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Abstract

This paper develops a new neural network architecture for modeling spatial distributions (i.e., dis-
tributions on Rd) which is computationally efficient. The design of the architecture takes advantage of
the specific structure of limit order books. The new architecture, which we refer to as a “spatial neural
network”, yields a low-dimensional model of price movements deep into the limit order book, allowing
more effective use of information from deep in the limit order book (i.e., many levels beyond the best
bid and best ask). The spatial neural network models the joint distribution of the state of the limit order
book at a future time conditional on the current state of the limit order book. The spatial neural network
outperforms status quo models such as the naive empirical model, logistic regression (with nonlinear
features), and a standard neural network architecture. Both neural networks strongly outperform the
logistic regression model. Due to its more effective use of information deep in the limit order book, the
spatial neural network especially outperforms the standard neural network in the tail of the distribution,
which is important for risk management applications. The models are trained and tested on nearly 500
U.S. stocks. Techniques from deep learning such as dropout are employed to improve performance. Due
to the significant computational challenges associated with the large amount of data, models are trained
with a cluster of 50 GPUs.
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1 Introduction

The “limit order book” of a stock consists of all of the active buy and sell orders at all price levels. At any
point in time, it describes the known supply and demand for the stock. The prices at which the stock can
be immediately bought and sold are the best ask price and best bid price of the limit order book, respec-
tively. Modeling is challenging due to the complexity and high-dimensionality of limit order books. A limit
order book consists of many price levels where orders may be submitted and its dynamics are nonlinear.
Modeling requires the analysis of large amounts of data, which can be both statistically and computationally
challenging.

This paper develops a data-driven model for limit order books that addresses these challenges. We design
a new deep neural network architecture for modeling spatial distributions (i.e., distributions on Rd). The
architecture is designed to take advantage of the specific structure of limit order books. In our out-of-sample
testing on limit order book data, the spatial neural network outperforms a standard deep neural network.
Both neural networks outperform logistic regression (with nonlinear features) and the naive empirical model.

The new neural network architecture (i.e., the spatial neural network) developed in this paper also has
some other advantages for modeling distributions on Rd as compared to the standard neural network archi-
tecture, including lower computational expense, the ability to take advantage of any “local spatial structure”,
and greater interpretability. Although this paper focuses on limit order books, the proposed neural network
architecture may be useful for other applications in engineering and economics.

We find statistical evidence for a particular form of local behavior in limit order books which has a simple
economic interpretation. Price movements into the limit order book can be decomposed into a sequence of
steps where each step only depends locally on the state of the limit order book (see Section 3 for details).
The spatial neural network’s architecture mimics this local behavior, yielding a low-dimensional model of
price movements deep into the limit order book. This allows the spatial neural network to more effectively
use information from deep in the limit order book (beyond the best bid and best ask prices). Furthermore, it
makes the architecture (and the source of its increase in performance) more interpretable from an economic
viewpoint. We use this deep spatial neural network to model the joint distribution of the best ask and best
bid prices at a future time conditional on the current state of the limit order book. For the dataset considered
in this paper, the spatial neural network has lower out-of-sample error, shorter training time (i.e., lower
computational cost), and greater interpretability than the standard neural network.

The standard neural network can only model a distribution on a truncated region of Rd. In contrast, the
spatial neural network can model a distribution on the entire space Rd. Although a distribution on a bounded
region may be sufficient in some limit order book applications, modeling distributions on the entire space Rd
can be useful in other engineering and economic applications. In order to use the spatial neural network to
model distributions on Rd, it must be mathematically shown that it is a “well-posed” model for distributions
on Rd (i.e., the distribution does not have positive mass at ∞). We prove that the proposed spatial neural
network is well-posed for several common choices of hidden units for neural networks (see Section 4.4).

We compare several approaches for modeling the joint distribution of the best ask and best bid prices at
a future time conditional on the current state of the limit order book. In out-of-sample tests, neural networks
strongly outperform simpler approaches such as the naive empirical model and logistic regression. The input
for the logistic regression includes nonlinear features. The naive empirical model is simply the empirical
distribution of the outcomes (without conditioning on the state of the limit order book). Failure to outperform
the naive empirical model would imply that the state of the limit order book contains no information on
future price movements. The spatial neural network outperforms the standard neural network. Both neural
networks have several hidden layers and are trained using methods from deep learning such as dropout and
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inter-layer batch normalization. Financial firms often use relatively simple statistical models (e.g., logistic
regression) in practice. The strong performance of the neural networks suggests that status quo industry risk
modeling and risk management approaches can potentially benefit from adopting neural networks.

By taking advantage of the limit order book’s local spatial structure, the spatial neural network can
better harness information from deeper in the high-dimensional limit order book. The spatial neural network
especially outperforms the standard neural network for stocks which have a stronger dependence on liquidity
deeper into the limit order book (i.e., the change in the best ask/bid price has a large standard deviation).
Due to its more effective use of information deep in the limit order book, the spatial neural network also
strongly outperforms the standard neural network in the tail of the distribution, which is of particular interest
for risk management applications.

We train and test models using limit order book data for 489 stocks (primarily from the S&P 500 and
NASDAQ-100) over the time period January 1, 2014 to August 31, 2015. In total, there are roughly 50
terabytes of raw data, which is filtered to create training, validation, and test sets for the limit order book
at discrete time intervals. There are substantial technical challenges to analyzing the large amounts of data
and model training is computationally expensive. Distributed storage and parallel computing are used to
accelerate data processing. A cluster with 50 GPUs is used to train and test the deep neural networks.

Importantly, this paper models the joint distribution of the best bid and best ask prices. Modeling the
distribution (and not just the expected change in price) is essential for risk management applications (e.g.,
computing value-at-risk). Moreover, the joint distribution can also be very important (e.g., risk of a market-
making strategy which places both bids and asks). This paper’s approach could also be easily used to model
the joint distribution of the best bid price, best ask price, and other limit order book features. For example, it
might be of interest to model the joint distribution of the best bid price, best ask price, the best bid size, and
the best ask size. Furthermore, the data-driven approach in this paper could model the distribution of the
state of the entire limit order book at a future time conditional on the current state of the limit order book.
Finally, although this paper focuses on limit order books, the spatial neural network provides benefits for
any setting which requires modeling a distribution on Rd.

In spite of the wealth of research on limit order books, there is very little literature which develops
or adapts machine learning methods for modeling limit order books. Furthermore, deep learning methods
have not been applied. Deep learning is arguably the best approach for data-driven modeling of the limit-
order book (see Section 1.3). We review some of the current approaches to limit order book modeling
in Section 1.2. Section 2 describes the dataset. Section 3 presents evidence for local spatial structure in
limit order books. In Section 4, different neural network architectures are analyzed for modeling spatial
distributions. In particular, Section 4.3 develops the new neural network architecture for modeling spatial
distributions. Section 4.4 proves that the spatial neural network yields a “well-posed” distribution on Rd.
The deep learning methods and the GPU computational framework used to train the neural networks are
explained in Section 5. Out-of-sample results for predicting the distribution of the best bid and best ask
prices are reported in Section 6. Section 6 also includes analysis of the numerical results.

1.1 How does a Limit Order Book Work?

Stocks are traded via matching buy and sell orders according to an order-driven system. Orders may only be
submitted at discrete price levels (determined by the “tick-size”, which is $.01 in the USA). A limit order is
a buy or sell order for a stock at a certain price. The limit order will appear in the limit order book at that
price and remain there until executed or cancelled. The “limit order book” consists of all limit orders at all
prices. The “bids” are the buy limit orders and the “asks” are the sell limit orders. The best ask price is the
lowest sell limit order and the best bid price is the highest buy limit order. Oftentimes there can be a spread
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between these prices (i.e., empty price levels with no orders between the best bid and best ask prices). A
market order is an order to immediately buy or sell the stock. A market buy order is executed at the best ask
price while a market sell order is executed at the best bid price; a market order consumes some (or all) of
the liquidity at the best ask or best bid price.

Figure 1 shows an example of a limit order book. The number of shares available in the limit order book
to be bought/sold at k discrete price levels from the best ask price is the size at level k. The bid and ask sizes
measure the liquidity of the limit order book at the different price levels.

Figure 1: Bid and ask sizes for the first 15 bid and ask prices for Microsoft. Level 0 is the best ask price.

The limit order book represents the known supply and demand for the stock at different price levels.
Over time, the limit order book (and with it the best ask and best bid prices) will evolve due to new limit
orders, cancellations, and market orders. For practical purposes, it is of greatest interest to model the future
distribution of the best ask and best bid prices given the current state of the limit order book. The best ask
and best bid prices at time t are the prices at which a market participant can immediately buy or sell the
stock at time t.

The mid-price is the average of the best bid and best ask prices, and is taken as the “price” of the
stock. However, it is an artificial quantity since one cannot buy or sell at the mid-price. Consequently, it is
important to model both the best ask and best bid prices.

1.2 Related Literature

Significant research has been conducted with regards to limit order book dynamics and many theoretical
models have been studied. Cont, Stoikov & Talreja (2010), Cont & Larrard (2013), Cont & Larrard (2012),
Abergel & Jedidi (2013), Donier, Bonart, Mastromatteo & Bouchaud (2014), Moallemi & Saglam (2013),
Maglaras, Moallemi & Zheng (2014), Carmona & Webster (2013), Carmona & Webster (2012a), Carmona
& Webster (2012b), Avellaneda & Stoikov (2008), Avellaneda, Reed & Stoikov (2011), Blanchet & Chen
(2013), Guo, Ruan & Zhu (2015), Gao, Dai, Dieker & Deng (2014), and others develop stochastic models
for limit order book dynamics.
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These theoretical models have significantly advanced our economic and mathematical understanding of
the limit order book. To ensure tractability, the theoretical models impose simplifying assumptions about
the dynamics of the limit order book. While such assumptions allow for the derivation and study of the
mathematical and economic properties of the limit order book, they can limit the models’ practical scope.
Practitioners, such as financial institutions, instead often rely on statistical models (such as logistic regres-
sion) when modeling the dynamics of the limit order book.1 Furthermore, these theoretical models do
not yield tractable formulas for the joint distribution of the best ask and best bid prices at a future time
horizon conditional on the current state of the limit order book; instead, the joint distribution must be esti-
mated via simulation. Note that the joint distribution of the best ask and best bid prices is a distribution on
N × N = (. . . ,−2,−1, 0, 1, 2, . . .) × (. . . ,−2,−1, 0, 1, 2, . . .).2 Practical applications require extremely
fast predictions (milliseconds or less), making simulation undesirable.

In contrast, we develop a purely data-driven approach for modeling limit order books without any as-
sumptions. Deep learning with neural networks is arguably the best approach to data-driven modeling of the
limit order book (see Section 1.3). This paper develops a new neural network architecture which improves
upon the status quo neural network architecture with lower computational cost and (in the limit order book
setting) greater accuracy. The proposed neural network architecture is more interpretable than the status quo
neural network architecture; this addresses a longstanding criticism of the use of neural networks for finan-
cial applications due to their lack of interpretability. Model performance is also compared against logistic
regression (with nonlinear features) and the naive empirical model. By modeling the full joint distribution
of the best ask and best bid prices, our model allows for the tractable calculation of a variety of quantities of
interest for risk management (Value at Risk, Conditional Value at Risk, etc.). Although neural networks are
costly to train, predictions can be computed quickly from the trained neural network.

There is relatively little literature on machine learning approaches to limit order books (or financial
applications in general). Kercheval & Zhang (2015) use support vector machines to model whether a stock’s
mid-price increases, decreases, or remains the same; they do not model the actual probabilities of events,
instead only predicting whether a particular event will occur. They train and test their model on only several
thousand data samples. In contrast, our paper models the full joint distribution of the best bid and best ask
prices, which is essential for risk management applications. We also extensively test and analyze models
using many billions of data samples. Neural networks have significant advantages over support vector
machines as well as other machine learning methods (see Section 1.3), with state-of-the-art results on nearly
all major machine learning benchmarks. Park & Van Roy (2015) and Kearns & Nevmyvaka (2006) use
reinforcement learning for optimal order execution. Reinforcement learning attempts to learn an optimal
policy in an uncertain environment, while balancing the tradeoff between exploiting current knowledge and
exploring new strategies.

There are also papers which apply machine learning to other areas of finance outside of limit order books.
Khandani, Kim & Lo (2010), Butaru, Chen, Clark, Das & Lo (2015), Brown & Mues (2012), Baesens, Setin,
Mues & Vanthienen (2003), Loterman, Brown, Martens, Mues & Baesens (2012), and Fitzpatrick & Mues
(2016) use machine learning approaches for modeling consumer loan risk. Sirignano, Sadhwani & Giesecke
(2016) model mortgage risk with deep neural networks. Hutchinson, Lo & Poggio (1994) use neural net-

1The theoretical models cannot be directly compared against the data-driven models in this paper due to the theoretical models’
lack of tractability for computing a distribution on N × N = (. . . ,−2,−1, 0, 1, 2, . . .) × (. . . ,−2,−1, 0, 1, 2, . . .), which is the
quantity this paper is interested in. For the interested reader, we do provide a comparison in Appendix B in the much simpler case
of predicting the direction of the next move of the best ask price (i.e., the probability that it moves up or down). The model from
the seminal paper of Cont & Larrard (2012) is compared against logistic regression and a neural network. The data-driven models
outperform the theoretical model.

2Modeling the future best ask and best bid prices is equivalent to modeling the number of levels by which they change.
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works for the pricing and hedging of options. Mamaysky & Glasserman (2015) develop sentiment analysis
methods for the prediction of market stress based upon news articles. Risk & Ludkovski (2015), Ludkovski
(2015), and Gramacy & Ludkovski (2015) use Gaussian process regression for simulation, optimal stopping,
and pricing. Dixon, Klabjan & Bang (2016) use deep neural networks for predicting financial market move-
ments. Yang, Qiao, Beling, Scherer & Kirilenko (2015) use Gaussian process inverse reinforcement learning
to identify different types of traders. Chinco, Clark-Joseph & Ye (2015) use LASSO to study cross-stock
information diffusion.

1.3 Advantages of Neural Networks

Deep learning uses neural networks with multiple layers (“deep neural networks”) in order to learn more
complex nonlinear relationships from the data. Deep learning has achieved state-of-the-art results for many
tasks in image classification, speech recognition, and natural language processing.3 Neural networks are
particularly well-suited for limit order books since they perform well with high-dimensional data and can
capture nonlinear relationships. Neural networks also scale favorably with large amounts of data. Limit
order books are high-dimensional, have nonlinear dynamics (see Section 2.1), and generate large amounts
of data.

There are certainly other methods which could be applied. Decision trees, boosted trees, and random
forests are also able to learn nonlinear functions. However, their disadvantage is that they divide the input
space into rectangular cells while neural networks can learn arbitrary functions of the input space. The
ability to learn arbitrary functions (i.e., to generalize) is essential for high-dimensional inputs; dividing
a high-dimensional space into rectangular cells quickly suffers from the curse of dimensionality. Decision
trees are also not optimized for online learning; upon the arrival of new data, typically the complete structure
of the decision tree will change and it must be re-formed from scratch. In contrast, neural networks are easily
trained online: the parameters can simply be updated with minibatch gradient descent. Gaussian process
regression is another method which rivals neural networks in accuracy for small datasets. Unfortunately,
Gaussian process regression does not scale well and becomes intractable for larger datasets. Support vector
machines are shallow architectures while neural networks can have deep architectures, allowing them to
learn more complex relationships; see Bengio & LeCun (2007). Support vector machines do not directly
produce probabilities, instead simply providing a binary classification.4

2 The Data

Historical limit order book data was reconstructed from NASDAQ Level III market data using the LOBSTER
data engine Huang & Polak (2011). For each stock, there is event-by-event data recording the current state
of the limit order book. Each order submission, order cancellation, and transaction (i.e., order execution) is

3For example, neural networks have achieved state-of-the-art results for the MNIST, CIFAR-10, CIFAR-100, and ImageNet
datasets. Neural networks have over 99% accuracy on the MNIST dataset and 95% accuracy on the CIFAR-10 dataset. The MNIST
dataset contains images of handwritten digits. The goal is to classify correctly the handwritten digits. The CIFAR-10 dataset is
composed of images from ten different classes (e.g., automobiles, birds, dogs). The goal is to correctly classify an image as one
of the ten classes. Mnih, Kavukcuoglu, Silver, Rusu, Veness, Bellemare, Graves, Riedmiller, Fidjeland, Ostrovski & Petersen
(2015) have used deep neural networks to learn to successfully play Atari with human-level performance. Recently, Silver, Huang,
Maddison, Guez, Sifre, Driessche, Schrittwieser, Antonoglou, Panneershelvam, Lanctot & Dieleman (2016) have beaten world
champion players at Go using deep neural networks.

4There are methods to build a probability distribution on top of the support vector machine’s output; a popular method is Platt
scaling, which uses a logistic regression to generate a probability distribution.
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recorded as well as the state of the limit order book at the time of each event.5 Both partial and full order
cancellations are recorded. The times of events are reported with nanosecond decimal precision. Between
events, the limit order book state does not change. The limit order book data includes the first 100 nonzero
levels in the limit order book (50 on the ask side and 50 on the bid side). The nonzero levels are levels at
which there is a nonzero bid or ask size. Thus, the dataset includes at least the first 100 levels and typically
many more due to a large fraction of levels having zero sizes. At each nonzero level, the size is reported. In
this paper, the “size” at a certain price refers to the number of shares available in the limit order book to be
bought/sold at that price. For example, the number of shares at k price levels from the best ask price is the
size at level k. The sizes at ask prices are “ask sizes” and the sizes at bid prices are “bid sizes”.

The data includes trading halts. During the trading halts, the limit order book is reported as unchanging.
These samples are removed from the dataset for model training and testing. Trading halts can occur for
various reasons, including extraordinary volatility, regulatory concerns, SEC trading suspensions, or unusual
market activity indicating a technical issue or manipulation. Trading halts occur infrequently for the stocks
in this paper’s dataset.

The data used in this paper comes from the time period January 1, 2014 until August 31, 2015 and
includes 489 stocks primarily drawn from the S&P 500 and NASDAQ-100. The large number of stocks and
long time period increase the robustness of the results in this paper. Notable stocks in the dataset include
Facebook, Apple, Netflix, Amazon, Amgen, Bank of America, Microsoft, Boeing, Berkshire Hathaway
(Class B shares), Broadcom, and Caterpillar. A full list of stocks is provided in Appendix A. In total, the
raw data is roughly 50 terabytes, which is filtered to create training, validation, and test sets for the limit
order book.

We train and test models for two prediction cases:

1. Modeling the joint distribution of the best ask and best bid prices at time t+∆t given the current state
of the limit order book at time t.

2. Modeling the joint distribution of the best ask and best bid prices upon the next price move. The next
price move is defined as the first time at which the best bid price or best ask price changes.

These two prediction cases will be referred to as Case [1] and Case [2], respectively. For Case [1], models
are trained and tested specifically for ∆t = 1 second, although the methodologies are of course applicable
to any time horizon ∆t. For Case [2], the time horizon is random. Specifically, if τ1, τ2, . . . are the times
at which either the best ask price changes or the best bid price changes, we model the joint distribution of
the best ask and best bid prices at time τk+1 given the current state of the limit order book at time τk. Thus,
∆τk = τk+1 − τk can vary widely from a fraction of a second to many seconds. Stocks which experience
more frequent changes will have more data samples. For instance, AAPL has 27 million samples while FOX
has 2 million samples. In Case [1], all stocks will have approximately 10 million data samples. Case [1]
considers a much less volatile quantity since frequently the best bid and best ask prices do not change over
a 1 second interval, while Case [2] conditions on a change occurring.6 Case [2] is particularly interesting
because the next price move is often the quantity which most directly affects the profit and loss of a strategy,
position, or order execution schedule. Quantifying the magnitude of the next price move can therefore be
valuable, and it has been studied in papers such as Cont & Larrard (2013), Cont & Larrard (2012), Lipton,
Pesavento & Sotiropoulos (2013), and Zheng, Moulines & Abergel (2012).

5Submissions and cancellations of hidden orders are not recorded, but transactions involving hidden limit orders are recorded.
Therefore, the term “limit order book” in this paper implicitly refers to the “visible limit order book”.

6For typical stocks, the best ask price changes only 5-15% of the time in Case [1].

7



Processing and storage of the raw dataset is challenging due to its large size. Training complex models
with many parameters (such as neural networks with multiple layers) on such a large amount of data is
also computationally expensive. Models are trained and tested using GPU clusters; see Section 5 for more
details.

2.1 Nonlinearity of Limit Order Books

The goal is to use neural networks to capture nonlinear relationships between the state of the limit order book
and the distribution of future best bid and best ask prices. It is well-known that the limit order book has a
nonlinear relationship with future price movements (for instance, see Cont & Larrard (2013)). An example
of nonlinear behavior for the stock Boeing is shown below in Figure 2; the probability that the best ask price
decreases has a strong nonlinear dependence on the best ask and best bid sizes. The probability shown in
the figure is the output of a neural network fitted to historical data for Boeing. The displayed relationship
shows a strong dependence on supply and demand. As the best ask size increases (more selling pressure),
there is an increase in the probability that the best ask price decreases. As the best bid size decreases (less
buying demand), there is an increase in the probability that the best ask price decreases.

We show later that neural networks have consistently lower error than logistic regression across many
different stocks. A logistic regression is the softmax of a linear function of the input while a neural net-
work is the softmax of a nonlinear function of the input. As an input to the logistic function, we include
both the original data and nonlinear features of the original data. Specifically, we include the order book
imbalances at each level, which is a nonlinear function of the sizes at each level.7 Order book imbalance
(sometimes referred to as “queue imbalance”) has been identified as a key driver of best bid and best ask
price dynamics; see Gould & Bonart (2015), Cao, Hansch & Wang (2009), Yang & Zhu (2015), Cartea,
Donnelly & Jaimungal (2015), Stoikov & Waeber (2015), and Lipton et al. (2013). The neural networks’
outperformance indicates the existence of significant nonlinearity in limit order book dynamics, beyond that
of the well-known order book imbalance feature.

2.2 Importance of modeling the joint distribution of best ask and best bid prices

The spread is the difference between the best bid price and best ask price. The spread is sometimes modeled
as a constant. This reduces modeling the joint movements of the best bid price and best ask price to simply
modeling the best ask price. Such an approach is equivalent to modeling the best bid price and best ask price
as moving in lockstep: if one moves by k levels, the other also moves by k levels. However, statistics shown
in Table 1 demonstrate that the spread frequently varies. Table 1 is based upon data from Case [1] which
uses a fixed 1 second time horizon.

For each stock j of the 489 stocks in the dataset, we empirically estimate the probability that the best bid
price and best ask price change by the same amount conditional on a change in either the best bid price or
best ask price occuring. That is, how frequently do the best bid and best ask prices move in lockstep? The
frequency of moving in lockstep is denoted as Zj and the quantiles of Z1, . . . Z489 are reported in Table 1.
For the majority of stocks, the best bid price and best ask price will more than 50% of the time not move in
lockstep. For half of the stocks, the best bid price and best ask price only move in lockstep 17% of the time.
Table 1 also reports the (empirically estimated) probability that the best bid price changes but the best ask

7Let V ak be the size at the level (k + best ask price) and let V bk be the size at the level (best bid price − k). The order book

imbalance at the k-th level is V b
k−V

a
k

V a
k
+V b

k

. The order book imbalance ranges from−1 to 1 and measures the imbalance between supply

and demand for the stock.
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Figure 2: Probability that the best ask price for Boeing decreases for a 1-second horizon. Neural network fitted using best ask size,
best bid size, and spread.

price does not (or vice versa) conditional on a change in either the best bid price or best ask price occurring.
This frequency is denoted as V j and the quantiles of V 1, . . . V 489 are provided in Table 1. For the vast
majority of stocks, a change in one of the two will occur without a change in the other at least 25% of the
time. For half of the stocks, a change in one of the two will occur without a change in the other nearly 70%
of the time. In total, the first two rows of Table 1 provide strong evidence that the movements of the best
ask and best bid must both be modeled. One cannot simply model the mid-price and assume that the spread
is a constant number of levels. At the same time, it is also clear that the best bid and best ask prices are not
independent; there is significant correlation between their movements. This highlights the importance of a
model for the joint distribution of the best ask and best bid prices.

In addition, for each stock j of the 489 stocks, we calculate the 10%, 50%, and 90% quantiles of the
spread for stock j. We then compute the quantiles of Q1

p, . . . Q
489
p where Qjp is the p-percentile quantile for

stock j. This yields insight into the sizes of the stocks’ spreads in the dataset.

Feature / Quantile (%) 5 10 20 50 80 90 95
Zj .03 .05 .08 .17 .39 .58 .70
V j .26 .36 .52 .67 .74 .76 77
Qj10 1 1 1 1 2 3 6
Qj50 1 1 1 2 4 8 13
Qj90 1 1 2 5 10 18 28

Table 1: Summary statistics for the spread and the co-movement of the best bid and best ask prices.
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3 Local spatial structure in limit order books

Limit order books exhibit some degree of local spatial structure. In Section 4.3, a new architecture for neural
networks is designed which can take advantage of such local spatial structure. In this section, we provide
statistical evidence for local spatial structure in limit order books.

3.1 Local dependence on the limit order book state

Without loss of generality, let the current best ask price at time t be level 0 and let the best ask price at time
t be the frame of reference for the entire limit order book. Let Y be the future best ask price at time t+ ∆t.
Conditional on Y ≥ y where y > 0, the probability that Y > y strongly depends upon the ask size directly
at the level y of the limit order book at time t. The dependence on sizes at other levels is small relative to the
dependence on the size at level y. Figure 3 demonstrates this phenomenon where the conditional movement
of Y depends only locally on the current limit order book state. The conditional probability that Y > y
given Y ≥ y decreases with the size at y.

There is some intuition regarding why the relationship in Figure 3 may hold. To reach a level y′ > y, the
sell limit orders at level y must first be consumed by buy orders. The larger the ask size at level y, the less
likely the future best ask price will reach a level y′ > y. Since we have already conditioned on Y ≥ y, the
limit orders at levels y′ < y are less relevant. Similarly, the event Y > y requires only that the buy orders
consume the sell limit orders at y, so the ask sizes at levels y′ > y are less important.

The behavior of the best ask price as it moves upwards is analogous to a “geometric random variable”
whose probability of increasing from y to y + 1 depends upon the size at level y. The neural network
architecture in Section 4.3 mimics this local behavior.

Figure 3: Coefficients from logistic regression for the probability that the future best ask price Y is greater than y conditional on
Y ≥ y where y > 0; i.e., P[Y > y|Y ≥ y] =

(
1 + exp(b + θ · factors)

)−1. The current best ask price has been centered at 0
and the time horizon is 1 second. The plotted coefficients are coefficients for the limit order book sizes at price levels minus y. The
conditional probability that Y > y given Y ≥ y decreases with the ask size at y. The reported coefficients were fitted on the stock
Amazon.

Figure (4) shows similar local structure for the stock Apple. The probability that the future best ask price
Y = y given that Y ≥ y > 0 strongly depends upon the ask size at level y. The larger the size at level y, the
less likely that all of the sell limit orders at that level can be consumed by the current buying demand and
thus the more likely Y equals y (and the less likely Y will move to levels greater than y). We also note that
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there is very little dependence on the best ask size in Figure (4); conditional on Y ≥ y, the sizes at previous
levels y′ < y in the limit order book become less influential.

Figure 4: Probability that the future best ask price Y = y given that Y ≥ y > 0 for the stock Apple. Probability is the output of a
neural network fitted to historical data for Apple and the time horizon is 1 second.

3.2 Statistical evidence across many stocks

Although Figure 3 is compelling, it is only one stock. A detailed analysis is now conducted across the entire
dataset of 489 stocks. The results provide strong evidence for local spatial structure. For each stock, we
perform a logistic regression similar to Figure 3. Specifically, let Y be the best ask price at t+ ∆t. Without
loss of generality, let 0 be the current best ask price at time t and let the best ask price at time t be the frame
of reference for the entire limit order book. We fit a logistic regression for:

P[Y > y|Y ≥ y] =

(
1 + exp(b+ θ · (size at level y −K, . . . , size at level y +K

)−1
, y > 0,

(1)

where b ∈ R, θ = (θy−K , . . . , θy+K) ∈ R2K+1, and K = 10. The sizes are from the current limit order
book state at time t and are normalized. Ask sizes are given a positive sign, while bid sizes are given a
negative sign.8 Ignoring bid sizes and performing the statistical analysis solely for ask sizes yields similar
results. Bid/ask sizes are from the state of the limit order book at time t. The time horizon ∆t is 1 second.

We fit the logistic regression (1) for each stock in the dataset, resulting in 489 different parameter fits
θ1, . . . , θ489. Fitting is performed on the time period January 1, 2014 until May 31, 2015 (which will also
be the training set used later in this paper for fitting models). For each stock j, the following “coefficient

8The probability of an increase in the best ask price Y decreases with more sell liquidity and increases with more buy liquidity,
hence the opposing signs.
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ratio” is calculated:

Coefficient ratio for stock j =
maxy−p,...,y+p θ

j
y

maxy′=y−K,...,y−p−1,y+p+1,...,y+K |θjy′ |
. (2)

The coefficient ratio (2) compares the local influence of levels close to y versus the influence of levels farther
away. θjy′ is the coefficient for the size at level y′ for stock j. The larger the magnitude of the coefficient θjy′ ,
the greater the dependence on the size at level y′. If p = 0:

Coefficient ratio for stock j =
θjy

maxy′ 6=y |θjy′ |
, (3)

and the coefficient ratio measures the influence of the size locally at level y versus the sizes at levels y −
K, . . . , y − 1, y + 1, . . . , y +K. It also gives the direction of the dependence on the size at level y. If (3) is
positive, then P[Y > y|Y ≥ y] decreases as the size at level y increases. Table 2 gives summary statistics
for the coefficient ratio (2) across all the stocks in the dataset. There is a strong dependence on the local size
at level y for the majority of stocks. The sign is also positive.

Coefficient Ratio / Quantile (%) 5 10 20 50 80 90 95
p = 0 0.84 1.47 3.38 6.43 9.89 13.20 17.69
p = 1 1.02 2.31 5.83 12.83 19.93 24.71 30.92

Table 2: Summary statistics for the coefficient ratios across all stocks.

The local dependence is strongest for stocks where the change in the best ask/bid prices has a large
standard deviation.9 The standard deviation of the change in the best ask (or bid) price is a function of the
price and volatility of the stock.10 The larger the standard deviation of the change in the best ask price, the
larger the dependence of the best ask price movements on liquidity deeper in the limit order book. For each
stock, Figure 5 plots the coefficient ratio (3) for p = 0 versus the standard deviation of the change in the
best ask price. Stocks where the change in the best ask price has a larger standard deviation show a stronger
local dependence on the size at y. We observe the local dependence in the upper tail of the best ask price’s
distribution and the lower tail of the best bid price’s distribution (i.e., when the best ask or best bid price
moves into the limit orders on their respective side of the book).

3.3 A Local Model for the Upper Tail of the Best Ask

The limit order book’s local structure motivates a simple local model for the upper tail of the best ask price,
which will later form the core of the new neural network architecture proposed in Section 4.3. Let Y be the
future best ask price and let xy be the size at level y. Then, conditional on an increase in the best ask price
(i.e., Y > 0), we can model the magnitude of the increase as follows:

P[Y = y|Y ≥ y] = f(xy), y > 0. (4)

9“The standard deviation of the change in the best ask price” is calculated by taking the standard deviation of all of the changes
in the best ask price at 1 second intervals.

10A stock with price $1 is much less likely to experience a move of k levels than a stock with price $500, assuming both stocks
have equal volatility.
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Figure 5: Plot of the coefficient ratio with p = 0 versus the standard deviation of changes in the best ask price for each stock.
The plot has been cropped to [0, 20] × [0, 8] (some outlier data points with coefficient ratios greater than 20 are not visible in the
displayed plot).

(4) completely describes the distribution of the random variable Y conditional on it increasing. It is anal-
ogous to modeling Y as a geometric random variable, but with a non-constant probability of increasing
at each step which depends locally upon the state of the limit order book. (4) mimics the local behavior
described in Sections 3.1 and 3.2. Note that P[Y > y|Y ≥ y] is simply 1− f(xy).

Although (4) has a local dependence on the state of the limit order book (only taking as an input the size
at level y), globally the distribution of Y depends upon all of the ask sizes. That is,

P[Y = y|Y > 0] = f(xy)

y−1∏
y′=1

(
1− f(xy′)

)
, y > 0. (5)

An alternative to (4) would be to model P[Y = y|Y > 0] as a function g(y, x1, x2, . . . , xL) where L
is the total number of levels in the limit order book. The function g is far more complex than the function
f due to the high-dimensionality of the former’s input. Furthermore, if the local behavior in (4) holds, (5)
shows that g will depend in a nontrivial way upon all the ask sizes as it will be the composition of many f
functions. Even if f takes a simple form (such as a logistic regression), the global distribution (5) will be
highly nonlinear, requiring g to also be highly nonlinear.

The standard modeling approach would be to statistically estimate g. Due to the high-dimensionality of
the input and the complexity of g, this can be challenging and may be prone to overfitting. The approach
proposed in this paper is to directly estimate the local model f . This reduces the statistical estimation
problem to estimating a low-dimensional model with a simpler functional form, potentially leading to a
more accurate estimated model. Training a model to learn f may also be faster than training a model
to learn g due to the simpler nature of f in terms of both its dimension and functional form. Thus, by
estimating f instead of g, the dimension of the learning problem is significantly reduced, potentially leading
to a more accurate estimated model and faster training times (i.e., lower computational cost).

The function g depends nonlinearly on a high-dimensional vector, which is difficult to interpret. How-
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ever, the function f (and its connection to the global distribution) is straightforward to interpret. Estimating
the local behavior (4) instead of the global distribution (5) therefore produces a much more interpretable
model. As described in Section 3.1, there is a natural economic interpretation to the model (4); it mimics
buy orders which sequentially consume the liquidities at each level. Conditional on the buy orders consum-
ing all liquidity at levels y′ < y, the event where it also consumes the liquidity at level y depends only upon
the liquidity at level y.

We will use an architecture similar to (4) for the neural network proposed in Section 4.3. It turns out
such an architecture has additional important advantages such as computational efficiency, generalization
over the output space, and the ability to model distributions on the entire positive real line.

4 Neural Network Architectures for Modeling Distributions on Rd

The goal of this paper is to model a distribution on Rd via neural networks. Although there are many
applications, we are particularly motivated by modeling the joint distribution of the best ask and best bid
prices at a future time conditional on the current state of the limit order book.

In order to model a distribution on Rd, we first discretize Rd into the gridRd whereR = . . . , r−2, r−1, 0,
r1, r2, . . . and then model a distribution on the discrete space Rd. In the context of limit order books, this
discretization is exact since price levels are discrete multiples of the tick-size.

Section 4.1 reviews the standard neural network architecture for classification, which has no gener-
alization over the space Rd. Section 4.2 discusses a straightforward modification which allows the neural
network to generalize overRd. However, training this neural network architecture is computationally expen-
sive. We develop a new architecture for modeling distributions on Rd in Section 4.3. The proposed neural
network architecture is computationally efficient, can take advantage of local spatial structure, and can be
more interpretable than the aforementioned architectures. We refer to the new neural network architecture
in Section 4.3 as the “spatial neural network”.

4.1 Standard Neural Network Architecture for Classification

The basic neural network for classification is a highly nonlinear parameterized function that takes an input
x ∈ X and produces a probability distribution on the finite discrete space Y .

Given an input x, the output fθ,l(x) ∈ Rdl of the l-th layer of a neural network is

fθ,l(x) = gl(Wlfθ,l−1(x) + bl), l = 1, . . . , L, (6)

where Wl ∈ Rdl × Rdl−1 , bl ∈ Rdl , fθ,0(x) = x, and dL = |Y|. For l = 1, . . . , L − 1, the nonlinear
transformation gl(z) =

(
σ(z1), . . . , σ(zdl)

)
for z ∈ Rdl and z1, . . . , zdl ∈ R. The function σ is nonlinear;

typical choices are sigmoidal functions, tanh, rectified linear units (ReLU), and clipped rectified linear units.
The function gL for the final layer L is the softmax function g.

g(z) =
( ez1∑dL

i=1 e
zi
, . . . ,

ezdL∑dL
i=1 e

zi

)
, z ∈ RdL . (7)

The final output of the neural network fθ,L(x) is a probability distribution on Y conditional on the
features x. The parameters collectively are θ = (W1, . . . ,WL, b1, . . . , bL), where L is the number of layers
in the neural network. The objective is to choose the parameters θ such that the log-likelihood L of the
neural network’s output fθ,L is maximized for the data.
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Let the data be D = {(x1, y1), . . . , (xN , yN )} where (xn, yn) ∈ X × Y . Then, the normalized log-
likelihood of the data for the neural network model is

L(D) =
1

N

N∑
n=1

∑
y∈Y

1y=yn log fyθ,L(xn), (8)

where fyθ,L is the y-th element of the vector fθ,L.
The complexity of the model is determined by both the number of layers (“depth”) and the number of

neurons (d1, . . . , dL) in each layer. Although the dividing line is somewhat arbitrary, neural networks are
typically considered deep if there are three or more hidden layers (L ≥ 4). Equation (6) describes the
basic neural network achitecture, and there are several popular modifications to the architecture of the layers
1, . . . , L − 1 (e.g., convolution neural networks). The discussion below is also applicable to these other
architectures.

A potential drawback of the standard neural network for classification is that, although it general-
izes over the input space X , it does not allow for generalization over the output space Y . As men-
tioned earlier, one approach to modeling a distribution on Rd is to discretize Rd into the grid Rd where
R = . . . , r−2, r−1, 0, r1, r2, . . . and then model a distribution on the discrete space Rd. Many problems
may have some spatial structure where the event r ∈ Rd will be strongly related to the event r′ ∈ Rd if
r and r′ are close in distance. A training sample at r should then allow one to learn about both r and r′.
However, the standard neural network architecture for classification would regard r and r′ as completely
separate events, failing to take advantage of any available spatial structure since it has no generalization
over space.

One glaring case where the standard neural network for classification fails due to a lack of generalization
is when rk = k∆r and ∆r is small. For a dataset with N samples, the fraction of grid points with at least
one data sample tends to zero as ∆r → 0. Consequently, the trained neural network will predict that events
at the vast majority of the grid points in R will occur with probability zero. A model which generalizes
over the output space can avoid this pitfall. As a simple example, consider fitting a density to i.i.d. samples
from a continuous random variable. In this case, there are no features (i.e., explanatory variables); formally,
one can just replace the feature vector with a vector of zeros for every sample. The neural network will
then trivially give the empirical measure of the observed samples, which will be zero at many grid points
if ∆r is small. This is a very bad statistical estimate since the samples come from a random variable with
a continuous density. Instead, one should estimate a smoothed density from the samples; the new neural
network architecture developed in Section 4.3 is able to do this.

Generalizing over space is especially useful in the tails of the distribution where less data is available.
The tails of the distribution, although associated with less frequent events, are important for risk analysis
since they represent extreme events which can have a disproportionate impact. Generalization over space
also helps to combat the curse of dimensionality. The number of grid points grows exponentially with the
dimension d, meaning there is less data per grid point (and less data per state y ∈ Y). This can be a source
of overfitting.

There are other disadvantages to applying the standard neural network to modeling spatial distributions.
Since Y is a finite discrete space,R must be truncated to cover only a finite region of space, which may not
be desirable. Secondly, even if the bulk of the events occur in a small region of space, probabilities may
still be needed at a large number of spatial points, incurring significant computational cost. For instance,
even if 99% of events occur in [0, 1], and the rest are uniformly spread across [−1000, 1000], probabilities at
all (discretized) spatial points must be calculated for each data sample during training and prediction. This
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incurs significant computational cost and thus slower training rates, especially in higher dimensions d > 1
where the number of grid points grows rapidly with d.

4.2 Straightforward modification to allow generalization

There is a straightforward modification to create a neural network which generalizes over space. This
modification has been studied before; for instance, see Likas (2001). Let fθ(x, y) : X × Y → R be the
unnormalized log-probability of the event y conditional on the feature x, where fθ(x, y) is a neural network
with inputs (x, y). The probability of y conditional on the feature x is

efθ(x,y)∑
y′∈Y

efθ(x,y
′)
. (9)

Due to the continuity of fθ, the probabilities (conditional on the feature x) of y1 and y2 will be close if the
distance between y1 and y2 is small.

(9) can be computationally expensive. For each training sample, fθ(x, y) and its gradient must be
evaluated at every y ∈ Y . If the number of training samples is N , this is comparable to training a standard
neural network for binary classification on N × |Y| training samples. For instance, if Y is a Cartesian grid
covering R3 with 1, 000 grid points in each direction, |Y| = 1 billion.

A second disadvantage is that (9) cannot model distributions on Rd but instead must truncate the space
in order to form a finite grid.

4.3 A computationally efficient architecture for modeling spatial distributions

This section develops a new neural network architecture for modeling distributions on Rd (the “spatial
neural network”). We first consider modeling a distribution on R+ = (0,∞), which is discretized into
R+ = r1, r2, . . .. Later this is extended to the more general case of Rd. Let fθ(x, y) : X × R → R be a
neural network. The distribution of a random variable Y ∈ R+ conditional on the random variable X ∈ X
is completely specified by the following model:

P[Y = y
∣∣Y ≥ y,X = x] =

efθ(x,y)

1 + efθ(x,y)
. (10)

(10) is analogous to a “geometric random variable” with a non-constant probability of increasing at each
step.

The model architecture (10) is only well-posed if
∑

y∈R+
P[Y = y|X = x] = 1 for any x. If P[Y =

y
∣∣Y ≥ y,X = x] decreases in y without a positive lower bound, the model may not be well-posed due

to probability mass escaping to +∞. A trivial example is if P[Y = y
∣∣Y ≥ y,X = x] = 0 for y ≥ N0.

Another example where Y has a positive probability mass at +∞ is if P[Y = y
∣∣Y ≥ y,X = x] = 2−y−1

andR+ = N+. In both of these examples,
∑

y∈R+
P[Y = y|X = x] < 1.

Theorem 4.1. The model architecture (10) is well-posed if the hidden units of the neural network fθ(x, y)
are bounded. The model may not be well-posed if the neural network’s hidden units are rectified linear units
(ReLU).
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See Section 4.4 for the proof. Theorem 4.1 covers many common choices of hidden units for neural
networks, including sigmoidal, tanh, and clipped ReLU.11 Neural networks with at least one hidden layer
with bounded units (even if all the other hidden layers have unbounded units such as ReLUs) are also well-
posed. If all of the hidden units in the neural network are ReLUs, the model may or may not be well-posed
depending upon the form of the neural network for large y; see Section 4.4.2 for more details. A solution is
to have at least one hidden layer of clipped ReLUs with arbitrarily large clipping values, in which case the
model is well-posed.

The log-likelihood of the model (10) for a training sample (x, y) is

L({(x, y)}) = log

(
efθ(x,y)

1 + efθ(x,y)

)
+

∑
y′∈R+:y′<y

log

(
1

1 + efθ(x,y′)

)
(11)

The architecture (10) has two advantages over (9). The first is that the neural network fθ(x, y) and its
gradient need to be evaluated at far fewer grid points. For each sample (x, y), (10) only needs to be evaluated
up until y while (9) needs to be evaluated on the entire grid. Secondly, (10) can model the entire spaceR+;
there is no need to form a truncated grid as in (9).

4.4 Proof of Theorem 4.1

Section 4.4.1 proves Theorem 4.1 for bounded hidden units. Section 4.4.2 proves Theorem 4.1 for rectified
linear hidden units (ReLUs).

4.4.1 Bounded Hidden Units

Without loss of generality let, R+ = {1, 2, . . .}. Let qk = P[Y = k|Y ≥ k] for k = 1, 2, . . .. If the
hidden units are bounded, the output of the neural network fθ(x, y) is bounded. Since qk is the softmax of
a bounded function, 0 < a ≤ qk ≤ b < 1. Let pk = P[Y = k] = qk

∏k−1
i=1 (1− qi). Also, define:

FN =
N∑
n=1

pn. (12)

We want to show that FN → 1 as N → ∞. In other words, the distribution of Y does not have positive
mass at +∞.

Let q̃k = qk for k ≤ N and q̃N+1 = 1. Let p̃k = q̃k
∏k−1
i=1 (1− q̃i). Consider a random variable Z ∈ R+

where P[Z = k|Z ≥ k] = q̃k and P[Z = k] = p̃k. Z is a well-defined random variable (e.g., the sum of its
probabilities is 1).

Note that FN can be rewritten as:

FN =
N∑
n=1

pn =
N∑
n=1

p̃n = 1− P [Z > N ] = 1−
N∏
n=1

(1− q̃n) = 1−
N∏
n=1

(1− qn) (13)

Now, we have that for all N :

1−
N∏
n=1

(1− a) ≤ FN ≤ 1−
N∏
n=1

(1− b) (14)

11A rectified linear unit is the function max(z, 0). A clipped rectified linear unit (clipped ReLU) is the function
min(max(z, 0), t0) where t0 > 0 is the clipping value.
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The LHS and RHS converge to 1, which shows FN → 1.
Examples of bounded hidden units include tanh, sigmoid, and clipped ReLU. The above result also holds

if at least one of the hidden layers has bounded units, but the units in the other hidden layers are unbounded
(e.g., ReLU).

In general, if qk has no positive lower bound, FN may not converge to 1. This is due to Y potentially
escaping to +∞ with positive probability. An extreme example is if qk = 0. ReLU units are not bounded.
Consequently, if the last hidden layer has ReLU units, qk is not bounded from below. We analyze the case
of ReLU units in Section 4.4.2.

4.4.2 ReLU Hidden Units

Rectified linear units are of the form max(z, 0) for an input z. We re-state the equation for FN from Section
4.4.1:

FN = 1−
N∏
n=1

(1− qn). (15)

Recall that

1− qn =
1

1 + efθ(x,n)
, (16)

where fθ is a neural network with ReLU hidden units. If all hidden units of the neural network fθ(x, y) are
ReLU units, fθ(x, y) has three possible forms for large y: (1) 0, (2) C2 + K2y, or (3) C3 − K3y. More
precisely, there exists anN0 such that fθ(x, y) equals either (1), (2), or (3) for all y ≥ N0. The specific form
the neural network takes for large y depends upon the parameters θ. FN → 1 as N → ∞ for cases (1) and
(2). However, FN → F̄ where 0 < F̄ < 1 in case (3).

To prove that FN → F̄ where 0 < F̄ < 1 in case (3), we will show an upper bound FN ≤ GN where
GN → G < 1. Note that FN has a limit F̄ since it is bounded (0 ≤ FN ≤ 1) and monotone increasing;
however, this limit will not be 1.

FN = 1−
N∏
n=1

1

1 + efθ(x,n)
= 1− exp

(
−

N∑
n=1

log(1 + efθ(x,n))
)
. (17)

Using the inequality log(1 + z) ≤ z for z > −1:

N∑
n=1

log(1 + efθ(x,n)) ≤
N∑
n=1

efθ(x,n) ≤ D3 +

N∑
n=N0

efθ(x,n)

= D3 +

N∑
n=N0

eC3−K3n ≤ D3 + eC3−K3N0 +

∫ N

n=N0

eC3−K3ydy. (18)

The RHS of (18) converges to a finite positive number as N →∞. Combining (18) with (17) implies that:

FN = 1− exp
(
−

N∑
n=1

log(1 + efθ(x,n))
)
≤ G < 1. (19)

Therefore, in case (3), FN does not converge to 1 as N →∞.
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We now show that FN → 1 in cases (1) and (2). In case (1),

N∑
n=1

log(1 + efθ(x,n)) = D1 +
N∑

n=N0

e0 →
N→∞

∞ (20)

Combining (20) with (17) implies that FN → 1 as N →∞. For case (2), consider the lower bound:

N∑
n=1

log(1 + efθ(x,n)) ≥
N∑
n=1

fθ(x, n) = D2 +

N∑
n=N0

(C2 +K2n) →
N→∞

∞.

(21)

Combining (21) with (17) (and recalling that FN ≤ 1) implies that FN → 1 as N → ∞. Note that the
constants D1, D2, D3, C2, and C3 implicitly depend upon x and θ.

4.4.3 Extension toRd

(10) can be extended to model distributions on Rd. Let Y = (Y1, . . . , Yd) ∈ Rd and have the conditional
distribution:

P[Y = (y1, . . . , yd)
∣∣X = x] = P[Y1 = y1

∣∣X = x]

d∏
i=2

P[Yi = yi
∣∣Y0:i−1 = y0:i−1, X = x],

P[Y1 = y1
∣∣X = x] = g1θ(x, y1),

P[Yi = yi
∣∣Y0:i−1 = y0:i−1, X = x] = giθ(x, y0:i−1, yi),

(22)

The conditional distributions g1, . . . , gd will be functions of neural networks, which will be specified shortly.
Note that the framework (22) avoids the curse of dimensionality for large d since the computational expense
of the log-likelihood grows linearly with d:12

L({(x, y)}) = log

(
g1θ(x, y1)

)
+

d∑
i=2

log

(
giθ(x, y0:i−1, yi)

)
. (23)

The conditional distribution of Y1 conditional on X is completely specified by:
P[Y1 = y1

∣∣Y1 ≥ y1, X = x] = e
f
1,+
θ

(x,y1)

1+e
f
1,+
θ

(x,y1)
y1 ≥ r1

P[Y1 = z|X = x] = h1,zθ (x) z ∈ {y1 > 0}, {y1 = 0}, {y1 < 0}

P[Y1 = y1
∣∣Y1 ≤ y1, X = x] = e

f
1,−
θ

(x,y1)

1+e
f
1,−
θ

(x,y1)
y1 ≤ r−1

f1,−θ : X × R → R and f1,+θ : X × R → R are neural networks. The neural network h1θ(x) is a standard
neural network for classification (as described in Section 4) which produces a vector of three probabilities

12The approach (22) can also be used with the standard neural network architecture. In order to make a fair comparison between
the models, we use the approach (22) for the logistic regression, standard neural network, and spatial neural network in Section
6. Without the “dimension splitting” operation in (22), training becomes impractical for the standard neural network even in low
dimensions due to the large number of grid points.
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for the events {y1 > 0}, {y1 = 0}, {y1 < 0}, and h1,zθ (x) is the z-th vector element of h1θ(x). The standard
neural network for classification h1θ is required to “stitch” togetherR+ andR− = . . . , r−2, r−1.

Similarly, the conditional distribution of Yi conditional on (Y0:i−1, X) for i ≥ 2 is completely specified
by:

P[Yi = yi
∣∣Yi ≥ yi, Y0:i−1 = y0:i−1, X = x] = e

f
i,+
θ

(x,y0:i−1,yi)

1+e
f
i,+
θ

(x,y0:i−1,yi)
yi ≥ r1

P[Yi = z|Y0:i−1 = y0:i−1, X = x] = hi,zθ (x, y0:i−1) z ∈ {yi > 0}, {yi = 0}, {yi < 0}

P[Yi = yi
∣∣Yi ≤ yi, Y0:i−1 = y0:i−1, X = x] = e

f
i,−
θ

(x,y0:i−1,yi)

1+e
f
i,−
θ

(x,y0:i−1,yi)
yi ≤ r−1

Example 4.2 (Limit Order Book). Modeling the best ask and best bid prices at a future time conditional on
the current state of the limit order book is equivalent to modeling the change in the best ask and best bid
prices. We measure the change by the number of levels that the best ask and best bid prices move.

(Y1, Y2) = (change in best ask price, change in best bid price) ∈ (. . . ,−2,−1, 0, 1, 2, . . .)2.

The neural network h1 predicts whether the best ask price will increase, decrease, or stay the same. If h1

predicts that the best ask increases, f1,+ predicts how many levels it will increase. If h1 predicts that the
best ask decreases, f1,− predicts how many levels it will decrease. h2, f2,+, and f2,− play similar roles for
the best bid price.

4.4.4 Advantages of the spatial neural network

There are several potential advantages to this proposed architecture for the spatial neural network. The
model and its gradient can be evaluated at far fewer grid points in the computationally efficient architecture.
Secondly, the proposed architecture can model the entire space Rd; there is no need to form a truncated
grid as in standard architectures. One disadvantage is that the architecture is composed of several neural
networks instead of a single neural network. The number of neural networks grows linearly with d.

The proposed architecture can also take advantage of “local spatial structure”, if it exists in the appli-
cation setting. The spatial neural network (10) is local in nature; it models the local dynamics within a
small region in space. The spatial neural network (10) can leverage a priori knowledge that conditional on
Y being in some region of space, the local behavior of Y in that region only depends a particular subset of
the values in the vector X . This can improve performance since it reduces the dimension of the learning
problem, as described in Section 3.3. For example, ifX is a vector containing information at locations in Rd
and Y ∈ Rd, Y ’s local behavior in some small region of Rd may only depend upon information at locations
close to that small region. Such local behavior can be naturally modeled by fθ(x, y) in (10). In the case of
the limit order book, let fθ(x, y) = gθ(m(x, y), y) where gθ is a neural network andm(x, y) is a map taking
the vector of bid and ask sizes at all levels and outputting a smaller vector of sizes at only levels close to y.
Although the local distribution of Y conditional on Y being in a particular region depends only on a subset
of X , the global distribution of Y still depends upon the entire variable X . In the limit order book setting
where y = (y1, y2) = (change in best ask, change in best bid), the map m(x, y) would output a vector of
bid and ask sizes at levels close to (y1 + current best ask, y2 + current best bid).

By significantly reducing the dimension of the input space, the spatial neural network becomes much
more interpretable than the standard neural network. In the case of limit order books, there is also a natural
economic interpretation of the local behavior that the spatial neural network models; see Section 3.

The spatial neural network’s compoutational cost only grows linearly with the dimension d due to the
dimension splitting in (22). However, the trick (22) is not unique to the spatial neural network and can also
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be used with the standard neural network. Since the computational cost only grows linearly with d, it would
be feasible to model the distribution of the state of the entire limit order book using neural networks.

4.5 Other approaches to modeling spatial distributions

Another approach to modeling spatial distributions is to use Gaussian mixtures and model the parameters
(means, covariances, and mixture weights) with neural networks. This produces a continuous distribution
on Rd. Various frameworks combining Gaussian mixtures with neural networks have been proposed by
Variani, McDermott & Helgold (2015), Demuynck & Triefenbach (2013), Paulik (2013), van den Oord &
Schrauwen (2014), Yu & Seltzer (2011), Sainath, Kingsbury & Ramabhadran (2012), Deng & Chen (2014),
and others.

Gaussian mixture models are not suitable for the limiting order book setting. The distribution of the
best ask and best bid prices does not have a density since the best ask and best bid prices take values at
discrete levels. A Gaussian mixture model would converge during training to a mixture of Gaussians with
zero variances, meaning there’s no advantage over the standard neural network architecture which models
distributions on a discrete space. Numerical difficulties may also emerge as the variances become small. In
other applications outside of limit order books, Gaussian mixture models may have an advantage over the
“spatial neural network” developed in this paper when the disribution is smooth and its tails are close to
Gaussian. It should also be emphasized that Gaussian mixture models produce an actual density while the
architectures in this paper require first discretizing space.

The spatial neural network proposed in this paper has some other advantages over Gaussian mixture
models. Gaussian mixture models may require a large number of Gaussians to model sharp (or discon-
tinuous) changes. A large number of Gaussians may also be needed if the tail is not Gaussian. Gaussian
mixtures cannot model local spatial structure. Finally, as mentioned above, Gaussian mixtures are not suit-
able for distributions with delta functions.

5 Model Training

The neural networks are trained using approaches from deep learning, which we describe in Section 5.1. The
computational implementation using GPU clusters is outlined in Section 5.2. The division of the dataset into
training, validation, and test sets is specified in Section 5.3. Model hyperparameters are provided in Section
5.4.

5.1 Deep Learning

We use 4 layers for the neural networks. Neural networks with 3 or more hidden layers are referred to
as “deep neural networks”. Deep neural networks are able to extract richer and more complex nonlinear
relationships than “shallow” neural networks. Each additional layer extracts increasingly nonlinear features
from the data. Early layers pick up simpler features while later layers will build upon these simple features to
produce more complex features. Recent research has developed many new methods for training deep neural
networks, and we employ several of these techniques. We use dropout to prevent overfitting (Srivastava,
Hinton, Krizhevsky, Sutskever & Salakhutdinov 2014). Batch normalization is used between each hidden
layer to prevent internal covariate shift (Ioffe & Szegedy 2015). The RMSProp algorithm is used for training
(Graves 2013). RMSProp is similar to stochastic gradient descent with momentum but it normalizes the
gradient by a running average of the past gradients. We use an adaptive learning rate where the learning

21



rate is decreased by a constant factor whenever the training error increases over a training epoch. Early
stopping via a validation set is imposed to reduce overfitting (Bengio 2012). We also include an `2 penalty
when training in order to reduce overfitting. Although ReLU units have often produced the best performance
for deep neural networks, it may be preferable in the limit order book setting to use hidden units which are
bounded (e.g., clipped ReLU, sigmoidal, or tanh). The bid and ask sizes are unbounded, and a small fraction
have very large values. These outlier values can cause undesirably large gradient steps.

In order to make the comparison between the standard neural network architecture and the spatial neural
network as fair as possible, we apply the methods above in exactly the same manner when training both of
the neural networks. More discussion is provided in Section 6.

5.2 Computational Approach

Due to the size of the dataset and the large number of parameters in the neural networks, model training is
computationally expensive. To address this, we use a cluster with 50 GPUs to train the models. Access-
ing and processing data is accelerated via distributed storage. Pre-processing of data is performed using
parallelization over 150 CPUs on multiple high-performance multi-core processors.

Model training is parallelized across 50 GPUs. Each GPU itself has 1,500 CUDA cores. GPUs allow
massive parallelization via the large number of cores and have become the preferred approach for neural
network training. We also use NVIDIA’s cuDNN library, which is a highly optimized library of primitives
for training deep neural networks on GPUs. In total, model training takes over 3,000 “GPU node hours”;
i.e., it would take a single GPU node 3,000 hours to train all the models. Training models on the GPU is 10
times faster than training with a CPU, meaning that training on a single (non-GPU) node would take years
to train all the models.

Filtering the original raw data to create datasets for model training is itself very challenging. The original
dataset contains roughly 50 terabytes of raw data. Data is distributed across multiple storage devices. Data
processing is parallelized across 150 CPUs.

In Case [1] (fixed time horizon of 1 s), each stock has roughly 10 million samples. Over the entire
dataset of 489 stocks, this makes for 5 billion data samples in total. In Case [2] (random time horizon at
which the next change in the best ask or best bid prices occurs), each stock has on average 5 million samples.
Over the entire dataset, this amounts to 2.5 billion data samples. Each sample contains a vector of length
200, recording the state of the limit order book across the first 50 bid and ask nonzero levels.

5.3 Division of Data into Training, Validation, and Test Sets

The data is divided into three sets. The test set is all data from June 1, 2015 to August 31, 2015. The
training data is composed of 95% of the data from January 1, 2014 to May 31, 2015 (drawn at random). The
validation set is the remaining 5% of the data from January 1, 2014 to May 31, 2015. Models are trained
and tested separately on each stock; i.e., a new randomly initialized model is trained for each stock.

5.4 Hyperparameters

Out-of-sample results are reported in Section 6. Both the standard neural network and spatial neural network
have 4 layers. The deep learning techniques discussed in Section 5.1 are applied in the same manner to the
standard neural network and spatial neural network. In addition, all models use the same batchsize, initial
learning rate, momentum, `2 penalty, and dropout rate. All models are trained using the RMSProp algorithm.
The initial parameters are randomly initialized for all models. Although the results reported in Section 6 are
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for a single set of hyperparameter choices for the batchsize, initial learning rate, momentum, and dropout
rate, we did test a wide range of values for these hyperparameters on a small subset of stocks and found that
results are robust to the choice of these hyperparameters. Neurons in the hidden layers are the tanh function.
We use 250 neurons per hidden layer for the standard neural network. The standard neural network needs a
large number of neurons for peak performance, with smaller networks (e.g., 50 neurons per hidden layer) not
performing as well. The spatial neural network can perform well with relatively few neurons, and we use 50
neurons per hidden layer to save computational time.13 All models are trained for 75 epochs.14 After each
epoch, the training data is randomly rescrambled for all models.15 A new random initialization of the model
parameters is used at the start of training for each stock. A form of early stopping is applied to the training
of all models: the validation error and fitted model are recorded after each epoch and the model fit with the
lowest validation error is selected from the sequence of model fits. Inputs to the logistic regression, standard
neural network, and spatial neural network only include the sizes (and, in the case of logistic regression,
order book imbalances) at each level of the limit order book and not the actual prices associated with those
levels (e.g., the best ask price, best bid price, and mid-price are not included). The input to the spatial neural
network includes both sizes for levels close to the origin as well as sizes for “local” levels near to y.

6 Out-of-sample Results

Out-of-sample results for Case [1] and Case [2] are reported in Sections 6.1 and 6.2, respectively. Case [1]
is a fixed time horizon of 1 second and Case [2] is a random time horizon at the next price move. (See
Section 2 for a detailed description.) For both Cases [1] and [2], out-of-sample performance is reported
for the marginal distribution of the best ask price as well as the joint distribution of the best ask and best
bid prices. The spatial neural network outperforms the standard neural network with lower error and higher
accuracy. The “error” reported is the cross-entropy error, which is equivalent to the negative log-likelihood.
In Section 6.3, we compare model performance in the tail of the distribution. The spatial neural network
significantly outperforms the standard neural network in the tail of the distribution, which is important for
risk management applications. Section 6.4 discusses the error versus computational cost for the neural
networks.

Neural network results are also compared against baseline models. The first baseline model is the naive
empirical model, which is simply the naive empirical distribution from the training set. If models do not
have lower errors than the naive empirical model, then the limit order book contains no information on
future movements of the best ask and best bid prices. The second baseline model is a logistic regression
whose input includes nonlinear features (the order book imbalances). The logistic regression’s input also
includes the sizes at the different levels and the spread. If the neural networks have lower errors than
the logistic regression, this indicates that limit order book dynamics have significant nonlinearity beyond

13The standard neural network has over 170,000 parameters while the spatial neural network has 20,000 parameters. Despite the
standard neural network being a much more complex model than the spatial neural network, the spatial neural network outperforms
the standard neural network. Note that this is not due to the standard neural network overfitting; as mentioned above, we found
that smaller sizes (e.g., 50 neurons per hidden layer) of the standard neural network performed worse. The spatial neural network
can be a much less complex model since the dimension of the learning problem has been considerably reduced and the limit order
book’s nonlinear behavior in the tails (i.e., the local spatial structure) has already been embedded into the model. Even smaller
sizes (e.g., 10 or 25 neurons per hidden layer) for the spatial neural network can still perform well, with only a moderate decrease
in performance. The smaller size of the spatial neural network means that it can be trained more quickly than the standard neural
network.

14An epoch is a complete pass through the entire training set.
15Note that we have randomly scrambled data over all time periods. This is important in order not to bias training towards any

particular time period.
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the nonlinearity of the order book imbalance feature. Both of the neural networks strongly outperform
these baseline models. The baseline models also perform poorly for modeling the tail of the distribution as
compared to the neural networks (see Section 6.3).

Modeling the best ask and best bid prices at a future time is equivalent to modeling the change in the
best ask and best bid prices; see Example 4.2. We measure the change by the number of levels that the best
ask and best bid prices move. Since the standard neural network, logistic regression, and naive model cannot
model the entire real line,R is truncated to −50,−49, . . . , 49, 50 for the purpose of model comparison.

The dimension splitting trick (22) is applied to the standard neural network and logistic regression when
modeling the joint distribution of the best ask and best bid prices. This is done for two reasons. First,
this makes the other models consistent with the spatial neural network and allows for a fair comparison of
performances. Secondly, without using (22), the number of output states becomes |R|2 = 10, 201 and the
standard neural network’s convergence during training is so slow that this approach becomes impractical
even with the large amount of computational resources. Similarly, the logistic regression training also
becomes very slow.

All models are trained and tested separately on each stock; i.e., modelsM1
i ,M2

i , . . . ,M489
i are trained

where i ∈ {naive empirical model, logistic regression, standard neural network, spatial neural network}. The
modelMj

i is trained only on the training set for stock j and Eji is the out-of-sample error of the modelMj
i

on the test set for stock j. A new random initialization of the model parameters is used for each stock at the
beginning of training.

The spatial neural network outperforms the standard neural network on 94% of stocks in Case [1] and
97% of stocks in Case [2]. The average decrease in error for modeling the joint distribution is 0.6% and 3.5%
in Case [1] and Case [2], respectively. The spatial neural network outperforms the logistic regression and
naive empirical model on 100% of the stocks. The standard neural network outperforms logistic regression
and the naive empirical model on nearly 100% of the stocks. In Case [1], the neural networks have on
average 10% lower error for modeling the joint distribution as compared to the logistic regression. In Case
[2], the neural networks have on average 20% lower error for modeling the joint distribution as compared to
the logistic regression. A detailed report of model performances is provided in Sections 6.1 and 6.2. Section
6.1 compares model performances for Case [1]. Section 6.2 compares model performances for Case [2].

The logistic regression fairs very poorly when used to model the joint distribution in Case [1]. This
is because the conditional distribution of the best bid price given the change in the best ask price is a
nonlinear function. Note that the logistic regression does not have this disadvantage when modeling the
joint distribution in Case [2] since either the best ask price or the best bid price changes (but not both at
once). We have embedded this a priori knowledge into the models for Case [2].16

The spatial neural network more strongly outperforms the standard neural network in Case [2]. Case [2]
is particularly interesting because the next price move is often the quantity which most directly affects the
profit and loss of a strategy, position, or order execution schedule. Quantifying the magnitude of the next
price move can therefore be valuable. The spatial neural network performs better relative to the standard
neural network in Case [2] due to Case [2] conditioning on a change in the best ask price or best bid price. As
described in Section 3, the spatial neural network takes advantage of local spatial structure in the tails of the
distribution (in particular when the bet ask price increases or the best bid price decreases). For typical stocks,
the best ask price changes only 5-15% of the time in Case [1]. Consequently, the advantage of the spatial
neural network is not applicable for the majority of samples. Thus, even though the spatial neural network
strongly outperforms conditional on a movement, the overall error in Case [1] only decreases modestly since
a price move occurs only a small percentage of the time. Case [2] conditions on such a movement occuring,

16In Case [2], given the best ask price changes, the conditional log-likelihood of the best bid price not changing is 0.
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so the outperformance is larger. Section 6.3 examines model performance in the tail of the distribution for
Case [1] and finds that the spatial neural network strongly outperforms the standard neural network in the
tail, which matches both the statistical evidence in Section 3 and the performance results for Case [2].

The advantages of the spatial neural network in the tail of the distribution can be useful for risk man-
agement purposes. Risk analysis is primarily concerned with rare events. For instance, a risk manager
might ask conditional on a price change at a certain time horizon, how large might the price move be? Or
a risk manager might ask how large will the next price move be? Sections 6.2 and 6.3 show that the spatial
neural network provides a large improvement in performance in the tail of the distribution. Besides the
cross-entropy error, Section 6.3 also reports the accuracy of the different models in the tail of the distribu-
tion. Accuracy is another metric which can be used to evaluate model performance. Model accuracy is the
percentage of the time where the model correctly predicts the outcome.

Figure 6 compares the out-of-sample performances of the spatial neural network and the standard neural
network in the upper tail of the distribution for Case [1]. Here, the “upper tail of the distribution” is the
distribution conditional on the best ask price increasing. The outperformance of the spatial neural network
relative to the standard neural network increases with the standard deviation of the change in the best ask
price. This matches the statistical behavior found in Section 3 (in particular, see Figure 5) where the local
dependence was stronger for stocks with larger standard deviations. Stocks with larger standard deviations
have a stronger dependence on liquidity deeper in the limit order book. Figure 7 compares the out-of-sample
accuracies of the spatial neural network and the standard neural network in the upper tail of the distribution
for Case [1]. Again, the outperformance increases with the standard deviation of the change in the best ask
price.

Figure 6: Decrease in out-of-sample error of the spatial neural network versus the standard neural network plotted against the

standard deviation of the change in the best ask price. Decrease in error for stock j is
EjStandard Neural Network−E

j
Spatial Neural Network

EjStandard Neural Network
× 100%.

Results are for the marginal distribution of the best ask price at a 1 second time horizon conditional on the best ask price increasing.

Finally, we find that the spatial neural network’s outperformance can largely be attributed to taking ad-
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Figure 7: Out-of-sample accuracy of the spatial neural network minus the out-of-sample accuracy of the standard neural network
plotted against the standard deviation of the change in the best ask price. Results are for the marginal distribution of the best ask
price at a 1 second time horizon conditional on the best ask price increasing.

vantage of the local spatial structure described in Section 3. To take advantage of the local spatial structure,
the spatial neural network requires as an input the “local” state of the limit order book (i.e., the sizes for
level y and nearby levels). We tested the spatial neural network without these local inputs and performance
decreased significantly.

6.1 Case [1]: Fixed Time Horizon of 1 second

Out-of-sample performance of the models is reported for the prediction case of a fixed time horizon of 1
second. The models seek to predict the joint distribution of the best ask and best bid prices at time t + ∆t
given the current state of the limit order book at time t.

Tables 3 and 4 compare the out-of-sample performance of the different models for the marginal distri-
bution of the best ask price for Case [1]. Tables 5 and 6 compare the out-of-sample performance of the
different models for the joint distribution of the best ask and best bid prices for Case [1]. The neural net-
works consistently have lower error than the naive empirical model and the logistic regression. The spatial
neural network consistently has lower error than the standard neural network.

6.2 Case [2]: Random Time Horizon at the Next Change of Bid or Ask Prices

Out-of-sample performance of the models is reported for the prediction case of the next change of the best
bid or best ask prices. The models seek to predict the joint distribution of the best ask and best bid prices
upon the next price move. The next price move is defined as the first time at which the best bid price or best
ask price changes.
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Model 1/Model 2 Naive empirical model Logistic Reg. Neural Net. Spatial Neural Net.
Naive empirical model NA 4/489 1/489 0/489

Logistic Reg. 485/489 NA 2/489 0/489
Neural Net. 488/489 487/489 NA 31/489

Spatial Neural Net. 489/489 489/489 458/489 NA

Table 3: Number of stocks out of 489 total stocks where Model 1 has a lower out-of-sample error than Model 2:
1

489

∑489
j=1 1EjModel 1<E

j
Model 2

. “Neural Net.” is the standard neural network architecture described in Section 4.1. “Spatial Neural
Net.” is the computationally efficient neural network architecture for spatial distributions developed in Section 4.3. Results are for
the marginal distribution of the best ask price at a 1 second time horizon.

Model 1/Model 2 Naive empirical model Logistic Reg. Neural Net. Spatial Neural Net.
Naive empirical model NA -5.94 -9.63 -10.31

Logistic Reg. 5.52 NA -3.51 -4.14
Neural Net. 8.71 3.36 NA -0.62

Spatial Neural Net. 9.27 3.95 0.61 NA

Table 4: Average percent decrease in out-of-sample error for Model 1 versus Model 2: 1
489

∑489
j=1

EjModel 2−E
j
Model 1

EjModel 2
× 100%. “Neural

Net.” is the standard neural network architecture described in Section 4.1. “Spatial Neural Net.” is the computationally efficient
neural network architecture for spatial distributions developed in Section 4.3. Results are for the marginal distribution of the best
ask price at a 1 second time horizon.

Model 1/Model 2 Naive empirical model Logistic Reg. Neural Net. Spatial Neural Net.
Naive empirical model NA 199/489 1/489 0/489

Logistic Reg. 290/489 NA 1/489 0/489
Neural Net. 488/489 488/489 NA 31/489

Spatial Neural Net. 489/489 489/489 458/489 NA

Table 5: Number of stocks out of 489 total stocks where Model 1 has a lower out-of-sample error than Model 2. “Neural Net.”
is the standard neural network architecture described in Section 4.1. “Spatial Neural Net.” is the computationally efficient neural
network architecture for spatial distributions developed in Section 4.3. Results are for the joint distribution of the best ask and best
bid prices at a 1 second time horizon.

Model 1/Model 2 Naive empirical model Logistic Reg. Neural Net. Spatial Neural Net.
Naive empirical model NA -0.58 -14.63 -15.36

Logistic Reg. 0.47 NA -14.01 -13.74
Neural Net. 12.51 12.05 NA -0.64

Spatial Neural Net. 13.07 11.87 0.63 NA

Table 6: Average percent decrease in out-of-sample error for Model 1 versus Model 2. “Neural Net.” is the standard neural network
architecture described in Section 4.1. “Spatial Neural Net.” is the computationally efficient neural network architecture for spatial
distributions developed in Section 4.3. Results are for the joint distribution of the best ask and best bid prices at a 1 second time
horizon.
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Tables 7 and 8 compare the out-of-sample performance of the different models for the marginal distri-
bution of the best ask price for Case [2]. Tables 9 and 10 compare the out-of-sample performance of the
different models for the joint distribution of the best ask and best bid prices for Case [2]. The neural net-
works consistently have lower error than the naive empirical model and the logistic regression. The spatial
neural network consistently has lower error than the standard neural network.

Model 1/Model 2 Naive empirical model Logistic Reg. Neural Net. Spatial Neural Net.
Naive empirical model NA 4/489 0/489 0/489

Logistic Reg. 485/489 NA 3/489 0/489
Neural Net. 489/489 486/489 NA 17/489

Spatial Neural Net. 489/489 489/489 472/489 NA

Table 7: Number of stocks out of 489 total stocks where Model 1 has a lower out-of-sample error than Model 2:
1

489

∑489
j=1 1EjModel 1<E

j
Model 2

. “Neural Net.” is the standard neural network architecture described in Section 4.1. “Spatial Neural
Net.” is the computationally efficient neural network architecture for spatial distributions developed in Section 4.3. Results are for
the marginal distribution of the best ask price at the time of the next price move.

Model 1/Model 2 Naive empirical model Logistic Reg. Neural Net. Spatial Neural Net.
Naive empirical model NA -13.27 -29.11 -31.66

Logistic Reg. 11.56 NA -14.05 -16.29
Neural Net. 22.03 11.80 NA -1.99

Spatial Neural Net. 23.54 13.51 1.92 NA

Table 8: Average percent decrease in out-of-sample error for Model 1 versus Model 2: 1
489

∑489
j=1

EjModel 2−E
j
Model 1

EjModel 2
× 100%. “Neural

Net.” is the standard neural network architecture described in Section 4.1. “Spatial Neural Net.” is the computationally efficient
neural network architecture for spatial distributions developed in Section 4.3. Results are for the marginal distribution of the best
ask price at the time of the next price move.

Model 1/Model 2 Naive empirical model Logistic Reg. Neural Net. Spatial Neural Net.
Naive empirical model NA 41/489 0/489 0/489

Logistic Reg. 448/489 NA 2/489 0/489
Neural Net. 489/489 487/489 NA 16/489

Spatial Neural Net. 489/489 489/489 473/489 NA

Table 9: Number of stocks out of 489 total stocks where Model 1 has a lower out-of-sample error than Model 2. “Neural Net.”
is the standard neural network architecture described in Section 4.1. “Spatial Neural Net.” is the computationally efficient neural
network architecture for spatial distributions developed in Section 4.3. Results are for the joint distribution of the best ask and best
bid prices at the time of the next price move.
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Model 1/Model 2 Naive empirical model Logistic Reg. Neural Net. Spatial Neural Net.
Naive empirical model NA -17.18 -53.16 -59.12

Logistic Reg. 13.00 NA -32.63 -37.80
Neural Net. 32.47 21.38 NA -3.88

Spatial Neural Net. 34.83 24.13 3.50 NA

Table 10: Average percent decrease in out-of-sample error for Model 1 versus Model 2. “Neural Net.” is the standard neural
network architecture described in Section 4.1. “Spatial Neural Net.” is the computationally efficient neural network architecture for
spatial distributions developed in Section 4.3. Results are for the joint distribution of the best ask and best bid prices at the time of
the next price move.

6.3 Model Performance in the Tail of the Distribution

This section examines model performance in the tail of the distribution. Specifically, we compare model
performance for predicting the marginal distribution of the best ask price conditional on the best ask price
increasing (the upper tail of the distribution). We first compare the cross-entropy error for the different
models in the tail of the distribution. We also look at another metric for model performance, the accuracy.
We discuss this metric in Section 6.3.1. We then present results for the out-of-sample model accuracies in
the tail of the distribution in Section 6.3.2. The neural networks significantly outperform logistic regression
and the naive empirical model for tail accuracy. The spatial neural network outperforms the standard neural
network for tail accuracy.

Tables 11 and 12 compare the cross-entropy error of the different models in the upper tail of the distri-
bution for Case [1]. Note that the outperformance of the spatial neural network increases substantially in the
tail of the distribution compared to results for the full distribution in Section 6.1. As mentioned earlier, this
matches the outperformance observed in Case [2].

Model 1/Model 2 Naive empirical model Logistic Reg. Neural Net. Spatial Neural Net.
Naive empirical model NA 8/489 1/489 1/489

Logistic Reg. 481/489 NA 3/489 0/489
Neural Net. 488/489 486/489 NA 7/489

Spatial Neural Net. 488/489 489/489 482/489 NA

Table 11: Number of stocks out of 489 total stocks where Model 1 has a lower out-of-sample error than Model 2:
1

489

∑489
j=1 1EjModel 1<E

j
Model 2

. “Neural Net.” is the standard neural network architecture described in Section 4.1. “Spatial Neural
Net.” is the computationally efficient neural network architecture for spatial distributions developed in Section 4.3. Results are for
the marginal distribution of the best ask price at a 1 second time horizon conditional on the best ask price increasing.

6.3.1 Another metric: Accuracy

The cross-entropy error (i.e., the negative log-likelihood) is the best metric to evaluate model performance
since it measures how well the model fits the empirical distribution of the data. However, it does lack some
intuition in the sense that it is unclear how practically significant a reduction of 1% in cross-entropy error
is. A more interpretable metric is the accuracy of the model. Model accuracy is the percentage of the time
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Model 1/Model 2 Naive empirical model Logistic Reg. Neural Net. Spatial Neural Net.
Naive empirical model NA -20.92 -28.90 -34.03

Logistic Reg. 16.64 NA -6.51 -10.68
Neural Net. 21.45 5.92 NA -3.86

Spatial Neural Net. 24.30 9.30 3.64 NA

Table 12: Average percent decrease in out-of-sample error for Model 1 versus Model 2: 1
489

∑489
j=1

EjModel 2−E
j
Model 1

EjModel 2
×100%. “Neural

Net.” is the standard neural network architecture described in Section 4.1. “Spatial Neural Net.” is the computationally efficient
neural network architecture for spatial distributions developed in Section 4.3. Results are for the marginal distribution of the best
ask price at a 1 second time horizon conditional on the best ask price increasing.

where the model correctly predicts the outcome. The predicted outcome is taken as the most likely event
according to the model-produced distribution. In this section and Section 6.3.2, we report the accuracy of
neural networks in the limit order book setting.

In some settings, such as image classification, accuracy is an extremely good metric which in practice
closely coincides with the cross-entropy error. However, in general, this may not be the case and we caution
that accuracy may be an imperfect metric for many financial applications. Financial applications typically
have a large amount of noise; modeling the distribution of the noise is just as important as modeling the
most likely outcome. A simple example is the prediction of the binary event Y ∈ {0, 1} where the true
probability of event Y = 1 is 99

100 . The two models P[Y = 1] = 51
100 and P[Y = 1] = 98

100 both have the
same accuracy (99%). However, the second model is clearly superior and has a much smaller cross-entropy
error. Nonetheless, accuracy is an easily interpreted metric and thus can be worthwhile examining.

Figures 8 and 9 compare the out-of-sample accuracy of the naive empirical model, logistic regression,
and standard neural network for the best ask price in Case [2]. The accuracies are for the full marginal
distribution of the best ask price (there is no conditioning on the best ask price increasing or decreasing).
Figures 8 and 9 are histograms for the increase in accuracy of the standard neural network over the naive
model and logistic regression, respectively. Accuracies are measured in percent (i.e., if the neural network
has an accuracy of 60% and the naive model has an accuracy of 51%, the increase in accuracy is 9%). The
neural network offers signficant improvement over both logistic regression and the naive empirical model.

6.3.2 Accuracy in the Tail of the Distribution

The difference between the standard neural network and the spatial neural network is in the tail of the
distribution. We examine the top-k accuracy for the upper tail of the marginal distribution of the best ask
price in Case [1]. We define a model’s top-k accuracy as the percent of time the actual outcome is in
the model’s top k most likely outcomes. The top-1 accuracy is simply the model’s accuracy. For each
model, Table 13 reports the out-of-sample top-k accuracy for the best ask price conditional on the best ask
price increasing. The spatial neural network outperforms the standard neural network. The neural networks
strongly outperform the logistic regression and naive models. Table 14 directly compares the top-k accuracy
of the spatial neural network and the standard neural network by reporting the fraction of stocks where
the spatial neural network’s top-k accuracy is greater than the standard neural network’s top-k accuracy
conditional on the best ask price increasing. Table 15 compares the top-k accuracy of the spatial neural
network and the logistic regression by reporting the fraction of stocks where the spatial neural network’s
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Figure 8: Increase in out-of-sample accuracy of neural network over naive empirical model. Accuracies are measured in percent.
Results are for the marginal distribution of the best ask price at the time of the next price move.

Figure 9: Increase in out-of-sample accuracy of neural network over logistic regression. Accuracies are measured in percent.
Results are for the marginal distribution of the best ask price at the time of the next price move.

top-k accuracy is greater than the standard neural network’s top-k accuracy conditional on the best ask price
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k/Model Naive empirical model Logistic Regression Neural Net. Spatial Neural Net.
1 62.04 66.42 69.90 70.98
2 78.96 82.97 84.92 86.15
3 86.26 89.44 90.68 91.77
4 90.31 92.68 93.56 94.53
5 93.13 94.55 95.23 96.09
6 94.44 95.67 96.21 97.00
7 95.36 96.42 96.90 97.62
8 96.06 96.95 97.41 98.07
9 96.61 97.34 97.80 98.40

10 97.06 97.64 98.10 98.65

Table 13: Average out-of-sample top-k accuracy (in %). Top-k accuracy is the percent of time the actual outcome is in the model’s
top k most likely outcomes. Results are for the marginal distribution of the best ask price at a 1 second time horizon conditional on
the best ask price increasing.

k Spatial Neural Net. vs. Neural Net.
1 460/489
2 471/489
3 470/489
4 467/489
5 461/489
6 454/489
7 456/489
8 453/489
9 455/489
10 458/489

Table 14: Number of stocks out of 489 total stocks where the spatial neural network’s out-of-sample top-k accuracy is greater
than the standard neural network’s out-of-sample top-k accuracy. Top-k accuracy is the percent of time the actual outcome is in
the model’s top k most likely outcomes. Results are for the marginal distribution of the best ask price at a 1 second time horizon
conditional on the best ask price increasing.

increasing.

6.4 Error versus Computational Cost

Besides having lower error, the spatial neural network can learn more quickly than the standard neural
network during training due to the reasons discussed in Sections 3 and 4. Figure 10 shows the out-of-sample
error versus computational cost for the marginal distribution of the best ask price of Amazon in Case [1].
The computational time only includes the training time and does not include data pre-processing time. For
Amazon, the standard neural network takes about 1700 seconds to reach its lowest error while the spatial
neural network can achieve the same error in about 90 seconds.

Shorter training times are highly desirable. A financial institution would train models for a large number
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k Spatial Neural Net. vs. Logistic Reg.
1 487/489
2 487/489
3 486/489
4 485/489
5 485/489
6 486/489
7 488/489
8 484/489
9 488/489
10 486/489

Table 15: Number of stocks out of 489 total stocks where the spatial neural network’s out-of-sample top-k accuracy is greater than
the logistic regression’s out-of-sample top-k accuracy. Top-k accuracy is the percent of time the actual outcome is in the model’s
top k most likely outcomes. Results are for the marginal distribution of the best ask price at a 1 second time horizon conditional on
the best ask price increasing.

of stocks (for instance, the Wilshire 5000 contains 3,671 stocks). As new data arrives, models need to be
re-trained with the new data. This would occur on a frequent basis (daily, weekly, or monthly). Neural
network performance can be further improved by building model ensembles (often referred to as bagging).
An ensemble is simply the average of many independently trained models. Each neural network (due to
its random initial parameters and the random sequence of minibatches) will typically reach a different local
minimum during training. By averaging the independently trained models, the variance can be significantly
reduced and the out-of-sample error will decrease. If a financial institution builds an ensemble of neural
networks for each stock, computational cost can further increase by an order of magnitude or more.

Figure 10: Out-of-sample error versus computational cost for Amazon.
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7 Conclusion

This paper explores neural networks and deep learning for limit order book modeling. Neural networks are
found to perform well for modeling the distribution of the best ask and best bid prices, with significantly
better performance relative to logistic regression (with nonlinear features). The strong outperformance of
the neural networks over logistic regression suggests that current industry risk modeling and management
approaches can potentially be improved by adopting neural networks. Models are trained and tested using a
dataset of nearly 500 U.S. stocks over a 20 month period.

Besides testing a standard neural network architecture, this paper develops a new neural network ar-
chitecture (which we have referred to as a “spatial neural network”) for modeling spatial distributions (i.e.,
distributions on Rd). This new architecture has several advantages over the standard neural network archi-
tecture for modeling distributions on Rd, including better generalization over space, lower computational
expense, and the ability to take advantage of any local spatial structure. For the dataset considered in this
paper, this spatial neural network has lower out-of-sample error, lower computational cost, and greater in-
terpretability than the standard neural network. The spatial neural network’s outperformance of the standard
neural network can be largely attributed to its taking advantage of the limit order book’s local spatial struc-
ture. The spatial neural network’s architecture mimics this local behavior, yielding a low-dimensional model
of movements deep into the limit order book. The spatial neural network performs especially well in the tail
of the distribution, which is important for risk management applications.

This paper models the joint distribution of the best bid and best ask prices. This is essential for risk
management applications (e.g., computing Value at Risk). This paper’s approach could also be easily used
to model the joint distribution of the best bid, best ask, and other limit order book features. Finally, although
this paper focuses on limit order books, the spatial neural network provides benefits for any setting which
requires modeling a distribution on Rd.

A List of Stocks

LLTC, JD, NVDA, COG, BBBY, HAS, BRK.B, AES, ADT, HRS, GILD, ABBV, BA, ALXN, ALKS, HOG,
BCR, AAL, CTSH, HON, AIZ, INTC, YHOO, HOLX, ILMN, INCY, BBT, BXP, CAM, BIIB, KLAC, ABT,
LVNTB, HRL, BSX, CHKP, AGN, NXPI, BAX, CVC, BBY, CHTR, TSLA, HPQ, BHI, APD, IBKR, HCA,
CBS, ISRG, ALLE, CTXS, BWA, ACE, ACN, ADBE, ADP, CCL, GWW, CPB, BMY, HIG, CA, AIV,
HAL, BRCM, ADS, CBG, BDX, SCTY, LMCA, AA, HSIC, AMGN, ADI, AMZN, HAR, ADM, AVY,
NFLX, MXIM, CAT, MSFT, ENDP, MAR, COF, AAP, NTES, BLL, FOXA, AEE, DISH, CTRP, KMX,
AMAT, HCP, HBI, CHRW, BK, ATVI, BAC, ADSK, AAPL, CAH, HRB, GOOGL, BMRN, FB, GT, MKC,
QCOM, MET, NDAQ, SBUX, STT, NOV, MYL, SYF, TGT, JWN, SNI, PNR, MHFI, PH, TEL, MCD,
NLSN, MCO, MS, MUR, ORCL, SYK, SLB, PCAR, PCL, SO, OI, PPG, NFX, NI, SIG, SE, PRGO, SPLS,
TAP, PKI, RL, PBI, PDCO, PXD, MCHP, PCG, ROST, MCK, SEE, PSX, MON, SWN, R, STI, MOS, RCL,
SLG, CRM, PPL, MRK, MAT, MSI, PNC, PBCT, SCG, NEM, PNW, PM, PEP, SNA, NKE, SYY, MA, TE,
NTAP, NAVI, SHW, PFE, POM, SWK, MJN, SPG, COL, SRE, ROP, HOT, MNST, SJM, STJ, PAYX, NEE,
NWSA, OKE, MHK, MDT, NWL, CSC, DISCA, LEG, DVN, HES, PGR, OMC, MMC, COH, DUK, JPM,
DG, CNP, DFS, GMCR, MAC, CCI, CMG, CVS, MTB, DRI, CCE, DE, ICE, MAS, DGX, PEG, CSX,
JBHT, DNB, COP, COST, DD, MPC, DISCK, DHR, DLTR, CLX, CELG, CL, CMS, CB, LB, PG, KR,
HD, LH, HBAN, PFG, LLL, PVH, CMA, KEY, HP, KIM, CVX, PWR, LUK, OXY, DHI, JNPR, D, ITW,
DOV, DO, CME, CMI, LEN, PHM, DPS, KSU, CMCSA, DOW, O, KMB, PRU, CTAS, PLD, MRO, LOW,
DTE, CINF, L, M, K, C, CHK, LNC, CF, LM, CI, MLM, HST, CERN, LVLT, DAL, LYB, LLY, JNJ, KSS,
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CAG, KMI, IR, PSA, CTL, DLPH, LMT, DVA, IBM, ATML, TMO, NRG, TXN, UAL, YUM, TWX, HSY,
HCN, WEC, VAR, UHS, VLO, NSC, WYN, FLS, WDC, UNH, FLIR, WU, FE, THC, ZTS, ZION, FIS,
TSO, TRV, RIG, ECL, A, WM, TIF, WAT, VFC, XRX, WFC, FOSL, WMB, FCX, NUE, TSN, USB, EA,
WBA, XYL, TSS, NTRS, WYNN, WY, UNM, UA, XL, VZ, TXT, BEN, PCLN, TWC, ED, URI, UTX,
FLR, TDC, UPS, NOC, EL, NVAX, UNP, FISV, VMC, FDX, WMT, VNO, DIS, TMK, V, XEL, REGN,
FITB, TJX, WFM, TYC, VTR, XEC, FFIV, SCHW, EIX, WHR, URBN, FAST, GRPN, FSLR, VIAB, ETN,
RTN, JBLU, VRSN, EXPD, EQT, ETR, KO, EMC, SYMC, AKAM, GD, EXPE, SWKS, DOX, JAZZ, STX,
RRC, FOX, EQIX, XLNX, IPG, GE, SBAC, GME, LRCX, EMR, CSCO, RF, TSCO, TRIP, MU, QVCA,
XOM, TROW, GRMN, IP, JCI, ESRX, GPS, INTU, ROK, MDLZ, FTI, EMN, ESS, LULU, GS, SNDK,
JEC, SHPG, PX, RSG, BIDU, VOD, RAI, EXC, VRSK, EW, GIS, FTR, SRCL, IRM, GM, ORLY, EQR,
F, ETFC, RHT, IFF, HUM, GGP, RHI, LKQ, VIA, TMUS, SIRI, ULTA, AVGO, IVZ, VRTX, EOG, EBAY,
NCLH, XRAY, GPC

B Comparison against a theoretical model

Theoretical models have made key contributions to the economic understanding of limit order book dynam-
ics. For instance, the formula in Cont & Larrard (2012) reveals that limit order book dynamics intrinsically
depend upon the order book imbalance, which is a nonlinear feature widely used in trading algorithms and
as an input to statistical models. However, data-driven models may provide better quantitative predictions
than theoretical models in practice.

The theoretical models cannot be directly compared against the data-driven models in this paper due to
the theoretical models’ lack of tractability for computing a distribution on N×N, which is the quantity this
paper is interested in. For the interested reader, we provide here a comparison in the much simpler case of
predicting the direction of the next move of the best ask price (i.e., the probability that it moves up or down).
We compare the model from the seminal paper of Cont & Larrard (2012) against logistic regression and a
neural network. The model from Cont & Larrard (2012) for the direction of the next price move is

pup =
1

2
−

arctan(
√

1+ρ
1−ρ

best ask size−best bid size
best ask size+best bid size)

2 arctan(
√

1+ρ
1−ρ)

, (24)

where ρ is the correlation between the increments of the best bid and best ask sizes. Tables 16 and 17
compare the data-driven models with the theoretical model. The comparison is performed using a subset of
109 stocks from the dataset. The “error” is the cross-entropy error (i.e., the negative log-likelihood).

Model 1/Model 2 Logistic Reg. Neural Net. Theoretical
Logistic Reg. NA 1/109 109/109
Neural Net. 108/109 NA 109/109
Theoretical 0/109 0/109 NA

Table 16: Number of stocks out of 109 total stocks where Model 1 has a lower out-of-sample error than Model 2:
1

109

∑109
j=1 1EjModel 1<E

j
Model 2

. Results are for the marginal distribution of the direction (i.e., up or down) of the next change of the best
ask price. A subset of 109 stocks is used.
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Model 1/Model 2 Logistic Reg. Neural Net. Theoretical
Logistic Reg. NA -64.58 25.83
Neural Net. 28.20 NA 43.92
Theoretical -59.69 -201.76 NA

Table 17: Average percent decrease in out-of-sample error for Model 1 versus Model 2: 1
109

∑109
j=1

EjModel 2−E
j
Model 1

EjModel 2
×100%. Results

are for the marginal distribution of the direction (i.e., up or down) of the next change of the best ask price. A subset of 109 stocks
is used.
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