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Abstract

The impact of Automated Trading Systems (ATS) on financial markets is growing
every year and the trades generated by an algorithm now account for the majority
of orders that arrive at stock exchanges. In this paper we explore how to find a
trading strategy via Reinforcement Learning (RL), a branch of Machine Learning
(ML) that allows to find an optimal strategy for a sequential decision problem
by directly interacting with the environment. We show that the the long-short
strategy learned for a synthetic asset, whose price follows a stochastic process with
some exploitable patterns, consistently outperforms the market. RL thus shows
the potential to deal with many financial problems, that can be often formulated
as sequential decision problems.

1 Introduction

The trading pit of a stock exchange is often imagined by outsiders as a frenzy place, with telephones
constantly ringing and traders shouting orders across the room at a frenetic rhythm. This was proba-
bly the reality thirty years ago, when open outcry was still the main communication system between
pit traders. Since then the floors have become more and more quiet as the majority of the orders
moved to electronic trading systems. Notwithstanding, investment decisions were still made by hu-
mans who could now execute their orders without passing through the pit traders. In the last decade,
the markets have witnessed the widespread adoption of Automated Trading Systems (ATS), that can
make investment decisions in a fully automatized way at speeds with orders of magnitude greater
than any human equivalent. In 2014, more than 75% of the stock shares traded on United States
exchanges were originated from ATS orders and this amount kept growing since then. Quantitative
hedge funds, such as Renaissance Technologies, D.E. Shaw, Citadel and many others, are employing
mathematicians, physicists and other scientists to develop algorithms able to extract trading signals
from large amount of data and automatically trade. These algorithms are typically based on ad-
vanced statistics, signal processing, machine learning and other fields of mathematics. However,
few of these hedge funds publish their profit-generating “secret sauce” and not much can be found
in the literature. In this project we develop an automated trading algorithm based on Reinforcement
Learning (RL), a branch of Machine Learning (ML) which has recently been in the spotlight for
being at the core of the system who beat the Go world champion in a 5-match series [1].
This document is organized as follows. In Section 2 we introduce the basic concepts of RL and
present two learning algorithms that allow two determine an approximation for the optimal policy
of a sequential decision problem. In section 3 we discuss the asset allocation problem from a math-
ematical point of view and show how these learning algorithms can be applied in this setting. In
Section 4 we start discussing the implementation of the model in Python, which has been used dur-
ing the prototyping phase. In Section 5 we discuss a more efficient C++ implementation. In Section
6 we describe the execution pipeline used to run the learning experiment. In Section 7 we present
the numerical results for a synthetic asset, whose price follows a particular stochastic process. In
Section 8 we conclude with some final remarks and we discuss some future research directions.
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Figure 1: Agent-environment interaction in sequential decision problems.

2 Basics of Reinforcement Learning

Reinforcement Learning (RL) is a general class of algorithms in the field of Machine Learning (ML)
that allows an agent to learn how to behave in a stochastic and possibly unknown environment,
where the only feedback consists of a scalar reward signal [2]. The goal of the agent is to learn
by trial-and-error which actions maximize his long-run rewards. However, since the environment
evolves stochastically and may be influenced by the actions chosen, the agent must balance his
desire to obtain a large immediate reward by acting greedily and the opportunities that will be
available in the future. Thus, RL algorithms can be seen as computational methods to solve
sequential decision problems by directly interacting with the environment.

2.1 Markov Decision Processes

Sequential decision problems are typically formalized using Markov Decision Processes (MDP).
An MDP is a stochastic dynamical system specified by the tuple < S,A,P,R, γ >, where (S,S)
is a measurable state space, (A,A) is a measurable action space, P : S × A × S → R is a Markov
transition kernel,R : S×A→ R is a reward function and 0 < γ < 1 is the discount factor. Suppose
that at time t the system is in state St = s and that the agent takes action At = a, then, regardless of
the previous history of the system, the probability to find the system in a state belonging to B ∈ S
at time t+ 1 is given by

P(s, a,B) = P (St+1 ∈ B|St = s,At = a) (1)

Following this random transition, the agent receives a stochastic reward Rt+1. The reward function
R(s, a) gives the expected reward obtained when action a is taken in state s, i.e.

R(s, a) = E [Rt+1|St = s,At = a] (2)

This feedback mechanism between the environment and the agent is illustrated in Figure 1. At any
time step, the agent selects his actions according to a certain policy π : S × A → R such that for
every s ∈ S, C 7→ π(s, C) is a probability distribution over (A,A). Hence, a policy π and an initial
state s0 ∈ S determine a random state-action-reward sequence {(St, At, Rt+1)}t≥0 with values on
S × A × R. In an infinite horizon task, the agent’s performance is typically measured as the total
discounted reward obtained following a specific policy

Gt =

∞∑
t=0

γtRt+k+1 (3)

Since this gain is stochastic, the agent considers its expected value, which is typically called state-
value function

Vπ(s) = Eπ [Gt|St = s] (4)

where the subscript in Eπ indicates that all the actions are selected according to policy π. The state-
value function measures how good it is for the agent to be in a given state and follow a certain policy.
Similarly, we introduce the action-value function

Qπ(s, a) = Eπ [Gt|St = s,At = a] (5)
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We have the following relationship between Vπ and Qπ

Vπ(s) =

∫
A
π(s, a)Qπ(s, a)da (6)

Almost all reinforcement learning algorithms are designed to estimate these value functions and are
typically based on the Bellman equations.

Vπ(s) = Rπ(s) + γTπVπ(s) (7)

Qπ(s, a) = R(s, a) + γTaVπ(s) (8)
where we denoted by Ta (resp. Tπ) the transition operator for action a (resp. for policy π)

TaF (s) = E [F (St+1)|St = s,At = a] =

∫
S
P(s, a, s′)F (s′)ds′ (9)

TπF (s) = Eπ [F (St+1)|St = s] =

∫
A
π(s, a)

∫
S
P(s, a, s′)F (s′)ds′da (10)

These equations can be rewritten as fixed-point equations which, under some formal assumptions
on the reward functions, admit a unique solution by the contraction mapping theorem. The agent’s
goal is to select a policy π∗ that maximizes his expected return in all possible states. Such a policy
is called optimal and the corrisponding value functions are called Optimal State-Value Function

V∗(s) = sup
π
Vπ(s) (11)

and Optimal Action-Value Function

Q∗(s, a) = sup
π
Qπ(s, a) (12)

The optimal value functions satisfy the following Bellman equations.

V∗(s) = sup
a
Q∗(s, a) = sup

a
{R(s, a) + γTaV∗(s)} (13)

Q∗(s, a) = R(s, a) + γTaV∗(s)

= R(s, a) + γ

∫
S
P(s, a, s′) sup

a′
Q∗(s

′, a′)ds′
(14)

Again, these are fixed-point equations for which the existence and uniqueness of a solution is guar-
anteed by the contraction mapping theorem. Given the optimal action-value functionQ∗, an optimal
policy is obtained by selecting in each state the action with maximizes Q∗

a∗ = arg sup
a

Q∗(s, a) (15)

This greedy policy is deterministic and only depends on the current state of the system.

2.2 Policy Gradient Methods

The standard way to solve MDPs is through dynamic programming, which simply consists in solving
the Bellman fixed-point equations discussed in the previous chapter. Following this approach, the
problem of finding the optimal policy is transformed into the problem of finding the optimal value
function. However, apart from the simplest cases where the MDP has a limited number of states
and actions, dynamic programming becomes computationally infeasible. Moreover, this approach
requires complete knowledge of the Markov transition kernel and of the reward function, which in
many real-world applications might be unknown or too complex to use. Reinforcement Learning
(RL) is a subfield of Machine Learning which aims to turn the infeasible dynamic programming
methods into practical algorithms that can be applied to large-scale problems. RL algorithms are
based on two key ideas: the first is to use samples to compactly represent the unknown dynamics
of the controlled system. The second idea is to use powerful function approximation methods to
compactly estimate value functions and policies in high-dimensional state and action spaces. In this
section we will only focus on a particular class of algorithms called Policy Gradient Methods, which
have proved successful in many applications. For a more complete introduction to RL, the reader
may consult [2], [3] or [4].
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In policy gradient methods [5], the optimal policy is approximated using a parametrized policy
π : S×A×Θ→ R such that, given a parameter vector θ ∈ Θ ⊆ RDθ , π(s,B; θ) = πθ(s,B) gives
the probability of selecting an action in B ∈ A when the system is in state s ∈ S. The general goal
of policy optimization in reinforcement learning is to optimize the policy parameters θ ∈ Θ so as to
maximize a certain objective function J : Θ→ R

θ∗ = arg max
θ∈Θ

J(θ) (16)

In the following, we will focus on gradient-based and model-free methods that exploit the sequential
structure of the the reinforcement learning problem. The idea of policy gradient algorithms is to
update the policy parameters using the gradient ascent direction of the objective function

θk+1 = θk + αk∇θJ (θk) (17)

where {αk}k≥0 is a sequence of learning rates. Typically, the gradient of the objective function is
not known and its approximation is the key component of every policy gradient algorithm. It is a
well-know result from stochastic optimization [6] that, if the gradient estimate is unbiased and the
learning rates satisfy the Robbins-Monro conditions

∞∑
k=0

αk =∞
∞∑
k=0

α2
k <∞ (18)

the learning process is guaranteed to converge at least to a local optimum of the objective function. In
an episodic environment where the system always starts from an initial state s0, the typical objective
function is the start value.

Jstart(θ) = Vπθ (s0) = Eπθ [G0|S0 = s0] (19)

In a continuing environment, where no terminal state exists and the task might go on forever, it is
common to use either the average value

JavV(θ) = ES∼dθ [Vπθ (S)] =

∫
S
dθ(s)Vπθ (s)ds (20)

where dθ is the stationary distribution of the Markov chain induced by πθ. Alternatively, one may
use the average reward per time step

JavR(θ) = ρ(θ) = ES∼dθ
A∼πθ

[R(S,A)] =

∫
S
dθ(s)

∫
A
πθ(s, a)R(s, a)dads (21)

Luckily, the same methods apply with minor changes to the three objective functions.

2.2.1 Policy Gradient Theorem

The policy gradient theorem [7] shows that the gradient can be rewritten in a form suitable for
estimation from experience aided by an approximate action-value or advantage function.

Theorem 2.1 (Policy Gradient). Let πθ be a differentiable policy. The policy gradient for the aver-
age reward formulation is given by

∇θρ(θ) = ES∼dθ
A∼πθ

[∇θ log πθ(S,A)Qθ(S,A)] (22)

where dθ is the stationary distribution of the Markov chain induced by πθ. The policy gradient for
the start value formulation is given by

∇θJstart(θ) = ES∼dθγ(s0,·)
A∼πθ

[∇θ log πθ(S,A)Qθ(S,A)] (23)

where dθγ(s0, ·) is the γ-discounted visiting distribution over states starting from the initial state s0

and following policy πθ

dθγ(s, x) =

∞∑
k=0

γkP(k)
θ (s, x) (24)
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Algorithm 1 GPOMDP

Input:
• Initial policy parameters θ0 = (θ1

0, . . . , θ
Dθ
0 )T

• Learning rate {αk}
• Number of trajectories M

Output: Approximation of the optimal policy πθ∗ ≈ π∗
1: Initialize k = 0
2: repeat
3: Sample M trajectories h(m) = {(s(m)

t , a
(m)
t , r

(m)
t+1}T

(m)

t=0 of the MDP under policy πθk
4: Compute the optimal baseline

b̂nk =

∑M
m=1

[∑T (m)

i=0 ∂θk log πθ

(
s

(m)
i , a

(m)
i

)]2∑T (m)

j=0 γjr
(m)
j+1∑M

m=1

[∑T (m)

i=0 ∂θk log πθ

(
s

(m)
i , a

(m)
i

)]2 (27)

5: Approximate policy gradient

∂

∂θn
Jstart(θk) ≈ ĝnk =

1

M

M∑
m=1

T (m)∑
i=0

∂

∂θn
log πθk

(
s

(m)
i , a

(m)
i

)T (m)∑
j=i

γjr
(m)
j+1 − b̂

n
k

 (28)

6: Update actor parameters θk+1 = θk + αkĝk.
7: k ← k + 1
8: until converged

Let us notice that we can subtract a state-dependent baseline from the action-value function without
changing the value of the expectation, indeed

ES∼dθ
A∼πθ

[∇θ log πθ(S,A)Bθ(S)] =

∫
S
dθ(s)

∫
A
πθ(s, a)∇θ log πθ(s, a)Bθ(s)dads

=

∫
S
dθ(s)Bθ(s)

∫
A
∇θπθ(s, a)dads

=

∫
S
dθ(s)Bθ(s)∇θ

∫
A
πθ(s, a)da︸ ︷︷ ︸

=1

ds = 0

Hence, the policy gradient theorem can be rewritten as

∇θρ(θ) = ES∼dθ
A∼πθ

[∇θ log πθ(S,A) (Qπθ (S,A)−Bθ(S))] (25)

The baseline can be chosen so as to minimize the variance of the gradient estimate which can prove
beneficial for the algorithm convergence [5]. This result can be used as the starting point to derive
several policy gradient methods that use different approximation of the action-value function, which
is typically unknown. For instance, in an episodic MDP the action-value function can be estimated
with the total return obtained on a sample trajectory

Qθ(s0, a0) ≈
T (m)∑
t=0

γtr
(m)
t+1 (26)

Combining this remark with a Monte Carlo approximation of Eq. (25), we obtain the Monte Carlo
Policy Gradient algorithm [8] (also known as GPOMDP) for which the pseudocode is reported in
Algorithm 1.

2.2.2 Parameter-Based Policy Gradient Methods

In Monte Carlo Policy Gradient, trajectories are generated by sampling at each time step an action
according to a stochastic policy πθ and the objective function gradient is estimated by differentiating
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the policy with respect to the parameters. However, sampling an action from the policy at each time
step leads to a large variance in the sampled histories and therefore in the gradient estimate, which
can in turn slow down the convergence of the learning process. To address this issue, the policy
gradient with parameter-based exploration (PGPE) method [9] replaces the search in the policy
space with a direct search in the model parameter space. Given an episodic MDP, PGPE considers a
deterministic controller F : S×Θ→ A that, given a set of parameters θ ∈ Θ ⊆ RDθ , maps a state
s ∈ S to an action a = F (s; θ) = Fθ(s) ∈ A. The policy parameters are drawn from a probability
distribution pξ, with hyper-parameters ξ ∈ Ξ ⊆ RDξ . Combining these two hypotheses, the agent
follows a stochastic policy πξ defined by

∀B ∈ A, πξ(s,B) = π(s,B; ξ) =

∫
Θ

pξ(θ)1Fθ(s)∈Bdθ (29)

In this setting, the policy gradient theorem can be reformulated in the following way
Theorem 2.2 (Parameter-Based Policy Gradient). Let pξ be differentiable with respect to ξ, then the
gradient of the average reward is given by

∇ξJ(ξ) = ES∼dξ
θ∼pξ

[
∇ξ log pξ(θ)Qπξ(S, θ)

]
(30)

where we denoted Qξ(S, θ) = Qξ(S, Fθ(S)).

This expression is very similar to the original policy gradient theorem, but the expectation is taken
over the controller parameters instead of the action space and we have the likelihood score of the
controller parameters distribution instead of that of the stochastic policy. Thus, we might interpret
this result as if the agent directly selected the parameters θ according to a policy pξ, which then lead
to an action through the deterministic mapping Fθ. Therefore, it is as if the agent’s policy was in the
parameters space and not in the control space. As in the standard policy gradient methods, we can
subtract a state-dependent baseline Bξ(S) to the gradient without increasing the bias

∇ξJ(ξ) = E
[
∇ξ log pξ(θ)

(
Qπξ(S, θ)−Bξ(S)

)]
(31)

The PGPE algorithm, which is outlined in Algorithm 2, employs a Monte Carlo approximation of
this gradient, where the action-value function is estimated using the returns on a sampled trajec-
tory of the MDP. The benefit of this approach is that the controller is deterministic and therefore
the actions do not need to be sampled at each time step, with a consequent reduction of the gra-
dient estimate variance. Indeed, It is sufficient to sample the parameters θ once at the beginning
of the episode and then generate an entire trajectory following the deterministic policy Fθ. As an
additional benefit, the parameter gradient is estimated by direct parameter perturbations, without
having to backpropagate any derivatives, which allows to use non-differentiable controllers. Again
the baseline can be chosen so as to minimize the gradient estimate variance [10].

3 Reinforcement Learning for Automated Trading

Many financial applications can be seen as sequential decision problems which naturally fall in the
stochastic optimal control framework introduced above. In this section we discuss how reinforce-
ment learning algorithms can be applied to the asset allocation problem, where an agent invests his
capital on various assets available in the market.

3.1 Asset Allocation With Transaction Costs

The asset allocation problem consists of determining how to dynamically invest the available capital
in a portfolio of different assets in order to maximize the expected total return or another relevant
performance measure. Let us consider a financial market consisting of I+1 different stocks that are
traded only at discrete times t ∈ {0, 1, 2, . . .} and denote by Zt = (Z0

t , Z
1
t , . . . , Z

I
t )
T their prices

at time t. Typically, Z0
t refers to a riskless asset whose dynamic is given by Z0

t = (1 +X)
t where

X is the deterministic risk-free interest rate. The investment process works as follows: at time t, the
investor observes the state of the market St, consisting for example of the past asset prices and other
relevant economic variables, and subsequently chooses how to rebalance his portfolio, by specifying
the units of each stock nt = (n0

t , n
1
t , . . . , n

I
t )
T to be held between t and t+ 1. In doing so, he needs
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Algorithm 2 Episodic PGPE algorithm

Input:
• Initial hyper-parameters ξ0 = (ξ1

0 , . . . , ξ
Dξ
0 )T

• Learning rate {αk}
• Number of trajectories M

Output: Approximation of the optimal policy Fξ∗ ≈ π∗
1: Initialize k = 0
2: repeat
3: for m = 1, . . . ,M do
4: Sample controller parameters θ(m) ∼ pξk
5: Sample trajectory h(m) = {(s(m)

t , a
(m)
t , r

(m)
t+1}T

(m)

t=0 under policy Fθ(m)

6: end for
7: Compute optimal baseline

b̂nk =

∑M
m=1

[
∂ξn log pξk

(
θ(m)

)]2∑T (m)

j=0 γjr
(m)
j+1∑M

m=1

[
∂ξn log pξk

(
θ(m)

)]2 (32)

8: Approximate policy gradient

∂

∂ξn
Jstart(ξk) ≈ ĝnk =

1

M

M∑
m=1

∂

∂ξn
log pξk

(
θ(m)

)T (m)∑
j=i

γjr
(m)
j+1 − b̂

n
k

 (33)

9: Update hyperparameters using gradient ascent ξk+1 = ξk + αkĝ
n
k

10: k ← k + 1
11: until converged

to take into account the transaction costs that he has to pay to the broker to change his position. At
time t+ 1, the investor realizes a profit or a loss from his investment due to the stochastic variation
of the stock values. The investor’s goal is to maximize a given performance measure. LetWt denote
the wealth of the investor at time t. The profit realized between t and t + 1 is simply given by the
difference between the trading results and the transaction costs payed to the broker. More formally

∆Wt+1 = Wt+1 −Wt = PNLt+1 − TCt

where PNLt+1 denotes the profit due to the variation of the portfolio asset prices between t and t+1

PNLt+1 = nt ·∆Zt+1 =

I∑
i=0

nit(Z
i
t+1 − Zit)

and TCt denotes the fees payed to the broker to change the portfolio allocation and on the short
positions

TCt =

I∑
i=0

δip
∣∣nit − nit−1

∣∣Zit − δfWt1nt 6=nt−1
−

I∑
i=0

δis(n
i
t)
−
Zit

The transaction costs consist of three different components. The first term represent a transaction
cost that is proportional to the change in value of the position in each asset. The second term is a
fixed fraction of the total value of the portfolio which is payed only if the allocation is changed. The
last term represents the fees payed to the broker for the shares borrowed to build a short position.
The portfolio return between t and t+ 1 is thus given by

Xt+1 =
∆Wt+1

Wt
=

I∑
i=0

[
aitX

i
t+1 − δi

∣∣ait − ãit∣∣− δs(ait)−]− δf1at 6=ãt−1
(34)

where

Xi
t+1 =

∆Zit+1

Zit
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is the return of the i-th stock between t and t+ 1,

ait =
nitZ

i
t

Wt

is the fraction of wealth invested in the i-th stock between time t and t+ 1 and finally

ãit =
nit−1Z

i
t

Wt
=
ait−1(1 +Xi

t)

1 +Xt

is the fraction of wealth invested in the i-th stock just before the reallocation. We assume that
the agent invests all his wealth at each step, so that Wt can be also interpreted as the value of his
portfolio. This assumption leads to the following constraint on the portfolio weights

I∑
i=0

ait = 1 ∀t ∈ {0, 1, 2, . . .} (35)

We notice that we are neglecting the typical margin requirements on the short positions, which
would reduce the available capital at time t. Considering margin requirements would lead to a more
complex constraint on the portfolio weights which would be difficult to treat in the reinforcement
learning framework. Plugging this constraint into Eq. (34), we obtain

Xt+1 = X +

I∑
i=1

ait(X
i
t+1 −X)−

I∑
i=0

[
δi
∣∣ait − ãit∣∣− δis(ait)−]− δf1at 6=ãt−1 (36)

which highlights the role of the risk-free asset as a benchmark for the portfolio returns. The total
profit realized by the investor between t = 0 and T is

ΠT = WT −W0 =

T∑
t=1

∆Wt =

T∑
t=1

WtXt

The portfolio return between t = 0 and T is given by

X0,T =
WT

W0
− 1 =

T∏
t=1

(1 +Xt)− 1

In order to cast the asset allocation problem in the reinforcement learning framework, we consider
the log-return of the portfolio between t = 0 and T

R0,T = log
WT

W0
=

T∑
t=1

log(1 +Xt) =

T∑
t=1

Rt (37)

where Rt+1 is the log-return of the portfolio between t and t+ 1

Rt+1 = log

{
1 +

I∑
i=0

[
aitX

i
t+1 − δi

∣∣ait − ãit∣∣− δs(ait)−]− δf1at 6=ãt−1

}
(38)

The portfolio log-return can be used as the reward function of a RL algorithm, either in a offline or
in an online approach.

3.2 Reinforcement Learning Application

In the previous section we derived the reward function for the asset allocation problem with trans-
action costs. In order to apply the policy gradient algorithms discussed in the previous sections we
still need to define the state space, the action space and the agent’s policy. For simplicity, we limit
ourselves to the case of a single risky asset, i.e. I = 1, but the discussion could be generalized to
the multi-asset case.
We assume that at each time step the agent considers the P + 1 past returns of the risky asset, i.e.
{Xt, Xt−1, . . . , Xt−P }. In order to properly incorporate the effects of transaction costs into his
decision process, the agent must keep track of its current position ãt. The state of the system is thus
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Figure 2: PyBrain standard architecture for an RL problem.

given by St = {Xt, Xt−1, . . . , Xt−P , ãt} We might also include some external variables Yt that
may be relevant to the trader, such as the common technical indicator used in practice. Furthermore,
these input variables may be used to construct more complex features for example using some deep
learning techniques, such as a deep auto-encoder.
The agent, or trading system, specifies the portfolio weights at = (a0

t , a
1
t )
T according to a long-

short strategy, i.e. the agent may be long (a1
t = +1) or short (a1

t = −1) on the risky-asset while
a0
t = 1 − a1

t since the agents invests all the available capital at each time step. In the GPOMDP
framework we assume that the agent selects a1

t according to a Boltzmann policy, i.e.

πθ(s,+1) =
eθ
T s

1 + eθT s
πθ(s,−1) =

1

1 + eθT s
(39)

where we included a bias term in the parameters and in the state. In the parameter-based formulation,
we assume that agent selects actions according to the binary controller

Fθ(s) = sign(θT s) (40)

where the controller parameters are normally distributed θ ∼ N (µ,diag(σ)). Since the formulation
of the asset allocation problem given above is non-episodic, we actually applied the online version
of the algorithms discussed above. The main considerations made above still hold and we refer to
the full thesis for the details.

4 Python Prototype

In this section, we start discussing the implementation details of this project. The first step of this
project has been to implement a prototype in Python, a high-level, general-purpose, interpreted, dy-
namic programming language which is gaining a widespread popularity both in the academic world
and in the industry. Python natively supports the object-oriented paradigm which makes it perfect
to quickly develop a prototype of the class architecture, which can then be translated in C++. More-
over, thanks to external libraries such as Numpy, Scipy and Pandas, Python offers an open-source
alternative to Matlab for scientific computing applications.
For the basic RL algorithms we exploited PyBrain1, a modular ML library for Python whose goal

is to offer flexible, easy-to-use yet still powerful algorithms for ML tasks and a variety of predefined
environments to test and compare different algorithms [11]. An RL task in PyBrain always consists
of an Environment, an Agent, a Task and an Experiment interacting with each other as
illustrated in Figure 5.
The Environment is the world in which the Agent acts and is characterized by a state

1http://pybrain.org/
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which can be accessed through the getSensors() method. The Agent receives an obser-
vation of this state through the integrateObservation() method and selects an action
through the getAction() method. This action is applied to the Environment with the
performAction() method. However, the interactions between the Environment and the
Agent are not direct but are mediated by the Task. The Task specifies what the goal is in
an Environment and how the agent is rewarded for its actions. Hence, the composition of an
Environment and a Task fully defines the MDP. An Agent always contains an Actor, which
represents the policy used to select actions. Based on the rewards that the Agent receives via the
getReward()method, the Learner improves the policy via a learn() procedure. In this step,
an Actor may be used to evaluate a state with the goal of reducing the variance of the learning pro-
cess. This entire learning process is controlled by an Experiment object.
This structure is quite standard for a RL problem and can be easily adapted to the problem at hand
and extended to the learning algorithms developed in this thesis. Based on this architecture, we thus
developed a fully-working Python prototype of the asset allocation problem. This prototype yielded
some interesting results both on simulated data and on historical data, in particular for the PGPE al-
gorithm. However, the learning process resulted too slow to be run systematically for a large number
of time-steps and training epochs. By consequent, we quickly decided to pass to C++.

5 C++ Implementation

Passing from Python to C++ presents some challenges in the design of a suitable architecture for
the RL algorithms discussed above. Following the approach of [12], our main goal has been code
reusability, which is based on the important attributes of clarity and elegance of design. In addition,
we always kept in mind the possibility the our original design might need to be extended in the
future. In some cases we thus favored extendability compared to efficiency. First we describe the
C++ adaptation of the PyBrain’s Environment, Task, Agent and Experiment objects with a
particular attention to their concrete implementations for the asset allocation problem. Secondly, we
discuss the design for an Average-Reward Actor-Critic agent (ARAC), which provides a concrete
implementation of the Agent interface and can be used to solve the asset allocation problem. Here
we only give an overview of the program, addressing the reader to the full documentation which can
be found at Code/Thesis/doc/doc.pdf for a thorough explanation of all the classes and their
methods.

5.1 Environment, Task, Agent and Experiment

Figure 3 schematically represents the design of the base components of an RL application, which
closely replicates Pybrain’s architecture. The pure abstract classes Environment, Task, Agent
and Experiment define the generic interfaces to which all the concrete implementations of these
objects must adhere. To achieve code modularity, we make most of the objects in our design clonable
in order to allow for the polymorphic composition of classes. Exploiting this design pattern, we
couple a Task with an Environment by storing a std::unique_ptr<Environment> as a
private member of the class. Similarly, an Experiment is coupled via composition with a Task
and an Agent. The methods of these classes are similar to those in Pybrain. For all the linear algebra
operations we decided to use Armadillo2, a high quality linear algebra library which provides high-
level syntax (API) deliberately similar to Numpy and Matlab aiming towards a good balance between
speed and ease of use. Therefore, the state of the system and the actions performed by the agent are
represented as arma::vector objects. Let us now present the concrete implementation of these
objects for the asset allocation task. MarketEnvironment implements a financial market by
storing the historical daily returns of the risky assets in an arma::matrix. These values are
read from a given input .csv file, which is generated automatically running a Python script and
which either contains real historical returns downloaded from Yahoo Finance3 or synthetic returns
generated according to a certain stochastic process. Therefore, we always work on samples of the
system without making any assumption on its Markov transition kernel.

2http://arma.sourceforge.net/
3https://uk.finance.yahoo.com/
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The AssetAllocationTask implements the asset allocation MDP discussed in Section 3 by
providing a method to compute the reward that the Agent obtains from investing on the risky assets.
Moreover, the AssetAllocationTask enlarges the system state so that the Agent also ob-
serves the past P states and the current portfolio weights. The AssetAllocationExperiment
handles the interactions between the Agent and the Agent. The learning process is divided in
two phases: the training phase consists of a certain number of learning epochs over the same time
period during which the Agent improves the parameters of its policy via the learn method. Some
estimates of the objective function are dumped in the StatisticsExperiment object and are
used in the post-processing phase to plot the learning curves of the algorithm. In the backtest phase,
the Agent applies the learned policy on the time period which follows the one used for training
and the relevant performance measures are stored in the BacktestLog for successive analysis and
comparison between different learning algorithms.

5.2 ARACAgent

A concrete implementation of the Agent interface completes the standard structure of an RL task.
In this section we discuss the design for an Average Reward Actor-Critic agent (ARAC), which in-
cludes most of the features of the other algorithms tested in this thesis. The full architecture of this
agent is illustrated in Figure 4, but for brevity we will only focus on the more interesting aspects.
The ARACAgent builds upon a StochasticActor and a Critic via composition. A
StochasticActor is simply a wrapper around a StochasticPolicy, a pure abstract class
defining the generic interface for a stochastic policy used by an agent to select actions. In addition
to getAction and get/set methods for the policy parameters, a StochasticPolicy must im-
plement the likelihoodScore method which computes the likelihood score∇θ log πθ(s, a) for
a given state and action and which plays a crucial role in any policy gradient algorithm.
We provide two examples of concrete implementations of the StochasticPolicy. The
first example is the BoltzmannPolicy typically used in discrete action spaces. The imple-
mentation of this policy is quite straightforward and we won’t discuss the details. The sec-
ond and more interesting stochastic policy implemented is the PGPEPolicy. This class is
based on the decorator design pattern which is typically used to extend the interface of a cer-
tain class. Indeed, the PGPEPolicy is a StochasticPolicy which contains by poly-
morphic composition a Policy, a pure abstract class which provides the generic interface
for a policy, potentially deterministic. This Policy object represents the deterministic con-
troller Fθ used in the PGPE algorithm. Moreover, the PGPEPolicy contains by polymor-
phic composition a ProbabilityDistribution, a pure abstract class defining the generic
interface for a probability distribution. This probability distribution represents the hyper-
distribution pξ on the controller parameters. In order to be used in a PGPE algorithm, a
ProbabilityDistribution must implement a likelihoodScore method to compute
the likelihood score of the hyper-distribution ∇ξ log pξ(θ). Hence, the likelihoodScore
method of PGPEPolicy simply broadcasts the call to the likelihoodScore method
of its underlying ProbabilityDistribution. A concrete implementation of a
ProbabilityDistribution is provided by the GaussianDistribution, which imple-
ments a multi-variate and axis-aligned normal distribution N (µ,diag(σ)).
The objects discussed so far are sufficient to implement an actor-only learning algorithm, potentially
using a baseline to evaluate the rewards. A more advanced variance reduction technique consists in
using a Critic, which approximates the value function and provides an evaluation of a given state.
The Critic class is simply a wrapper around a FunctionApproximator which provides a
generic interface for a parametric function Bω(s). The key methods of this class are evaluate,
which evaluates the approximator at a given point, and gradient, which computes its gradient at
a given point.
Finally, the ARACAgent employs some LearningRate to control the speed of the gradient de-
scent optimization algorithm. A naive approach is to use a ConstantLearningRate, but this
leads to a large-variance in the objective function value attained by the stochastic optimization al-
gorithm. A more sensible choice is to use a DecayingLearningRate which decreases with the
number of learning epochs performed by the agent according to αn = a

nb
. In this way, the learn-

ing process progressively “cools down” (using a simulated annealing terminology) and stabilizes to
a given policy. This concludes our quick overview of the class architecture used for this project.
In the thesis, other applications and algorithms were considered and we refer the reader to the full
document for a more complete discussion.
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6 Execution Pipeline

In this section we describe the full pipeline of the program, which is schematically represented in
Figure 6. This pipeline allows to run the learning algorithm for the asset allocation problem and
automatically determine a trading strategy. The execution consists of the following steps.

Compilation To build the thesis library it is sufficient to run the Makefile generated with
cmake. This produces two executables: main which is used to debug the program in the
Code::Blocks IDE and main_thesis which is used to run the experiment in the full exe-
cution pipeline.

generate_synthetic_series.py This Python script simulates the returns of a synthetic
asset and prints them on a .csv file which is then read by main_thesis and used to initialize
the MarketEnvironment object. Alternatively, market_data_collector.py collects the
historical returns for a list of given assets from Yahoo finance.

experiment_launcher.py This Python script manages the execution pipeline. First, the ex-
periment parameters are specified and dumped in a .pot file which is then read by main_thesis.
Given the parameter values, the script determines the folders where the output should be written so
that the results can be easily associated to a specific set of parameters. Subsequently, it launches the
main_thesis executable passing the correct parameters via the command line. Finally it runs the
postprocessing.py scripts which processes the output files.

main_thesis This executable takes some inputs from the command line, such as the al-
gorithm to use, the paths to the input files and the paths where the output files should be
generated. The experiment parameters are then read from the .pot file generated by the
experiment_launcher.py using GetPot. The type of learning algorithm is specified by a
string passed to the executable via command line and then used by the factory FactoryOfAgents
to instantiate the corresponding Agent. When the AssetAllocationExperiment is run, it
outputs various statistics to the given destination folders. More in detail, it prints two files for ev-
ery independent run of the experiment: a debug.csv file which contains the learning curves of
the algorithm and an output.csv file which contains the backtest performance measures for the
trading strategy learned by the Agent during training.

postprocessing.py This Python script processes the various files produced by
main_thesis and generates an aggregate analysis of the various learning algorithms, so
that they can be easily compared and assessed. In particular, it computes the average and confidence
intervals for the learning curves of the algorithms and the backtest cumulative profits of the learned
strategies. Moreover, it computes some performance measures typically used in Finance to evaluate
a trading strategy, such as the Sharpe ratio and the maximum drawdown. The results of this
analysis are stored in some .csv files and some images are generated using the Python library
matplotlib.
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7 Numerical Results

In this section we present the numerical results of the online version of the policy gradient algorithms
discussed in Section 2 for the asset allocation problem.

7.1 Synthetic Asset

To assess the different reinforcement learning methods in a controlled environment, the algorithms
have been tested on a synthetic asset whose behavior presents some features that can be traded
profitably. We simulated the log-price series {zt} for the risky asset as a random walk with autore-
gressive trend {βt}. The two-parameter model is thus given by

zt = zt−1 + βt−1 + κεt

βt = αβt−1 + νt
(41)

We then define the synthetic price series as

Zt = exp

(
zt

maxt zt −mint zt

)
(42)

This model is often taken as a benchmark test in the automated trading literature, see for instance
[13]. In addition to presenting some exploitable patterns, the model is stationary and therefore the
policy learned on the training set should generalize well on the test set, also known as backtest in
the financial jargon. We would thus expect our learning algorithms to perform well on this test case.

7.2 Experimental Setup

All the algorithms were tested on the same price series of size 9000, generated from the process
above using α = 0.9 and κ = 3. The learning process consisted of 500 training epochs on the first
7000 days of the series with a learning rate that decreased at each epoch according to a polynomial
schedule. The trained agents were subsequently backtested on the final 2000 days, during which
the agents kept learning online in order to try to adapt to the changing environment. The results
that we present are the average of 10 independent experiments that used slightly different random
initialization of the policy parameters.

7.3 Convergence

Let us first discuss the case with no transaction costs. Figure 6 shows the learning curves three algo-
rithms in terms of average daily reward, which is the quantity being maximized by the algorithms,
the daily reward standard deviation and the annualized Sharpe ratio. The NPGPE algorithm is an
enhancement of the PGPE algorithm based on the natural gradient technique [14]. The first thing we
observe is the ARAC algorithm seems not to be improving the trading strategy as the training epochs
go by. The average reward obtained is close to zero and will be surely be negative once transaction
costs are introduced. On the other hand, NPGPE slowly converges to a profitable strategy which is
however suboptimal compared to the one found by PGPE, that is better in all three measures con-
sidered. It is interesting to notice that PGPE and NPGPE yield a learning curve for the Sharpe ratio
very similar to the one for the average reward. Even if the algorithm is risk-neutral, it manages to
improve a risk-senitive measure at the same time of the average reward. This might be simply a
peculiarity of the very simple model assumed for the synthetic risky asset. Moreover, since the price
process is stationary, the trading strategy learned on the training set generalizes well to the test set.

7.4 Performances

Figure 7 compares the backtest performances of the three learned policies and a Buy and Hold
strategy, which simply consists in investing all the available capital in the risky asset. Let us repeat
that the solid lines are the averages of 10 independent experiments, which allows us to determine the
95% confidence intervals represented with the dashed lines. We clearly see that NPGPE and PGPE
consistently outperform the market, realizing a total profit of 231.63% and 314.34% respectively
against the 7.81% profit of the Buy and Hold strategy over the same period. More statistics of the
trading strategies are reported in Table 1.
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Figure 6: Risk-neutral learning process for the asset allocation problem with one synthetic risky
asset.
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Figure 7: Backtest performance of trained trading systems for the asset allocation problem with one
synthetic risky asset.

Buy and Hold ARAC NPGPE PGPE

Total Return 7.81% -0.86% 231.63% 314.34%
Daily Sharpe 0.27 -0.02 4.13 4.95
Monthly Sharpe 0.19 -0.07 2.90 3.26
Yearly Sharpe 0.23 -0.10 1.55 1.76
Max Drawdown -22.35% -12.60% -3.72% -3.27%
Avg Drawdown -1.75% -1.81% -0.49% -0.43%
Avg Up Month 2.87% 1.14% 2.47% 2.74%
Avg Down Month -2.58% -1.10% -0.73% -0.67%
Win Year % 40.00% 44.00% 98.00% 100.00%
Win 12m % 56.36% 48.00% 100.00% 100.00%
Reallocation Freq 0.00% 50.01% 19.99% 15.43%
Short Freq 0.00% 50.13% 41.59% 44.25%

Table 1: Backtest statistics of the risk-neutral trading strategies for the asset allocation problem with
one synthetic risky asset.
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Figure 8: Impact of proportional transaction costs on the trading strategies learned by PGPE and
NPGPE.

7.5 Impact of Transaction Costs

In the algorithmic trading literature there are many examples of strategies based on the prediction
of future returns based on more or less complex indicators [15], [16], [17]. However, as pointed out
in [18], the performances of these methods quickly degrade when transaction costs for changing the
portfolio composition or for shorting a security are considered. Indeed, these methods simply invest
based on the prediction of the future returns, without explicitly taking into account transaction costs.
On the other hand, reinforcement learning algorithms should learn to avoid frequent reallocations or
shorts thanks to the feedback mechanism between the learning agent and the system, thus generating
better trading performances. In this section we analyze how the strategies learned by PGPE and by
NPGPE change when gradually increasing the proportional transaction costs and the short-selling
fees. Intuitively, we expect a progressive reduction of the frequency of reallocation and of shorting
the risky asset.
Figure 8 shows the impact of proportional transaction costs on the trading strategies learned by
PGPE and by NPGPE. As expected, the frequency of reallocation for both strategies quickly drops
to zero as the transaction costs increase, converging to the profitable buy and hold strategy. It is
peculiar that the reallocation frequency for the PGPE strategy initially drops more quickly than for
the NPGPE strategy, but then slows down and even increases when δP = 20 bps. In summary, both
algorithms are able to identify reallocation as the cause for lower rewards and to subsequently reduce
the rate of reallocation, converging towards the simple yet profitable buy and hold strategy. Figure
9 shows the impact of short-selling fees on the trading strategies learned by PGPE and NPGPE.
Both algorithms behave as expected, displaying a progressive reduction of the frequency of short
positions as the fees increase. For large values of short-selling fees, both strategies converge to
the profitable buy and hold strategy, which completely avoids paying the fees. In particular, PGPE
quickly replicates the buy and hold strategy. On the other hand, NPGPE is not able to exactly
reproduce the buy and hold strategy but it seems to converge to it for very large values of the short-
selling fee.

8 Conclusion

Reinforcement learning is a general class of algorithms that allow an agent to learn how to behave
in a stochastic and possibly unknown environment simply by trial-and-error. In this paper, after
recalling the basic concepts of RL, we presented an application of some state-of-the-art learning
algorithms to the classical financial problem of determining a profitable long-short trading strategy.
For a synthetic asset, the strategies produced outperform the simple Buy & Hold strategy, even
when investment decisions are only based on extremely basic autoregressive features. Contrarily
to standard prediction-based trading systems, the learning algorithms employed are able to adapt
as expected to the introduction of transaction costs by reducing the frequency of reallocation and
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Figure 9: Impact of short-selling fees on the trading strategies learned by PGPE and NPGPE.

of short positions. This shows the potential of RL techniques in effectively dealing with complex
sequential decision problems that are typical in financial applications.
The algorithms above have also been tested on historical data but we couldn’t find a trading strategy
that consistently outperformed the simple Buy & Hold strategy. This was partly expected as it is
extremely difficult to find profitable daily patterns in highly liquid assets, especially when using
such simple features. We believe that developing more complex features for the trading strategy,
perhaps employing some deep learning feature extraction techniques such as deep auto-encoders
or deep (recurrent) neural networks, would allow us to beat the market. Another possibility we
considered is to decrease the sampling frequency of the historical data and let the algorithms look
for some profitable patters. At the moment, these ideas are still work in progress.
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