capital Attained at Each Decision with 10 Ep of Training

105.0 4

102.5 4

100.04 = D - -

97.5 4

95.0 4

Capital Attained

92.5 1

90.0

87.5

Day
Figure 2: Three IID Equities with One of Them Indicating Not-investing

After the team introduced a dummy stock, Figure 2, with constant return

rate 0% among the ITD sources in order to represent the choice of not investing,
the Q-learning table often computed a maximum expected future reward by
choosing not to invest.
By examining the Q-table, the team can see that the program had learned to
reward the action of choosing dummy equity “Equity 0”. In other words, it
had successfully developed a policy of choosing the most predictable equity, the
dummy equity, so that the risk could be reduced.

5.2.4 Experiment III: Three IID Stocks with One of IID Bond

In this experiment, the team generated IID equities as one bond and three
general stocks. The result met the team’s expectation that the Q-learning al-
gorithm consistently chose the bond as the best strategy, since equity was the
most predictable equity, thus the safest one, and it provided a greater return
than a dummy would.

16



Capital Attained at Each Decision with 10 Ep of Training
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Figure 3: Four IID Equities with One of Them Indicating Bond Equity

As shown in Figure 3, if the team introduced a fixed asset, or bond, the
Q-learning developed a policy that it would often choose to invest in it, rather
than the stocks with IID return rates.

5.2.5 Experiment IV: Two IID Stocks with One IID Bond and One
IID Dummy Equity

In this experiment, the team generated IID equities as one dummy equity, one
bond, and two general stocks. As expected, due to the predictability, the algo-
rithm chose bond and not-invest most of the time. Comparing with Experiment
I1I, having the option of not-invest reduces the profitability.
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Figure 4: Four IID Equities with One of Them Indicating Not-investing and
One of Them Indicating Bond Equity

When both dummy equity and bond were introduced, the Q-learning de-
veloped a strategy similar with Experiment III: Investing in bond, while also
adding action of not-investing sometimes, Figure 4.

5.3 Markov Model Simulation
5.3.1 Data Generating Process

In a Markov data set, the stock return rate at time ¢ is dependent on the stock
return rate at time ¢t — 1 for a given stock.

Therefore, when generating the data points of equities, the team first made
an assumption for the potential return rates of the given stock, then the team

made an assumption for the 1-step transition matrix.

For this set of the experiment, the team generated the data for three kinds
of equity: bond, stocks, and dummy equity indicating not-investing.

For a low reward but more predicable equity, a bond, the team assumed the
possible return rates:

[~0.05 0.00 0.05]

with the transition matrix:
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0.8 0.1 0.1
0.1 0.8 0.1
0.1 0.1 0.8

The team denoted this kind of equity as “Stock 0”.

For a larger reward but less predictable equity, the team assumed the possi-
ble return rates to be:

[~0.25 0.00 0.25]

with the transition matrix

0.8 0.1 0.1
0.1 08 0.1
0.1 0.1 08

The team denoted this kind of equity as “Stock 1”.

For a big reward but even less predictable equity, the team assume the pos-
sible return rates to be

[—0.05 0.00 0.05]

with the transition matrix

02 04 04
04 02 04
04 04 0.2

The team denoted this kind of equity as “Stock 27.

For a big reward but even less predictable equity, the team assume the pos-
sible return rates to be

[~0.25 0.00 0.25]

with the transition matrix
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02 04 04
04 02 04
0.4 04 0.2

The team denoted this kind of equity as “Stock 3”.

For the dummy equity indicating not-investing, the team generated the return
rate that was consistently r = 0.00. The team denoted this kind of equity as
the “Dummy”.

5.3.2 Experiment I: Four Stocks of Markov Source

Consider now the return rates being modeled by a Markovian process of mem-
ory 1. As expected, this yielded better results than the IID scenario.

In this experiment, the team generated four Markovian source stocks: “Stock
07, “Stock 17, “Stock 2”7, “Stock 3”. Therefore in this case the algorithm would
not have the option of not-invest. Obviously, “Stock 3” with largest possible
return rate and highest predictability was the optimal solution. The following
figure shows what policy Q-learning developed.
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Figure 5: Four Markov Source Stocks

As expected, the program developed a policy of investing the stock with
highest probability of higher profit, this is seen in Figure 5. We can also examine
the Q-table to see if the program was making the correct decision in the process.
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5.3.3 Experiment II: Three Markov Source Stocks With One Dummy
Equity

In this experiment, the team generated three Markov source stocks with one
Dummy equity. As expected, this yields better results than the IID process.
The capital earned in this scenario was the highest amount among all the test
as shown below.

Capital Attained at Each Decision with 10 Ep of Training

25000 - .
.
20000 -
o
o
£
g 15000 -| ."
= 10000 A .
.
. 4
L
-
5000 | &
o
-
0 _,_-———-p-—‘-’f
T T T ’ ' T
0 20 40 60 80 100

Figure 6: Three Markov Source Stocks with One Dummy Equity

The capital earned in this trial was higher than the previous case. The team
believed that the existence of a Dummy equity in this experiment helped the
algorithm to preserve capital when the risk of investing was high, which helped
to achieve higher profit.

5.4 Simulation Conclusion and Analysis

According to the experiment’s result, the team concluded that Q-learning worked
better for Markov data and was less desirable for IID data in general. For a
Markov data set, the Q-learning algorithm could always learn the best strat-
egy. However, for an IID source, the effectiveness of the Q-learning algorithm
depended on the combination of the equities - most of the time, it tended to
choose the best or the safest option, either to not-invest or the bond.

Note that, some of the experiment assumptions or implementation decisions
might have limited the discovery or caused unexpected results for the experi-
ments.

Recall that any return rate r € [—0.05,0.05] was assumed to be r = 0, r €

[-1,—0.05) was assumed to be r = —1, and r € (0.05,1] was assumed to be
r = 1. This threshold of discretizing the return rates might not best simulate
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reality. Under this threshold, an equity with » = 0.06 and an equity with r =1
would be considered as two equities with the same profitability at a given time
t. The team might need to consider the effectiveness of this threshold.

Another decision was that the return rate was modeled as a daily return rate.
In reality, it is obvious that the stock return rate varies more within one day
than within one hour. In other words, the stock return rate generated in the
current experiments was more similar to an IID random variable. If hourly data
was observed and in a high-frequency trading scenario, Q-learning is expected
to work better.

In terms of action, the team assumed that buyers can only buy one equity
and on a daily basis. This reduces the possible combination of actions and thus
reduces the power of Q-learning.

6 Design Implementation with Real Data

6.1 Design Assumption and Decisions

The success of obtaining a optimal solution for our problem relies on the conver-
gence of the Q-learning. The convergence of the Q-learning has been proved by
many mathematicians under different setup of assumptions. The team adopted
the proof[15] by Tsitsikis in which the assumptions were relatively more general
and were more suitable for our case. Tsitsikis’s proof of convergence extended
from the classical proof. It allowed the cost per stage (the reward in our case)
to be unbounded random variables; it allowed the decision on which the action
to take next to depend on past experience (knowing the past return rate in our
case); it also allows « to be a random variable (therefore we can test different
« values in our design process.)

According to Tsitsikis, in order for Q¢ (z¢, us) converges to the optimal Q(x,u)*,
several conditions need to be satisfied:

Assumption 1: Even though information can be outdated, old information will
be eventually discarded.

Assumption 2: The decision on which the action to take next can depend on
past experience.

Assumption 3: For every i, ».,° a;(t) = oo, which is a standard assump-
tion for stochastic approximation algorithms.

Assumption 4: g < 1.

Assumption 5: Denote the mapping 7 (¢, us) + 8 X max, (Q¢(x¢41,v)) as F(Q).
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We assume there exists a vector Q* € R™, a positive vector v, and a scalar
B €[0,1), such that ||F(Q) — Q*|], <= 8]|Q — Q*||»,VQ € R™.

Assumption 6: The state space and action space are finite.

Under these assumptions, Q-learning converges. We will not further discuss
about the proof of convergence here. In order to satisfy the above conditions,
several design decisions were made when implementing the Q-learning algo-
rithms:

e In our design, all state-action pairs were updated in every episode, which
means no outdated information existed. Therefore Assumption 1 was
satisfied.

e The team established testing in Markov model which satisfies Assumption
2 by definition of Markov process. When the team test the algorithms with
I.I.D. model, this assumption is not satisfied and the optimizing result was
not satisfactory either. Further discussion will be provided later.

e For each real stock, over 25000 data point (return rate in our case) were
collected so that each state would be simulated to be visited infinitely
many times, which satisfies Assumption 3.

e 3 was taken to be 0.85, which satisfies Assumption 4. The value was
determined to be the best value after several testing.

e o« = 0.001 < 1. The value was determined to be the best value after
several testing.

e Quantization was performed for state space and action space so that As-
sumption 6 is satisfied. Further discussion of quantization will be provide
in the following sections.

Based on the above design decisions, assumptions 1, 2, 3, 4 and 6 were satisfied
in our design for the Q-learning to converge. However, Assumption 5 (F(Q)
was not fully addressed. Further discussion will be provided in section Design
Evaluation. Further discussion of the last decision, quantization of state space
and action space, is provided in the following sections.

6.2 Quantization of State Space and Action Space

In order to be able to perform calculations, the state and action spaces needed
to be quantized into finite sets. This allows for analysis to be performed in finite
time and allows for Q-learning to be employed.

6.2.1 State Space Quantization

A component of a tuple of the state space has no dependence on the other com-
ponents, therefore the state space can be quantized with a linear quantizer. The
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first quantization method that was considered was the Lloyd max quantization
algorithm. This algorithm was chosen first because it only utilizes a training
set, not a distribution and in the definition of this problem, it is assumed that
there is accessible training data for the return rates. A Lloyd-Max quantizer is
a quantizer that satisfies the centroid and nearest neighbour conditions. Those
conditions are presented below.

Nearest Neighbour Condition: For an n-level quantizer with with output points
Y1, ---, Yn, any quantizer with regions such that

R; C{z :d(z,y;) <d(z,y;),j=1,...,n} fori=1,..,n
has minimum distortion.

Centroid Condition: For an n-level quantizer with given regions Ry, ..., R, then
the quantizer with output levels given by

y; = argmin F[d(X,y)|X € R;] fori=1,..,n
yeR

has minimum distortion.

These two conditions are iterated through in an alternating fashion to first
optimize the regions given the codepoints, then the codepoints given the new
regions. The full algorithm is seen below.

Step 1: For a training set 7', initial codepoints €1 = {ygl), ceny y,(Ll)}, and thresh-
old € > 0, start with m = 1 and the distortion is D; = E[d(X, Q™M (X))]

Step 2: For the current codebook %,

e Use the nearest neighbour condition to find the optimal set of parti-
tions Rgm), ., RI™

e Find the next optimal codebook %, 1 using the centroid condition
Step 3: Compute D,,,1 = FE[d(X, QT (X))]

Step 4: If D"%i’"“ < €, then €,,+1 is the optimal quantization. Otherwise,
increment m and return to Step 2

While this algorithm is very useful, it could not be applied to the state space
since the dynamics of the system do not match the mean squared distortion used
in the Lloyd-Max algorithm. Alternatively, a uniform quantizer was explored.
A uniform quantizer cuts the interval into equal weighted pieces. For an n-level
quantizer with training set T" where |T'| = s and intervals R; are bounded by
x;_1 and x;, then the bounding points are:

T(3)) +T(s +1))
2

Ty =

(30)
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and the output points are:
_ Ti—1

Yi = 5
For our purposes, any points outside of the interval [—1,1] are mapped to the
nearest interval. This means zg = —oo and xz,, = oo but they are taken to be
-1 and 1 respectively for the output point calculations. This quantizer fit the
system and was the method of quantization that was used going forward.

(31)

6.2.2 Action Space Quantization

The action space quantization needed to be approached differently than the
state space quantization because an element of the action space has interde-
pendent components due to the constraint that all components must sum to
one. This means that this space must be quantized with a vector quantizer.
The process for the vectoral quantization was adapted from a paper on finite
model approximations for partially observed Markov decision processes.[13] The
algorithm quantizes the space by constructing a type lattice with the nearest
neighbour method on the m*" order simplex where m is the order of the space.
From the paper, the quantized simplex Z,, is defined as shown below.

ki
Zy ={(P1, s pm) € 2™ 1 p; = E’Zki =n} (32)

For the investment situation, m would be the number of stocks and bonds that
are being considered, and n is the number of quantizations over the simplex that
are desired. In order to find the best code point, k;, corresponding to a given
element of the action space, the algorithm below was used.

Step 1: Fori = 1, ... , m and element z of the action space simplex, compute

the following:
1
i {nz + QJ

m
r /
n' = E k;
i=1

L L

Step 2: if n’ = n, then the nearest element in the lattice is (3%, ..., ==)

Step 3: otherwise find the errors of the values
8 =kl —nz;
Step 4: sort the above errors such that the jth smallest error is labelled
0ij
Step 5: define A such that A =n' —n
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Step 6: if A > 0, then using the new indices from the errors,

K ifi=1,.. , m-A-1
kij: <
ki; =1 ifj=m-A, .. ,m

Step 7: otherwise:

i ki, +1 ifj=1,..,|A]

ij = e
ki ifj=|Al+1,...,m

Step 8: With these new k’s defined, the set (%1, e %") becomes the nearest
element in the lattice given any element z in the simplex.

By choosing different n values, different orders of quantizations can be ob-
tained and used to balance the design constraints of precision, computation
time, and memory. The relation between the quantization step size and the
amount of memory needed for the Q-table is summarized in the graph below.
It clearly depicts an exponential increase of memory with the decrease of step
size between quantizers.

Consequence of Action Space Quantization
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Figure 7: Effect of Action Space Quantization on the Size of the Q-table

7 Iterative Design with Real Data

To test the the performance design, the team observed the performance of Q-
learning on real data while iteratively varying Markov degree, state space quan-
tization and action space quantization. Real data was obtained for Microsoft,
IBM and Qualcomm. For the initial investigation, the team observed the per-
formance of Q Learning with the return rates treated as I.I.D. and the action
space uniformly quantized with size 0.1. Below is the performance of this con-
figuration on 1000 samples of testing data.
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Figure 8: Training on real data treated as I.I.D. with action space quantizer
length of 0.1

This design configuration yields a positive performance, however, the value of
the portfolio is very volatile. This is due to the policy yielding the same action
regardless of the previous states of the stocks as they are assumed to be I.I.D.
in this experiment. Therefore, the value of the portfolio varies with the inherit
randomness of the 3 stocks. Expanding on this idea, the team repeated the
experiment with the return rates treated as Markov memory 1. By doing so,
the Q-Learning agent approximates a stationary policy based off the previous
state of all assests. Training on the real data and applying the policy obtained
to the testing data yeilds the following performance.
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Figure 9: Training on real data treated as Markov 1 with action space quantizer
length of 0.1
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This configuration appears to have a more consistent performance over the test-
ing period than the I.I.D. configuration. Furthermore, increasing the degree
of memory once again yields the following performance. In this situation, the
Q-Learning agent is approximating a stationary policy based off the previous
two realizations of each of the 3 assets.
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Figure 10: Training on real data treated as Markov 2 with action space quantizer
length of 0.1

Here the performance appears to decrease in comparison to the Markov 1 con-
figuration. This result is likely due to the configuration not meeting the re-
quirement of entering each state infinitely often over the training period. In
this experiment, the Q-table is much larger than previous experiments and the
length of the data is kept the same. Such a design configuration requires a larger
training data set or increased action space quantizer length to meet the criteria
of Q-learning to arrive at a approximately optimal policy. As we do not have
more data, consider the following performance where the action space quantizer
length is increased.
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Figure 11: Training on real data treated Markov 2 with action space quantizer
length of 0.2

This configuration yields a better performance than the previous experiment,
where the action quantizer length was larger, however, the policy obtained does
not perform better than the Markov 1 configuration.

The team arrived at the conclusion that the state space quantization, Markov
order and action space quantization must be balanced to ensure each state action
pair is visited infinitely often in the training period to ensure the Q-Learning
agent can approach an approximate optimal policy.

In terms of evaluation session of this iterative design process, the team de-
termined the empirical transition matrices and evaluated the above result by
determining the optimal optimal using MatLab. The evaluation process is dis-
cussed in the following section.

8 Evaluation Process of the Iterative Design

The state space quantization, Markov order and action space quantization must
be balanced to ensure the Q-Learning agent can approach an approximate opti-
mal policy. When the team iteratively adjust the design in order to optimize the
performance, we adopt the following evaluation process. The team determined
the transition matrices of the stocks and obtained optimal policy from empirical
data using MatLab. Then the MatLab result was compared to the Q-learning
result in order to verify the design decisions made when performing the algo-
rithm. This process allowed for the Q-Learning results to be debugged,and then
analyzed through out the iterative process.
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8.1 Determining Empirical Transition Matrices

While Q-Learning does not need the probability distribution of a source to
function, to debug the algorithm and verify the results, MatLab could be used
to analytically solve the optimization problem. Though to do this with the
stock data that was obtained for the stocks that were used for testing, empirical
transition matrices must be generated for the different memory lengths. For a
set of data, T, the empirical distributions for the IID case were generated with
the following algorithm:

71,
P(i) = [Zﬂ_lﬂz} Vie{l,..,n} (33)
This was then adapted for Markov memory one with the below equation.

7l ,
AN k=1 "Tk=1,Tkp-1=] ..
P(i,j) = [ Ty 4 } Vi,je{1,...,n} (34)
Zk:1 Tr—1=J

The above result is then generalized for a Markov chain of order m below.

Tl »
P(i0>“‘7im) — [ 7 k=1 "Tk=%05-Tk—n=tm :| V{i07~-~,im} c {17 ...,n}m'H
k=1 1$k—1:$k71:i17...,mk7n:im

(35)
These results are an application of Baye’s rule and provide the empirical distri-

butions needed for the analysis.

8.2 Optimizing the Control Inputs with MatLab

The Q-Learning algorithm that was constructed outputs one action for each ex-
tended state that the process could be in, where the extended state is the set of
states for the memory length of the particular source. To compare the MatLab
optimized results to the Q-Learning, the transition matrices were decomposed
into sets of I.LI.D. sources, then optimized separately. By considering the tran-
sition matrix for a Markov Chain of order 1, it can be seen that the matrix can
be deconstructed.

This means that for a first order Markov chain z;, the probability can be written
as:
P(zy =blr; 1 = a) = P(y; = b) (36)

where y; is an IID source with its probability distribution given by the row
corresponding to state 'a’ of the transition matrix.

This means that depending on the number of states that the state space is
quantized to, 3 in our case for now, the Markov memory one source can be
split into that many IID sources as dictated by the rows of the transition ma-
trix. Each IID source can then be processed by the MatLab code independently
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which will create investment proportions for each source. This can be extended
to any memory of Markovian source. For a Markov chain x; of order N with m
states, it can be deconstructed as follows:

P(r; =blry—1 = a1, ....0_Ny1 = AN_1,T-N = a) =

37
P(yf = b|yt—1 = a1,y Yt—N+1 = aN—l) ( )

Where a € {0,1,...,m — 1} and y§ is a Markov chain of order N - 1 with dis-
tribution equivalent to the m x m x ... x m matrix (N - 1 times) corresponding
to the state ’a’. This process can of breaking up the Markov chain can be done
recursively until only IID sources are left. In the end, for a Markov source of
memory N, you would be left with m” ~! IID sources where m is the number of
states.

After a set of IID sources has been obtained from the transition matrix, each
source can be optimized to find the optimal action for each extended state. This
was done with the use of the CVX package for MatLab which minimizes convex
functions and maximized concave functions. The algorithm to determine the
optimal actions for each extended state is presented below.

equation = 0
forall r e X
equation = equation + P(X = x)log(u(1 + 1))

find vector u to have max equation (38)
ue

m
where Zak =1,0<a; <1,Vag € u
k=0

Put all together, this process allowed for the Q-Learning results to be debugged,
and then analyzed.

9 Design Improvements

9.1 Include Coefficients Optimization in the Iterative De-
sign Process

One major improvement can be done in the future is to apply the Q-learning
algorithm with more adaptive setup - allowing the the learning rate o and at-
tenuation coefficient 8 change and adapt to different phases of the training
process. Currently, the learning rate o and attenuation coefficient S are de-
terministic through out an training-testing iteration. (By ”deterministic”, the
team meant that these two coefficient remain unchanged through out a single
experiment.) According to Tsitsiklis’s paper on the convergence of Q-learning
[15], the algorithms can still converge to optimal policy even with « and S be-
ing random variables. Therefore, the team can theoretically change the value
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of these two coefficients during the training process if needed. For example,
the team can gradually increase the learning rate alpha as the training process
move forward, which allows the algorithm to weight the estimate of future value
more in the later phase of the training. This is a valid action because the more
training is done, the higher the accuracy of the future prediction will be. Similar
argument applies to the attenuation rate 5. Therefore, by making the learning
rate and attenuation rate a dynamic variable, the team expects the Q-learning
algorithm to have better performance.

9.2 Customize Memory Order for Different Stocks

nother design improvement would be to adapt the algorithm so that each stock
could be a different order of memory length so that the design model for each
stock would be more accurate. Currently, when all the stocks are tested simul-
taneously, an assumption was made such that they all have the same Markov
memory order. The only customization for different stock was that they had
different transition matrices. This might not fully reflect their nature. The team
would like to implement a model such that different stocks can be considered
as having different order of memory while being tested simultaneously, Tests
with different sets of real data would also allow performance of the designed
algorithm on an arbitrary predicted.

9.3 Train with More Data

The last design improvement would be performing more training and tests.
Theoretically, all state-action pairs are required to be visited infinitely many
times for Q-learning algorithm to converge to the optimal policy. Ideally more
training data could be obtained so that the algorithm can more accurately train
for Markov chains of higher order. However, one must consider the change in
behavior of assets over time. If the team applied larger data sets, the older data
may not appropriately represent the general behaviour today.

10 Environmental, Economic and Social Con-
siderations

10.1 Economic Considerations
10.1.1 Maturity of Algorithmic Trading Technology

As with any stochastic process, there is always a chance for a negative out-
come. In regard to algorithmic trading, this can come in the form of erroneous
trades leading stock market crashes. The International Organization of Secu-
rities Commissions Technical committee found that the strong connections be-
tween financial markets where algorithmic trading and high frequency trading
is used can lead to rapid shocks chaining from market to market [11]. This leads
to an overall amplification of risk. One notable example of this was the market
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crash in May 2010, known as the Flash Crash. During the Flash Crash, a 5
to 6 percent oscillation of stock prices in major US equity in the span of only
a few minutes occurred. The Dow Jones dropped approximately 1000 points
that afternoon, a record drop at the time of occurrence [10]. The cause of the
crash was from a single user placing large amounts of fake orders of an asset,
who then cancelled them just before they were completed. This results in the
trading algorithm receiving inputs of a certain market trend and making trades
accordingly, while there was no market trend to begin with.

10.1.2 Volatility of the Stock Market

Other economic considerations of algorithmic trading include the intensifying
volatility of the market. With many investors currently using algorithmic trad-
ing, a situation is created where each algorithm is trying to operate more effi-
ciently than each other algorithm. To do this, the algorithms need to operate
instantaneously. When markets are unsteady, this will result in algorithms di-
versifying assets to avoid being forced to take a position in which way to trade,
which results in a decreased market liquidity and creates greater market volatil-
ity [17].

10.1.3 Reliability of the Algorithm

Another aspect to consider is the possibility of a faulty algorithm. As a result
of the instantaneous operating speeds of algorithmic trading, an incorrect algo-
rithm can lead to a cascade of faulty operations, and large sums of lost money.
An example of this can be seen in faulty algorithm that Knight Capital used,
which lead to a 440 million dollar loss in a 45 minute time window [7]. The
error in the algorithm occurred as a result of the algorithm buying stocks at
a greater price than needed, then selling them for less than the going value.
Other algorithmic trading operations picked up on the mistake, which lead the
company so close to bankruptcy that it got acquired by a larger corporation.

10.2 Environmental Considerations
10.2.1 Resource Consumption when Using Technology

Environmental impacts of algorithmic trading, or any other software application
for that matter, are not always immediately obvious. However, these operations
do not exist in a vacuum, and further context needs to be examined. Firstly,
it has to be noted that software cannot exist without hardware. The hard-
ware manufacturing industry uses natural resources such as energy, clean water,
heavy metals, and rare earth metals, all of which have a large environmental
impact[14]. The harm to the environment is more apparent when viewed in the
context of a supply chain. Each component of the hardware must be manufac-
tured, shipped, and assembled, just to operate the algorithmic trading program.
Clearly, there is a correlation between the amount of algorithmic trading in the
market and environmental impact; greater use of algorithmic trading requires
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greater hardware requirements. With an estimated 80 percent of stock market
trades being algorithmic in nature, this is a significant impact [3].

10.2.2 Resource Consumption when Performing Complex Calcula-
tion

Another environmental aspect to be considered the computational power used
by the algorithm. A more complex algorithm with result in more computing
power used, and a larger environmental impact. While this may seem insignifi-
cant, many people using an inefficient algorithmic trading algorithm would lead
to a large amount of unnecessary energy usage. Additionally, a less complex
algorithm would lead to less strain on the hardware, and thus a longer lifespan
of the hardware. In turn, this would lead to less discarded electronics, which
is a significant environmental issue [1]. As a result, effort was taken to ensure
our algorithm was developed with complexity in mind. This can be seen in our
quantization design process.

10.3 Social Considerations
10.3.1 Reduce Risks of Investment

In our society today, investment is inevitable. If assets are not gaining value
in some way, they will depreciate due to inflation. As such, having a safe and
accessible way to invest would benefit society as a whole.

Currently, many individuals choose not to invest in the stock market. The
volatile market and misunderstanding of the stock market are two key reasons
for the lack of investment [4]. Using algorithmic trading, investors can get a
sense that their money is being managed properly if they trust the algorithm.
To ease concerns about investing in a volatile market, many younger individu-
als, and a growing number of older individuals, trust computers over humans to
make the correct decisions [5].

Although there are many benefits to investing, mismanagement of funds can
lead to devastating social outcomes. An example of this mismanagement of
funds can be seen in the 2008 recession. Due to a lack of proper risk mitigation
and inadvisable mortgage practices, the stock market crashed [2]. This lead to
a job losses, foreclosures, and many other harmful social impacts to society.

10.3.2 Case Study of Benefits of Algorithmic Trading

There are many scenarios in which algorithmic trading can be used beneficially
for society. One example would be the algorithmic trading used in the Canadian
Pension Plan. Currently, the Canadian Pension Plan uses a combination of
algorithmic trading and manual trading [6]. This combination of computer use
with human oversight leads to optimal trading outcomes without the associated
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human errors such as letting emotions influence decision making. Additionally,
the human oversight can assist in mitigating risks within the algorithm.

10.4 Regulatory Considerations

The Electronic Code of Federal Regulations, Section 240.15¢3-5a (b) tell us
that “A broker or dealer with market access, or that provides a customer or any
other person with access to an exchange or alternative trading system through
use of its market participant identifier or otherwise, shall establish, document,
and maintain a system of risk management controls and supervisory procedures
reasonably designed to manage the financial, regulatory, and other risks of this
business activity” [12]. Additionally, from Section 240.15¢3-5a (¢)(1)(i), we must
“Prevent the entry of orders that exceed appropriate pre-set credit or capital
thresholds in the aggregate for each customer and the broker or dealer and,
where appropriate, more finely-tuned by sector, security, or otherwise by reject-
ing orders if such orders would exceed the applicable credit or capital threshold”.

Firstly, our risk management controls must be addressed. Our algorithm is
easily halted, which could quickly stop any erroneous trades if they begin to oc-
cur. Secondly, we must address the issue of exceeding a pre-set capital threshold.
Since only initial capital is invested, and the proportions of the partitions of our
initial capital sum to one, it is impossible for our algorithm to exceed any capital
threshold that is set.
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