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Abstract

We study market-making high-frequency trader (HFT) dynamics around large in-
stitutional trades in Canadian equities markets using order-level data with masked
trader identification. Following a regulatory change that negatively affected HFT order
activity, we find that bid-ask spreads increased and price impact decreased for insti-
tutional trades. The decrease in price impact is strongest for informed institutional
traders. During institutional trade executions, HFTs submit more same-direction or-
ders and increase their inventory mean reversion rates. Our evidence indicates that
high-frequency trading is associated with lower transaction costs for small, uninformed
trades and higher transaction costs for large, informed trades. (JEL G1, G11, G18,
G24)
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High-frequency traders (HFTs) have largely assumed the market making role in

modern equity markets. Extant research has shown that the presence of HFTs is associated

with improvements in market quality, including lower bid-ask spreads and improved price

efficiency (e.g., Menkveld 2013; Hagströmer and Norden 2013; Brogaard, Hendershott, and

Riordan 2014; Jovanovic and Menkveld 2016). However, it is still unclear whether the

presence of market-making HFTs leads to reduced transaction costs for large institutional

traders, who frequently buy or sell millions of dollars worth of shares in short periods of time.

In this paper, we examine the interaction of market-making HFTs and large institutional

trades and how this affects the execution costs of these trades.

In the extensive literature on market making, a standard feature is that equilib-

rium price quotes are set by the market maker so that uninformed investors, those with

noninformational reasons for trading, subsidize informed investors (e.g., Glosten and Mil-

grom 1985; Kyle 1985). That is, market makers lose to informed traders and make up those

losses from uninformed traders. HFTs might provide increased liquidity for all traders if

their speed advantage reduces the costs of market making for all trades. Alternatively, the

speed advantage conferred by HFTs might allow them to detect informed traders and adjust

quotes in a way that allows them to reduce their exposure to adverse selection. In this case,

HFT activity will increase the trading costs for informed traders and decrease the subsidy

from uninformed traders. This is touched on by Warren Buffett, Chairman and CEO of

Berkshire Hathaway, who has stated that the speed advantage gained by HFTs has made

the “big orders” more costly while acknowledging that small investors have “never had it so

good” (Crippen 2014).

In theory, there are three primary mechanisms through which market-making

HFTs may be increasing the execution costs of large institutional trades. The first mech-

anism is related to HFTs using their speed advantage to reprice standing limit orders in

response to signals about incoming orders (Ait-Sahalia and Sağlam 2017a, 2017b). This be-

havior is sometimes described as “phantom liquidity,” where limit orders are modified before
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slower traders are able to complete their trades. The second mechanism is related to the

theoretical “back-running” model in Yang and Zhu (2017), where an informed institutional

trader trades over time to reduce liquidity costs and an HFT attempts to infer information

from the institutional order flow and trades in competition with the institutional order. The

third mechanism is based on classic microstructure models of inventory management (Stoll

1978; Ho and Stoll 1981; Amihud and Mendelson 1980). A large institutional order will place

opposite-direction pressure on HFT inventories. If HFTs proceed to revert their inventories,

while the institutional trade is still underway, then they effectively will be competing with

the institutional order. Although market maker inventory management is not new to the

HFT environment, HFTs may be using their speed and information processing advantages

to revert their inventories faster through the use of order modifications (Ait-Sahalia and

Sağlam 2017a, 2017b) and same-direction trades (Yang and Zhu 2017).

We study the trading dynamics of market-making HFTs around a sample of ap-

proximately 1.2 million institutional trades on Canadian equities exchanges. The Investment

Industry Regulatory Organization of Canada (IIROC) provides us with access to order-level

data for all Canadian equities for the period from January 2012 to June 2013. For each

of the approximately 60 billion messages, we are provided with a user ID, allowing us to

track the order and trade activity for any of these IDs across time and in the cross-section

of equities. In particular for this study, the information allows us to identify directional,

institutional-sized orders and track their executions over time and also allows us to identify

the market-making HFTs and how they interact with these orders.

We first provide evidence establishing an important link between HFT and the

execution costs of large institutional trades. On April 1, 2012, IIROC introduced a new

regulation called the “integrated fee model,” in which traders would be charged on a pro rata

basis for the messages they send to Canadian marketplaces. HFTs were especially affected

by this regulatory change because their strategies typically involve very high message traffic,

and we find that daily HFT message traffic decreased by about 20% following the change,
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a finding consistent with the evidence in Malinova, Park, and Riordan (2018). We show

that the average price impact—the component of implementation shortfall related to trade

size—for large institutional trades following the regulatory change decreased by about 15%,

suggesting that the ability of HFTs to frequently and cheaply adjust their limit orders in the

presence of large institutional trades was somewhat hindered by this new regulation. We also

provide evidence that the average fixed cost for these trades increased by about three basis

points following the regulatory change, suggesting that HFTs widened their bid-ask spreads

to compensate for the new order submission fees. Taken together, this evidence indicates

that execution costs increased for smaller-sized institutional trades and decreased for larger-

sized institutional trades, and we find a trade size break-even point of approximately $2

million.

Choi, Larsen, and Seppi (Forthcoming) predict that portfolio-rebalancing institu-

tional traders engage in predictable, “sunshine” trading (Admati and Pfleiderer 1991) to

differentiate themselves from informed institutional traders, who pool their trades with non-

informational order flow to avoid being detected by market-making HFTs. Motivated by this

theory, we separate institutional traders into “informed” groups based on the profitability of

their past trades and examine the differential effect of the regulatory change on group-level

transaction costs. First, we confirm that traders from the high-informed group profitably

trade out-of-sample, indicating that these traders exhibit some degree of skill. Importantly,

we find that the regulatory change has the strongest effect on the high-informed group,

with a reduction in price impact of about 28%. In contrast, the price impact reductions

for the remaining types are low and have weaker statistical significance. Thus, our results

suggest that trading costs for informed traders are higher when HFTs can cheaply modify

their orders. From a price efficiency standpoint, this may be problematic if HFT deters

other traders from acquiring costly information. Indeed, Weller (Forthcoming) shows that

algorithmic trading, which encompasses HFT, is associated with decreased price efficiency,

suggesting that information acquisition is lower when algorithmic trading activity is higher.
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How do HFTs dynamically interact with large institutional trades? Theoretically,

HFT inventory dynamics nonlinearly depend on their traders current inventory level (Amihud

and Mendelson 1980) and on their information about the fundamental value of the security,

which HFTs partially infer from the institutional order flow. Using the empirical strategy in

Hansch, Naik, and Viswanathan (1998) (HNV), who examine specialist inventory dynamics

on the London Stock Exchange, we first test how HFT inventory dynamics relate to their

current inventory levels. For nonextreme inventory positions, HFTs mean-revert 27.6% of

that position in the following 15-minute period, while for extreme inventory positions, HFTs

mean-revert 37.7% of that position in the following period. These reversion rates correspond

to inventory half-lives of 32.2 minutes and 22.0 minutes, respectively, and are consistent

with the nonlinearities reported in HNV. We then examine how HFT inventory reversion

rates differ in the presence of large institutional trades. If an institutional order places

opposite-direction pressure on HFT inventory levels and HFTs also infer information from

the order flow, then we would expect inventory reversion to occur at a faster rate. For

nonextreme inventory positions, we find that the inventory mean reversion rate is 32.4%

when an institutional trade is underway, compared to only 21.6% when one is not. We find

similar differences in inventory mean reversion rates for extreme HFT inventory levels. Our

evidence implies that one-third of HFT inventory reversion during an institutional trade

execution (1− 21.6/32.4) can be attributed to information that HFTs infer from that trade.

We separately examine how abnormal buying and selling activity by HFTs change

in the presence of large institutional trades. If HFTs are more inclined to back-run insti-

tutional orders like in Yang and Zhu (2017), then we would expect higher buying (selling)

activity in the presence of a large buy (sell) order. Alternatively, if HFTs become less in-

clined to provide liquidity to institutional orders, then we would expect lower selling (buying)

activity in the presence of a large buy (sell) order. We find a significant increase in same-

direction abnormal trading activity by HFTs relative to their opposite-direction abnormal

trading activity when an institutional trade is being executed. We also find similar evidence
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for abnormal limit-order submission activity by HFTs. Overall, this evidence indicates that

the same-direction inventory changes of HFTs in the presence of large institutional trades

are more likely to be driven by an increase in same-direction trades and limit orders than a

decrease in opposite-direction trades and limit orders.

Finally, we provide suggestive evidence of the information that HFTs use to ef-

fectively compete with large institutional orders. Using a probit regression framework, we

first identify predictors of large institutional trades and find that past returns, trade imbal-

ances, and limit-order imbalances are all strong predictors. Using these publicly observable

variables, we calculate the predicted component of large institutional trades and find that

it has a strong relationship with same-direction inventory changes by HFTs. These inven-

tory changes are even more pronounced in the presence of aggressive institutional trades

that consist of a relatively high proportion of liquidity-demanding orders and that are more

likely to move prices and be motivated by short-lived private information. Overall, our ev-

idence suggests that HFTs use information from publicly observable variables to infer that

an institutional trade is underway.

Several studies are closely related to ours. Malinova, Park, and Riordan (2018)

study the effect of the integrated fee model on the execution costs of both retail and insti-

tutional traders. They find that the effective spread for retail traders increases significantly

by 0.9 basis points. They also find that implementation shortfall significantly increases

by 4.9 basis points for institutional parent orders that only use marketable orders. For

institutional orders that use both marketable and nonmarketable orders, implementation

shortfall increases by a statistically insignificant 1.2 basis points. When we study average

implementation shortfall, unconditional on trade size, we obtain results that are in line with

those in Malinova, Park, and Riordan (2018). We break our implementation shortfall into a

spread component and a price impact component and find the former increases and the lat-

ter decreases upon implementation of the integrated fee model. While the average trade has

higher implementation shortfall, we find that the largest trades have lower implementation
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shortfall. Van Kervel and Menkveld (Forthcoming) study the interaction of high-frequency

traders on NASDAQ and 6,000 institutional trades in Swedish stocks from four large Swedish

institutional investors. They show that HFTs initially trade in the opposite direction of in-

stitutional orders, but later trade in the same direction, leading to higher execution costs

for these orders. Their HFTs seem to accommodate the institutional trade for a longer time

than our HFTs. Using unique data that allow us to identify specific HFTs and track their in-

ventory levels, we show that HFTs compete with large institutional orders through inventory

management and order anticipation channels, while also providing additional causal evidence

linking HFTs to the execution costs of large institutional trades. Anand and Venkataraman

(2016) examine whether stock exchanges should impose market maker obligations. Using

a similar transaction-level data set with masked trader identity from the TSX for the year

2006, they find that “endogenous liquidity providers” provide different levels of liquidity

based on their trading profits, inventory risks, and capital commitments and based on dif-

ferent market conditions, such as large-price-movement days and high-volatility days. We

focus on how market-making HFTs dynamically interact with large institutional trades and

what this ultimately means for the costs of these large trades.

Our study adds to a growing literature about the potentially negative effects of

HFT on market quality metrics. Hirschey (2018) provides evidence that HFTs trade in

anticipation of future order flow by non-HFTs on the NASDAQ stock market. Brecken-

felder (2013) finds that when HFTs compete for trades, liquidity deteriorates and short-term

volatility rises. Carrion (2013) finds that HFTs tend to take more liquidity when it is plen-

tiful and supply liquidity when it is scarce. Kirilenko et al. (2017) find that the HFTs in

their sample engage in “stale quote sniping,” by disproportionately trading in the direction

of a subsequent price movement and then offering much of the liquidity available at that new

price. Our study adds to this literature by using comprehensive, order-level data to show

how HFTs dynamically interact with large institutional traders and ultimately affect the

costs of institutional trades, many of which are likely to originate from a large cross-section
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of mutual and pension funds.

1 Related Theory

We study institutional-size directional trades that result from a large trader either

building or exiting a position. The optimal execution strategies derived in Bertsimas and Lo

(1998) and Collin-Dufresne and Fos (2016) imply that institutional order flow is autocorre-

lated, which is consistent with the data (Campbell, Ramadorai, and Schwartz 2009). This

institutional order flow can potentially be exploited by sophisticated traders who have the

technological capabilities to detect that a large institutional trade is in the process of being

executed. Ait-Sahalia and Sağlam (2017a, 2017b) model high-speed market makers who

receive a signal about the direction and impatience of the next low-frequency trade. This

allows HFTs to cancel existing limit orders and replace them with orders at less favorable

prices if they anticipate an impatient low-frequency trader. This corresponds to the notion

of phantom liquidity: liquidity that disappears before the order from a low-frequency trader

can execute against it. Ait-Sahalia and Sağlam (2017a) analyze their model’s implications

for the effect of a hypothetical fee change, similar to the integrated fee model analyzed in

Section 3, on liquidity provision. They find that the fee leads to smaller quoted spreads in

low volatility regimes but higher quoted spreads in high volatility regimes.

Yang and Zhu (2017) present a model based on the standard Kyle (1985) setting

in which a strategic informed trader can split their order across two periods. In the second

period, an HFT obtains a noisy signal about the informed trader’s order in the first period;

the authors argue that HFTs use sophisticated algorithms that detect order flow “footprints”

left by the institutional trader, thus providing justification for this signal. HFTs also observe

the stock price from the first period and use this information to infer the aggregate net order

flow. In the second period, HFTs use their signal and past order flow to partially infer the

fundamental value of the security. Consequently, HFTs will “back-run” the informed trader’s
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order by trading in the same direction as the order in the second period. Bessembinder et al.

(2016) show that predictable trading can lead to worse liquidity outcomes if strategic liquidity

traders can time their trades ahead of the order with a high enough level of precision, even

if markets are highly resilient. To the extent that HFTs represent these strategic liquidity

traders, this model also implies that HFTs can back-run institutional orders, leading to

higher execution costs for those institutions. In a similar vein, in Section 4, we will analyze

the extent to which HFTs compete with institutional trades.

The empirical analysis of HFT inventory dynamics in Section 4 is also motivated

by models of inventory management by liquidity suppliers. Market-making HFTs provide

liquidity to other market participants by posting bids and offers to the limit-order book.

Inventory management is an important component of the market-making operation, because

HFTs want to minimize their exposure to adverse price movements when their position de-

viates from zero. Stoll (1978) and Ho and Stoll (1981) assume a risk-averse market maker

and show that the price quoted by the market maker is a function of their inventory level.

Amihud and Mendelson (1980) assume a risk-neutral market maker with exogenously spec-

ified upper and lower bounds on their inventory levels. These bounds can be thought of as

capital constraints on the market maker or, in the context of Stoll (1978), maximum risk

tolerance levels. When market makers inventory deviates from their optimal position (for

market-making HFTs, this is typically zero), they raise prices to encourage incoming sells

or lower prices to encourage incoming buys, thus reverting their position to the optimum.

Importantly, the impact of the market maker’s inventory on pricing is nonlinear once these

capital constraints are taken into account, meaning that the market maker’s pricing strategy

becomes increasingly aggressive as their inventory nears the upper or lower bound. We use

the methodology in Hansch, Naik, and Viswanathan (1998), which is also motivated by these

theoretical models of inventory management, to analyze HFT inventory dynamics during the

executions of large institutional trades.
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2 Data and Classification Methodology

We have been provided access to detailed order-level data by the Investment In-

dustry Regulatory Organization of Canada (IIROC), a Canadian national self-regulatory

organization that regulates securities dealers in Canada’s equity markets. IIROC carries out

its regulatory responsibilities through setting and enforcing rules regarding the proficiency,

business, and financial conduct of dealer firms and their registered employees, and through

setting and enforcing market integrity rules regarding trading activity on Canadian equity

marketplaces.1 The closest equivalent in the United States would be the Financial Indus-

try Regulatory Authority (FINRA), a self-regulatory, nongovernmental organization that

regulates brokerage firms and exchange markets.

Through the monitoring of the Canadian equities markets, IIROC collects detailed

records on all orders submitted to Canadian exchanges. IIROC provides us with access to a

data set that contains all trades, orders, order cancellations, and order modifications for the

period from January 1, 2012 to June 30, 2013. Each record contains an “event” field that

allows us to determine whether that observation is an order, trade, order cancellation, or

order modification. We are also provided with the security ID and the price, quantity, date,

and time associated with each record, where the time is reported at the millisecond level.

More importantly, each record contains a masked identification for the trader submitting an

order, allowing us to track the activity of any user ID over time, along with the direction

(buy or sell) of that order. For trades, we are provided with masked identification for both

the buyer and the seller. Finally, for each trade, we are provided with an “active/passive”

indicator that identifies the party submitting the marketable limit order, thus making trade-

direction inference algorithms, such as the one used in Lee and Ready (1991), unnecessary.

Altogether, the data set comprises approximately 60 billion observations.

The IIROC data set contains a high level of detail that allows us to classify traders

1This information and additional details can be found at www.iiroc.ca/about.
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as market-making HFTs and identify large, institutional-sized trades.2 In the next two

subsections, we outline the methodology for identifying market-making HFTs and large

institutional trades. The initial sample of stocks used for these identifications is based on

IIROC’s definition of “highly liquid securities,” which are stocks that have an average of at

least 100 trades and $10 million in dollar volume per day in Canadian marketplaces. IIROC

exempts highly liquid securities from certain restrictions and prohibitions governing trading

activity in securities with low liquidity. The low-liquidity securities are mostly traded in

dealer-driven markets that have very little HFT activity and thus are not applicable to

our study of market-making HFTs and large institutional trades. Of the approximately

4,200 publicly traded equity securities traded during the sample period, 295 stocks meet the

criteria for highly liquid securities. This represents about 7% of the publicly traded equity

securities. On a dollar volume basis, the highly liquid securities comprise approximately $5

trillion during the sample period, whereas the remaining publicly traded equity securities

comprise approximately $700 billion, indicating that the highly liquid securities represent a

large majority of the dollar volume on Canadian exchanges (about 88%).3

2.1 Classifying market-making HFTs

Following the methodologies in Comerton-Forde, Malinova, and Park (2018) and

Malinova, Park, and Riordan (2018), who use a similar data set from IIROC, we classify

HFTs based on their operating speeds. For each user ID in our sample, we calculate the

median time between submitting an order and cancelling it. Neuroscience research suggests

that the median reaction time of humans to external stimuli is approximately 250 milliseconds

(Laming 1968); we primarily classify a user ID as an HFT if the median order-to-cancel

time is below this 250-millisecond threshold. We also follow those studies by classifying a

user ID as an HFT if the corresponding trader submitted at least 1,000 orders within the

2Henceforth, we refer to large, institutional-sized trades as “institutional trades,” although it is possible
that some of these trades are coming from high net worth individuals.

3We should also note that although all dollar figures in this paper are reported in Canadian dollars, the
exchange rate between U.S. and Canadian dollars was close to parity during our sample period.
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first 500 milliseconds after 3:40 p.m. EST; this is when regularly scheduled announcements

are made by the TSX about net order imbalances for closing call auctions in TSX-listed

securities. These announcements contain valuable information about closing prices in TSX-

listed stocks that fast traders can exploit by acting on it before other traders. Thus, traders

who consistently submit orders immediately following information releases at 3:40 p.m. EST

also can be classified as HFTs. Using these classification schemes, we identify 103 user IDs

as HFTs. This number is fairly close to the numbers reported in Comerton-Forde, Malinova,

and Park (2018) and an IIROC research report that examines trading groups (Devani et al.

2014).

Several of the stocks in our sample are marginally classified as highly liquid secu-

rities, in that either the average number of trades per day is just above the cutoff of 100 or

the average dollar volume per day is just above the cutoff of $10 million. For many of these

stocks, there is little to no HFT presence, making them unsuitable for our analysis of HFT

dynamics around large institutional trades. Using a randomly selected sample of stocks pro-

vided by NASDAQ, Brogaard, Hendershott, and Riordan (2014) report that HFTs represent

42% of volume in large stocks and 18% in small stocks. Motivated by this, we exclude any

stock from our sample if HFTs represent less than 15% of trading volume in that stock.4

Post-removal, we are left with a final sample of 181 stocks. This represents approximately

77% of the total dollar volume of the publicly traded equity securities during the sample

period.

Next, we identify the HFTs who act as market makers, because the purpose of our

study is to examine how market-making HFTs dynamically interact with large institutional

orders. The primary function of a market maker is to provide liquidity to the market by

posting bids and offers to the limit-order book, profiting from the bid-ask spread and liquidity

rebates.5 Thus, the share volume of buy and sell orders posted to the limit-order book by

4We also test the robustness of our main results to alternative cutoffs of 5% and 25% and find qualitatively
similar results.

5Liquidity rebates are monetary incentives offered by many exchanges for posting liquidity to the ex-
change’s limit-order book. In 2012, for example, TSX provided a rebate of $0.0031 per share for posted limit
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a market maker should be fairly balanced. Following Comerton-Forde, Malinova, and Park

(2018), we calculate the “market maker index” (MMI) for each HFT (i) as follows:

MMIi,j,d =

∣∣∣∣Passive Buy Order Volumei,j,d − Passive Sell Order Volumei,j,d

Passive Buy Order Volumei,j,d + Passive Sell Order Volumei,j,d

∣∣∣∣, (1)

where i is the HFT, j is the stock, and d is the date. By construction, this index is bound

between zero and one. For each HFT i, we calculate the median value of MMI across all

stocks and days in which that HFT was present. A median MMI close to zero indicates that

the HFT consistently submits similar share quantities of buy and sell orders, suggesting that

the HFT is a market maker. Like in Comerton-Forde, Malinova, and Park (2018), we find a

structural break in the median MMI at about 0.20, and classify an HFT as a market-making

HFT if their median MMI is below this threshold. Using this methodology, we classify 68

HFTs as market-making HFTs.

Using all stock-days in our sample, we calculate summary statistics for our market-

making HFTs. These statistics are reported in Table 1. We find that market-making HFTs

are responsible for 31.6% of total daily trading volume, on average. For 5% of the stock-

days in our sample, market-making HFTs are responsible for at least 53.4% of daily trading

volume. These numbers suggest that market-making HFTs are significantly present in our

sample of stocks, implying that large institutional traders will be trading with market-

making HFTs fairly frequently. Furthermore, we find that market-making HFTs are respon-

sible for 55.4% of total limit-order submission volume, on average, which is almost twice as

high as their average percentage of trading volume. This is unsurprising: frequent limit-

order submissions, cancellations, and modifications are hallmarks of HFT market-making

strategies, because market-making HFTs frequently adjust their limit orders to avoid the

adverse-selection risk associated with trading with informed counterparties. The high aver-

age order-to-trade ratio of 33.1 in Table 1 further supports our claim that market-making

HFTs frequently cancel their limit orders, and implies that market-making HFTs only ex-

orders that executed against incoming marketable limit orders.
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ecute about 3% of the orders that they post to the limit-order book. We also find that

market-making HFTs execute approximately 27.8% of their trades using marketable limit

orders, suggesting that liquidity provision is not the only component of their market-making

strategies. Market-making HFTs may be using these orders to quickly revert extreme inven-

tory positions and compete with large institutional trades, which we will analyze later in this

paper. Finally, we find that the median order size for a trade involving a market-making

HFT is 147 shares, with a median value of $2,685. The median order size of 147 shares

suggests that most trades involving a market-making HFT are for one or two round lots of

100 shares.

2.2 Classifying large institutional trades

To minimize execution costs, institutions commonly execute their large orders by

executing a series of smaller-sized orders over time. Doing so allows the institution to “hide”

in the noise trader order flow, reducing the ability of other traders to detect the information

content contained in the institutional order flow. The IIROC database provides us with

masked identification for every trader, allowing us to track these orders. Large institutional

orders are characterized by their large trade sizes aggregated across one or more transactions.

We classify a series of orders as a “large institutional trade” if the same user ID is on the

same side of one or more transactions across 1 or more consecutive days and the total

dollar volume of these transactions is at least $100,000.6 The $100,000 cutoff is based on

institutional trade dollar size statistics reported in other studies. Chan and Lakonishok

(1995), for example, report a median institutional trade dollar size of under $200 thousand,

whereas Cready, Kumas, and Subasi (2014) report average institutional trade sizes that range

from approximately $100,000 to $500,000, depending on the size of the institutional investor.

The $100,000 cutoff used in our study is conservative and allows for a greater cross-section

of institutional investors. Using this methodology, we identify 1,173,482 large institutional

6We link an institutional trade across days if its execution involves at least one trade in both the last
half-hour of day t and the first half-hour of day t + 1.
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trades in our sample. In our main tests later in the paper, we experiment with different

cutoffs to ensure our results are robust to alternative specifications for large institutional

trades.

In addition to dollar trade size, we identify other important attributes of each

institutional trade that could potentially influence the dynamics of how HFTs interact with

that trade. “Aggressiveness” is defined as the percentage of the institutional trade that

is executed using marketable limit orders, which are typically used by liquidity-demanding

traders who must execute a trade quickly. “Time to Completion” is defined as the number

of trading hours it takes to execute the large trade; a lower value is likely to reflect an

institutional trade that is based on short-lived private information. Finally, we calculate the

implementation shortfall (IS) of each institutional trade. This is based on the “implicit cost

of interacting with the market” from Perold (1988) and calculated as follows:

ISi,t =

∑N
n=1 pnxi,n − p0xi,N

p0xi,N
× (1B − 1S), (2)

where i represents the institutional trade, t represents the date that the trade was initiated,

pn and xn are the price and volume of trade n within the parent order, p0 is the bid-ask

midpoint at the initiation of the parent order, xN ≡
∑N

n=1 xn is the total number of shares

executed in the institutional parent order, and 1B (1S) is an indicator variable that equals

one if the institutional trade is a buy (sell). This is a standard approach used in other studies

of institutional trading, such as Keim and Madhavan (1997) and Anand et al. (2012). The

implementation shortfall variable will be particularly important for the tests in the following

section, where we examine the relationship between HFT and institutional trading costs.

Summary statistics for the sample of large institutional trades are reported in

Table 2. The average dollar size of a large institutional trade is about $720,000, with the

upper 5% of these trades exceeding $2.5 million (the upper 1% exceeds $6.8 million). On

average, an institutional trade is executed using 118 smaller trades and 234 limit orders. The
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discrepancy between the average number of trades and limit orders is the result of unexecuted

limit orders that are cancelled by the institution. The average and median order-to-trade

ratios for an institutional trade are 4.9 and 1.0, respectively, further reflecting the use of order

cancellations by some institutions. About 57% of the shares in an institutional order are

bought or sold using marketable limit orders, indicating that the child orders composing an

average institutional trade are about evenly split between liquidity-demanding and liquidity-

supplying limit orders. It takes an average of 3.0 hours to execute an institutional trade,

and 95% of all institutional trades are executed within 6.5 hours, the number of hours in

a single trading day. Related, we find that 6.3% of the institutional trades in our sample

span 2 or more days. Finally, we find that the average implementation shortfall of a large

institutional trade equals 7.1 basis points. The large interquartile range of 31.8 basis points

further suggests sizable variation in execution quality.

3 Institutional Trading Costs and HFT

The first major step in this study is to establish a link between institutional trading

costs and high-frequency trading activity. Theory suggests that HFTs can use their speed

advantage to profitably modify their orders in the presence of a large institutional trade,

thereby increasing the execution costs associated with that trade (Ait-Sahalia and Sağlam

2017a, 2017b; Yang and Zhu 2017). An exogenous event that improves or impairs the ability

of HFTs to modify their orders in the presence of large institutional trades would be ideal for

establishing a link between HFT and institutional execution costs. We utilize a regulatory

change that was implemented by IIROC on April 1, 2012, called the “integrated fee model.”

IIROC recognized that message traffic from Canadian exchanges was steadily increasing

over time, increasing the burden on IIROC to monitor the traders on these exchanges. As

a result, IIROC implemented a fee model in which traders would be charged on a pro rata

basis for both the trades they execute and the messages they send to Canadian marketplaces,
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as opposed to the prior fee model in which traders were only charged for their trades. In

developing the new fee model, IIROC stated that traders with a “greater share of messages

or trades compared to their share of shares traded will incur higher fees under the proposed

model compared to the current model” (IIROC Notice 10-0316). High-frequency traders

were strongly affected by the new message fees because their strategies typically involve

high message activity and high order-to-trade ratios, as noted in Table 1. In contrast, the

new message fees for our sample of institutional traders were largely trivial due to their

low message activity relative to their trades, and we do not observe any significant changes

in the arrival rates of institutional orders after the regulation. Pro-HFT commenters noted

that the proposed model would extend “an apparent bias against HFTs,” further noting that

“taxing message traffic will disproportionately hurt HFTs.” In their responses, IIROC stated

that they “developed the proposed fee model to be as neutral as possible between liquidity

providers and liquidity takers.”7 The goal of this section is to provide a clearer picture of

how this regulatory change affected the spreads and market depth of the institutional trades

in our sample.

As a preliminary test, we examine HFT trade, order, and cancellation statistics

surrounding the fee change and do indeed see significant changes. For each stock, we calculate

the average daily number of trades, orders, and cancellations during the 3-month periods

immediately before and after the fee change, and we also calculate the percentage change in

these averages after the fee change. Table 3 reports these summary statistics. Before the fee

change, HFTs were involved in an average of 5,220 trades per stock-day, while after the fee

change, they were involved in only 4,451 trades per stock-day (with no significant increase in

the number of shares per trade). This represents a decrease of 14.7%, which is statistically

significant at the 1% level. Orders and cancellations were also significantly affected. Before

the fee change, HFTs submitted 116,783 orders and 112,611 cancellations per stock-day,

while, after the fee change, they submitted 91,778 orders and 88,250 cancellations per day,

7For more information about the integrated fee model and feedback from marketplace members about
the proposed model, see IIROC Notices 11-0125 and 12-0043.
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representing decreases of 21.4% and 21.6%, respectively. Both changes are also significant at

the 1% level. These results corroborate the findings in Malinova, Park, and Riordan (2018),

who provide a detailed examination of market quality metrics around the integrated fee

model. In particular, they show that, following the fee change, market-making HFTs reduced

their relative presence at the most competitive prices by posting limit orders less frequently,

clearly indicating that the fee change had a significant effect on HFT behavior. In the

following two subsections, we examine the implications of these changes on the transaction

costs for large institutional trades.

3.1 Baseline results

We examine the effect of the integrated fee model on the execution costs of large

institutional trades by testing the following ordinary least squares (OLS) regression model:

ISi,j,t = β1 · ln(TSizei,j,t) + β2 · Feet + β3 · (Feet × ln(TSizei,j,t)) + (3)

γ ·Xi,j,t + δj + εi,j,t.

In this specification, i represents the institutional trade, j represents the stock, t represents

the date that the trade was initiated, and δj denotes stock fixed effects. We also double

cluster the standard errors by stock and date. Fee is an indicator variable that equals one if

the trading day is on or after April 1, 2012, the date that the integrated fee model went into

effect, and zero otherwise. ln(TSize) is the natural log of the standardized dollar value of the

institutional order, where the standardized dollar value is calculated as the number of shares

in the institutional order multiplied by the bid-ask midpoint at the initiation of the order and

then divided by the trade size minimum of $100,000. The β2 coefficient on Fee represents

the change in the average fixed cost (which we refer to as the “spread”) for institutional

trades following the fee change, while the β3 coefficient on Fee × ln(TSize) represents the

change in the average price impact for institutional trades following the fee change. If the
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fee change makes it costly for HFTs to quickly modify orders in response to institutional

order flow, then we would expect a negative β3 and a positive β2 coefficient. Finally, X

is a vector of the following market-level control variables during the execution of the large

institutional trade: (1) Mret, the contemporaneous S&P/TSX 60 market return multiplied

by the direction of the large institutional trade, which is meant to control for the fact that

the average execution price is also driven by market-wide price movements unrelated to this

particular trade, and (2) |Mret|, the absolute value of Mret, which is meant to control for

contemporaneous market-wide volatility, like in Chordia, Roll, and Subrahmanyam (2002)

and Ait-Sahalia and Sağlam (2017a, 2017b).

The results from the regression in Equation (3) are reported in Column 1 of Table

4. In this test, we only focus on institutional trades executed during the 6-month period

surrounding the fee change. Importantly, we find a significant decrease in the price impact

coefficient following the fee change. Specifically, the coefficient on ln(TSize) decreases by

14.5% (0.98/6.74), which provides support for our hypothesis that the fee change led to

lower price impact for institutional trades because it impaired the ability of HFTs to cheaply

modify their orders in the presence of these trades. We also find that the average spread for

institutional trades increased by 3.0 basis points following the fee change; our interpretation

is that market-making HFTs widened their bid-ask spreads to offset the costs associated

with the regulation. Further, this latter result corroborates evidence in Malinova, Park,

and Riordan (2018) showing that average execution costs for retail trades and institutional

trades using all marketable limit orders increased after the fee change. For sufficiently large

institutional trades, the reduced transaction costs from the deeper market can outweigh the

increased transaction costs from the wider spread, leading to lower overall execution costs.

We calculate the “break-even” trade size by setting the marginal cost from the increased

spread equal to the marginal savings from the increased depth and find a break-even point

of about $2.1 million (exp(3.0/0.98) × $100, 000). The top 7% of institutional trades by

size exceed this $2.1 million threshold and account for approximately 45% of total trading

18

 Electronic copy available at: https://ssrn.com/abstract=2567016 



volume from our sample of institutional trades.

Columns 2 to 5 of Table 4 demonstrate that the results from Column 1 are robust

to alternative model specifications. In Column 2, we include additional trade and stock-level

control variables: (1) the aggressiveness of the institutional trade (Agg), (2) the number

of hours it takes to complete the institutional trade (Time), and (3) the natural log of

stock dollar volume, expressed in millions of dollars, on the day that the institutional trade

was initiated (ln(Dvol)). We find that more aggressive trades have higher implementation

shortfall, reflecting the cost of taking liquidity from the limit-order book. Trades with shorter

time spans also have higher implementation shortfall; our interpretation is that these traders

are trading on short-lived information and do not have sufficient time to strategically spread

out their trades in a way that makes it difficult for market makers to distinguish these

trades from noise trader activity, like in Kyle (1985) and Collin-Dufresne and Fos (2016).

We also find that implementation shortfall is lower on days with higher trading volume, as

informed traders can more easily “hide” within the noise when executing their trades (Kyle

1985).8 In Column 3, we use all of the trading days in the sample as opposed to the 6

months surrounding the fee change. In Columns 4 and 5, we redefine institutional trades as

having a minimum institutional trade size of $500,000 and $1 million and standardize the

Tsize variable using the minimum institutional trade size in that subsample. For the tests

in Columns 3 to 5, our baseline results are similar, with spreads increasing and price impact

decreasing for large institutional trades following the fee change.

3.2 Price impact analysis by institutional trader type

It is possible that our results in the previous subsection are being driven by changes

in overall market conditions or other unobserved outcomes around the time of the fee change.

8We should note that the fee change also affected these control variables, with average aggressiveness
decreasing by 2.5 percentage points (as shown in Malinova, Park, and Riordan 2018), time to execution
increasing by 0.20 hours, and average stock dollar volume decreasing by about 7%. Combined, we find that
these post-fee changes do not have a significant effect on average implementation shortfall. Further, the
test in Column 1 of Table 4 indicates that our baseline results are robust to the exclusion of these control
variables.
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We address this concern by exploiting heterogeneities in the trading motivations of institu-

tional traders. Some institutions allocate resources toward obtaining an informational ad-

vantage, and thus are motivated to trade on their information. Other institutions, such as

pension funds, often trade for reasons unrelated to information about fundamental security

values, such as a need for portfolio rebalancing. Theory suggests that HFTs compete with

informed institutional traders, who trade with greater urgency because of their often short-

lived information advantage. If the integrated fee model makes it more costly for HFTs to

compete with these trades, as our results in the previous subsection suggest, then we would

expect a stronger reduction in price impact for informed institutional traders compared to

uninformed institutional traders. In addition, changes in overall market conditions or other

unobserved outcomes around the time of the fee change are unlikely to have a differential

effect on the trading costs of informed versus uninformed traders, further strengthening the

link between the fee change and institutional execution costs.

Our methodology for classifying informed institutional traders is as follows. First,

we calculate the return for each institutional trade. For institutional buy (sell) orders, the

return is calculated as (the negative of) the percentage difference between the closing price

5 days after the trade has been executed and the size-weighted average price of the trade.

The 5-day window for calculating returns for institutional trades is also used in Chan and

Lakonishok (1995). This represents a balance between a shorter window, which is more likely

to produce return estimates that are biased by the transitory price impact of the trade, and

a longer window, which is more likely to produce noisier return estimates of institutional

trade performance. Then we calculate the average return for each institutional trader using

their moving history of institutional trade returns. Calculations are done on a monthly basis.

Finally, institutions are placed into terciles based on their average historical returns up to the

end of the previous month, where the terciles are denoted by g ∈ {H,M,L} (high, medium,

low). Institutions in the highest tercile are considered most likely to be trading on private

information.
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In a preliminary test, we examine whether informed institutional traders are trad-

ing ahead of same-direction price movements out-of-sample. For each institutional buy (sell)

order, we calculate the (negative of the) return for various time windows relative to the price

at the beginning of the trade. The time windows we consider are the end of the trade at

day t and the close of days t + 1, t + 5, and t + 20. For example, if an institution initiated

a buy order when the price of the security was $100.00 and the closing price 5 days later

was $105.00, then the return equals 5%. If institutions in the high-informed group are truly

informed, then we should expect these institutions to incur positive and significant average

returns in future time periods. Figure 1 displays the cumulative returns for institutional

trades originating from each of the three informed groups. For the highly informed group,

we find that the mean 5-day return relative to the price at the beginning of the institutional

trade is about 17 basis points, which is significantly higher than the 5-day returns for the

low and medium informed groups. The results are even stronger for mean 20-day returns,

with the highly informed group averaging about 26 basis points and the low and medium in-

formed groups averaging about 10 basis points. If we factor in the transaction costs from the

implementation shortfall of the trade, then we find that the positive 20-day returns are only

significant for the highly informed group. Overall, our evidence indicates that institutions

in the highly informed group trade profitably out of sample.

We examine the differential effect of the integrated fee model on the execution costs

for the three informed institutional trader groups. For each informed group g ∈ {H,M,L},

we test the following regression model:

ISi,g,j,t = β1,g · ln(TSizei,g,j,t) + β2,g · Feet + β3,g · (Feet × ln(TSizei,g,j,t)) + (4)

γg ·Xi,g,j,t + δj + εi,g,j,t,

where all variables are defined as before and the standard errors are double clustered by

stock and date. The vector X contains the same control variables as the test in Column 2
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of Table 4, although our results are not affected if we exclude Agg, Time, and ln(Dvol). If

our hypothesis is correct about the integrated fee model having the largest decrease in price

impact for the highly informed group, then we would expect a more negative β3 for group

H compared to the other two groups (M and L).

The results from the above regression model are reported in Columns 1 to 3 of

Table 5. Institutional trades from the high-informed group are analyzed in Column 1. We

find that, following the fee change, the price impact of large institutional trades from the

high-informed group decreases by approximately 27.5% (2.69/9.79); this change is statisti-

cally significant at the 1% level. In contrast, Columns 2 and (3) indicate a 10.1% decrease

(0.89/8.80) in price impact for the medium-informed group (significant at the 10% level)

and no statistically significant decrease in price impact for the low-informed group. The re-

gression in Column 4 formally tests the change in price impact for the high-informed group

relative to the changes in price impact for the other two groups. Specifically, we use a

pooled sample of institutional trades from all three groups and construct indicator variables

representing the medium-informed and low-informed groups (1M and 1L) and interaction

terms between each of these indicator variables and the key dependent variables (Fee and

Fee× ln(TSize)). Similar to the tests in Columns 1 to 3, we find a much stronger negative

effect on the price impact of large institutional trades for the highly informed group than

for the other two groups. The differences are Statistically significant.9 We also provide

graphical evidence of the implementation shortfall changes for all traders and each of the

informed groups in Figure 2 by calculating the average IS for each week. Panels A through

C indicate that the mean IS for the pooled sample and the low and medium informed groups

increased, and panel D indicates that the mean IS for the highly informed group decreased,

a finding consistent with the evidence from our regressions. Further, these graphs indicate

that our results are not being driven by general trends in institutional execution costs. Over-

9We also find evidence that the spread effect of the fee change, represented by the coefficient on the Fee
variable, is positive and significant for only the low-informed and medium-informed groups, suggesting that
smaller-sized institutional trades from the high-informed group also slightly benefit from the decrease in
price impact following the fee change.
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all, the results from the regressions and figures indicate that the integrated fee model led to

higher informational rents for informed institutional traders through the price impact chan-

nel. Furthermore, this evidence suggests that some traders could be deterred from acquiring

costly information in the presence of HFT, which is consistent with the evidence in Weller

(Forthcoming) showing that algorithmic trading can lead to reduced price efficiency because

it deters information acquisition.

4 HFT Dynamics around Large Institutional Orders

Microstructure theory suggests that fast traders can use their superior techno-

logical capabilities to infer information from and compete with large institutional trades.

While the evidence in the previous section indicates an important link between HFT and

the execution costs of large institutional trades, particularly those originating from informed

institutional traders, it is still unclear how HFTs dynamically interact with these trades. In

this section, we address this question by examining how the inventory dynamics and limit-

order submission activities of HFTs change in the presence of large institutional trades.

4.1 HFT inventory and quote dynamics

We begin by examining how HFT inventory dynamics depend on current HFT

inventory levels and institutional order flow. Theoretical models of market maker inventory

dynamics suggest that market makers become increasingly aggressive about reverting their

inventory levels as they deviate further from zero. When market makers inventory is highly

positive, for example, they can revert this position faster by posting more competitive ask

prices and submitting more marketable limit orders to quickly sell at available bid prices.

Hansch, Naik, and Viswanathan (1998) (HNV) examine inventory dynamics for dealers on

the London Stock Exchange in 1991 and 1992 and show that inventory mean reversion rates

are highly nonlinear and increasing in their absolute inventory levels. In this section, we
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adapt the HNV methodology to the HFT market-making environment and examine how

institutional trades affect these mean-reversion rates.

First, we outline our methodology for examining HFT inventory mean reversion

rates as a function of their current absolute inventory levels. One of the main variables used

in HNV is Im,j,t, which denotes the standardized inventory level of dealer m in stock j during

time period t. Im,j,t is calculated as the accumulated net share position for dealer m in stock

j up to time period t minus the previous-months time-series mean of the net accumulated

net share position. Demeaning this variable removes any unobserved inventory positions

for dealer m at the beginning of the sample. The demeaned variable is then divided by the

previous-months standard deviation of the inventory position, thus controlling for differences

in dealer risk aversions and making dealer inventories comparable in the cross-section. By

construction, Im,j,t has a mean of zero and a standard deviation of 1. The main difference

between our study and HNV when calculating Im,j,t is the time index t, which represents

15-minute periods in our study and 1-day periods in HNV. This is a consequence of the high-

frequency trading environment used in this study, as opposed to the relatively slower-moving

dealer environment from the early 1990s explored in HNV.

We do not focus on the HFT market makers m in aggregate, as they trade with

both other trader types and each other, complicating aggregate inventory dynamics. Instead,

we focus on inventory dynamics for individual HFTs. For our subsequent tests, we focus

on the primary HFT market maker in each stock, which is the HFT market maker with

the highest average trading volume for that stock across the sample period, averaging about

28.4% of HFT trading volume. The main advantage of this approach is that the primary

market maker ends the day with a flat position for almost all of the stock-days in our sample.

In particular, we find that the primary HFT ends the day with an average absolute inventory

position of 3.3% of their trading volume for that day, with 75.5% of those stock-days ending

below 1%. The nonprimary HFTs, on the other hand, end the day with an average absolute

inventory position of 45.8% of their trading volume for that day, with only 10.6% of those
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stock-days ending below 1%. The primary HFTs also typically end the day flat if they are

trading in other stocks in which they are not the primary HFTs, with an average end-of-day

inventory position of 2.6%. For these stocks, the primary HFT averages about 13.7% of HFT

trading volume. For cross-listed securities, these statistics suggest that if the HFT is trading

in both the Canadian and U.S. markets, then the HFT inventory management is within

country. Otherwise, it would be possible that the HFT closes a particular stock-day with

a nonzero position of x shares in the Canadian market and −x shares in the U.S. market.

Another advantage of our approach is that because these HFT market makers tend to end

the day with a zero position, they are unlikely to be trading with multiple user IDs. Finally,

we should note that the results in this section are robust to defining the primary market

maker on a daily basis or examining HFT inventory dynamics for all HFTs who have been

identified as primary in any stock, which are those with generally well-behaved inventory

dynamics.

In theory, changes in market maker inventories will be nonlinearly related to the

current inventory level, in that market makers will be more aggressive about reversing inven-

tory positions that are further from zero. To take these nonlinearities into account, we follow

the methodology in HNV and interact Im,j,t−1 with indicator variables representing how far

the normalized inventory level has deviated from zero. Specifically, for each k ∈ {1, 2, 3}, we

define Dk as an indicator variable that equals one if k − 1 ≤ |Im,j,t−1| < k, and define D4 as

an indicator variable that equals one if |Im,j,t−1| ≥ 3 (each of these indicator variables equals

zero otherwise). D1 represents a nonextreme inventory position (within one standard devi-

ation of the mean inventory level) and D4 represents the most extreme inventory position

(greater than 3 standard deviations from the mean inventory level). Similar to HNV, we

then estimate inventory mean reversion rates as a function of the absolute inventory levels

using the following OLS regression model:

∆Im,j,t = α +
K∑
k=1

βkD
kIm,j,t−1 + εm,j,t−1, (5)
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where ∆Im,j,t ≡ Im,j,t − Im,j,t−1. If market-making HFTs become increasingly aggressive

about reversing their inventory positions as those positions deviate further from zero, then

βk will be increasingly negative for higher values of k.

The results from this regression test are reported in Column 1 of Table 6. Like in

HNV, we find stronger rates of mean reversion in HFT inventory levels when the inventory

position becomes more extreme. In particular, for smaller deviations in the HFT market

maker inventory level (i.e., within 1 standard deviation of the mean HFT inventory level),

the mean reversion coefficient equals −0.276, implying that 27.6% of a smaller inventory

positions are reversed in the following 15-minute period. In contrast, when an inventory

position is 1–2, 2–3, or more than 3 standard deviations outside the mean inventory level,

the mean reversion coefficient equals -0.281, -0.312, and -0.377, respectively, indicating that

the inventory reversion rate is increasing in the absolute inventory level. These coefficients

are also significantly different from each other. It is useful to express each mean reversion

coefficient (βk) as the corresponding half-life of the HFT inventory position, that is, the

number of minutes it takes for an HFT to revert half of its inventory position. The half-life

(Hk) is derived and then calculated as follows:

1

2
= (1 + βk)Hk/15 ⇒ Hk =

ln(1/2)

ln(1 + βk)
× 15. (6)

The half-lives for different inventory levels are also reported in Column 1 of Table 6. For

smaller inventory positions (k = 1), it takes a market-making HFT 32.2 minutes to unwind

half of that position, while for the most extreme positions (k = 4), it takes 22.0 minutes,

which is about 31.7% lower than the half-life for smaller inventory positions. Similar to

HNV, we find that HFTs move their inventories at faster rates when these inventory levels

are further from zero.

We examine how inventory mean reversion rates differ in the presence of large

institutional trades. If market-making HFTs absorb institutional order flow and also infer
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information from that order flow, then they will likely reverse their position at a faster rate

to reduce the adverse-selection risk associated with their position. We retest the regression

model in Column 1 of Table 6 for time periods in which an institutional buy or sell order

is underway. We also include controls for characteristics of the institutional trade, including

the aggressiveness of the trade (Agg), the number of hours until completion (Time), and

the dollar size of the trade (Tsize). The results are reported in Columns 2 and 3. For all

inventory levels, we find stronger mean reversion rates in the presence of large institutional

buy or sell orders compared to the reversion rates from the pooled sample in Column 1. The

regression model in Column 4 formally tests the differences in these inventory mean reversion

rates. First, we construct a signed indicator variable L that equals one if an institutional

buy is currently being executed, −1 if an institutional sell is currently being executed, and

zero otherwise. Then, we retest the regression model in Column 1 with the inclusion of

the interaction terms It−1 × Dk × |Lt−1| for k ∈ {1, 2, 3, 4}. (Our results are similar if we

interact It−1 ×Dk with indicator variables for institutional buy orders and institutional sell

orders separately.) These interaction terms are meant to capture the incremental effect of

an institutional trade on inventory reversion rates. The results in Column 4 indicate that

reversion rates are significantly higher in the presence of an institutional trade at all inventory

levels, with reversion rates increasing by about 50.5% (0.109/0.216) for smaller inventory

positions and about 19.9% for extreme inventory positions (0.069/0.347). Importantly, we

also include Lt−1 in this regression model. This is meant to capture how HFTs trade in the

presence of an institutional buy or sell order, inventory levels notwithstanding. The positive

and significant coefficient on Lt−1 indicates that HFTs buy more shares in the presence

of institutional buy orders and sell more shares in the presence of institutional sell orders,

regardless of their current inventory level, which is consistent with the HFT implementing

order anticipation strategies.10

10In the Internet Appendix, we show that average HFT profit per share is negative at the beginning of an
institutional trade and increases as the trade progresses. This finding is consistent with that of Van Kervel
and Menkveld (Forthcoming), who similarly show that HFT profits in the presence of institutional trades
are initially negative but eventually become positive as the trade progresses.
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The coefficients from Column 4 of Table 6 also can be used to provide a useful

quantitative breakdown of the reasons for HFT market maker inventory reversion. Recall

that for smaller inventory positions, the HFT reverses 21.6% of their inventory position in

the subsequent period when no institutional trade is being executed. This increases by 10.8

percentage points to 32.4% if a large institutional trade is underway. The additional 10.8%

provides a useful proxy for the component of the HFT inventory reversal that is attributable

to information inferred from the institutional order. For smaller inventory positions (D1),

this implies that 33.5% (10.8/32.4) of inventory reversion in the presence of a large insti-

tutional trade can be attributed to the updated information set of the HFT. For extreme

inventory positions (D4), we find that 16.6% (6.9/(6.9 + 34.7)) of HFT inventory reversion

can be attributed to their updated information set. This is lower than the 33.5% reported

for smaller inventory positions because of the nonlinearities in the inventory reversion rates

reported earlier.

We provide further insight into HFT market-making behavior by examining how

their quoting activities relate to their inventory levels and institutional order flow. If an HFT

accumulates an extreme positive inventory position, for example, then we would expect them

to increasingly shift to higher limit-order submission activity on the ask side of the limit-order

book to unwind their position. In addition, if an HFT learns from institutional net order flow

that stock prices are likely to decrease, then we would expect them to shift from submitting

bid-side limit orders to mitigate adverse-selection risk and shift toward submitting more ask-

side limit orders. Similar to our intuition about HFT inventory changes in the previous test,

we expect that current inventory levels and institutional order flow will affect HFT quoting

behavior as well.

The key dependent variable used for analyzing HFT quote dynamics is the normal-

ized net order submission activity of the market-making HFT. For each stock i and 15-minute

period t, we first calculate the total number of shares in the buy limit orders submitted by

the HFT minus the total number of shares in their sell limit orders. We then normalize this
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net order submission variable by subtracting its trailing mean and dividing the difference

by its trailing standard deviation. We denote this variable Qm,j,t. Our overall objective is

to examine how Qm,j,t is affected by the inventory level of the HFT (Dk × Im,j,t−1), insti-

tutional order flow (Lj,t−1), and the inventory level during an institutional trade execution

(Dk × Im,j,t−1 × |Lj,t−1|).

The results are reported in Table 7, and we find similar results to our tests of HFT

inventory changes. The evidence in Column 1 indicates that HFTs submit more sell orders

than buy orders when their inventory is positive, and vice versa. This effect is increasing and

nonlinear in the HFT inventory level. In Column 2, we include the signed institutional trade

indicator variable Lj,t−1 and find that HFTs submit more same-direction limit orders than

opposite-direction limit orders in the presence of an institutional order. Column 3 indicates

that these results are robust to the inclusion of the institutional trade control variables

used in the previous test. Finally, the regression model in Column 4 includes the interaction

variables Dk×Im,j,t−1×|Lj,t−1| to test how quote dynamics change during institutional trade

executions at different inventory levels. For all inventory levels, we find that HFTs are more

aggressive about submitting same-direction limit orders relative to opposite-direction limit

orders in the presence of large institutional trades. Overall, these results corroborate our

previous evidence showing how HFT inventory dynamics change during large institutional

trade executions.

4.2 Abnormal HFT buying and selling activity

The results in the previous subsection indicate that HFT net inventory changes

and order submission activity are strongly affected by their current inventory level and

institutional order flow. These tests, however, do not paint a complete picture of how

HFTs alter their buying and selling activities in the presence of a large institutional trade.

While we have shown that net inventory changes by the HFT are positive in the presence of

institutional buys, for example, it is still unclear whether these changes are being driven by
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an increase in buying activity or a decrease in selling activity. It is important to delineate

between these two effects. An increase in same-direction trades and orders by the HFT in

the presence of a large institutional trade would be more consistent with the “back-running”

prediction in Yang and Zhu (2017), suggesting that HFTs are directly competing with these

trades. A decrease in opposite-direction trades and orders, on the other hand, would be

more consistent with the “phantom liquidity” prediction in Ait-Sahalia and Sağlam (2017a,

2017b), suggesting that, instead, the HFTs are reducing liquidity provision to these large

trades. In this section, we examine how abnormal HFT buying and selling activity is affected

by institutional order flow.

We break up the HFT net inventory change into its abnormal buy and sell com-

ponents. Similar to our calculation of the standardized inventory level of the HFT (I), we

calculate abnormal HFT buy (sell) volume by taking the sum of the shares bought (sold) by

the HFT in a particular stock and 15-minute period, demeaning this sum using the trailing

mean from all 15-minute periods in the past month, and then dividing the difference by the

trailing standard deviation. We also break up HFT net order submission activity (Q) into

abnormal HFT buy limit-order activity and abnormal sell limit-order activity, constructed

similarly. This gives us a total of four dependent variables. We examine how these variables

are affected by the current inventory level of the HFT and the presence of an institutional

buy order (1B) or institutional sell order (1S). In these tests, we will also control for char-

acteristics of any large trade that is currently being executed (Agg, Time, TSize) and the

abnormal dollar volume of the stock in that 15-minute period.

Table 8 reports our tests of the determinants of abnormal HFT buying and selling

activity. Columns 1 and 2 indicate that buy trades by the HFT significantly decrease and sell

trades by the HFT significantly increase when inventory levels are positive, and vice versa

when inventory levels are negative. Consistent with our previous evidence, these effects

become more pronounced when the inventory levels are extreme, although the magnitude

of the effect is a little weaker compared to the previous tests. Importantly, we find that
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same-direction trade activity significantly increases during an institutional trade execution.

We also find a slight increase in opposite-direction trade activity during an institutional

trade execution, even after controlling for abnormal stock trading volume in that 15-minute

period, although it is significantly lower than the increase in same-direction trade activity

(the difference in coefficients and the associated p-values are in the row labeled 1B − 1S).

For the tests examining abnormal buy and sell limit-order activity in Columns 3 and 4,

we find similar results, with abnormal same-direction limit-order volume increasing more

than abnormal opposite-direction limit-order volume in the presence of a large institutional

trade (although the net effect is not statistically significant for abnormal sell limit orders).

Overall, this evidence suggests that the same-direction inventory changes by HFTs can be

better explained by an increase in same-direction trade and order activity than a decrease

in opposite-direction trade and order activity, which is consistent with the back-running

prediction in Yang and Zhu (2017).11

4.3 Large trade predictors and HFT dynamics

In this subsection, we examine the predictors of large institutional trades and

the relationship between HFT and predicted institutional trading activity. Based on past

literature, we include past price movements, trade imbalances, and changes in the limit-order

book in the publicly observable information set used by market-making HFTs to predict

large institutional trades. Although other traders can also act on this information, HFTs

have an advantage because they can act on this information quickly. Several related studies

introduce theoretical models with fast traders, showing that the presence of fast traders can

lead to worsened liquidity outcomes for other traders or potential market stability issues (see,

e.g., Baldauf and Mollner 2018; Bongaerts and Van Achter 2016). Many large institutional

parent orders are executed over time using a series of child orders, and the successive price

11In unreported results, we find an increase in opposite-direction order cancellations by HFTs in the
presence of institutional trades, suggesting that the phantom liquidity mechanism in Ait-Sahalia and Sağlam
(2017a, 2017b) also plays a role in how HFTs interact with these trades.
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changes associated with these orders provide a useful signal about subsequent child orders.

If HFTs can time their trades with enough precision, then they can trade ahead of the

predicted institutional order flow, leading to increased execution costs for the institutional

order (Bessembinder et al. 2016). Finally, changes in the shares being bid and offered

on the limit-order book can also provide useful information about future prices and large

institutional orders (Harris and Panchapagesan 2005), especially in light of the evidence in

Table 2 that 43% of institutional share volume is executed using standing limit orders.

As a first step, we examine if publicly observable information is predictive of insti-

tutional buy and sell orders using a probit regression framework. The dependent variables of

interest are the institutional buy and sell indicator variables (1B and 1S). The independent

variables include past percentage price changes (r), normalized trade imbalances (y), and

normalized limit-order imbalances (LOIB). y is defined as the total number of buy orders

minus the total number of sell orders, which is then demeaned and divided by its standard

deviation using data from the past month. LOIB is defined similarly, except that we use

the total share size of all buy limit orders minus the total share size of all sell limit orders.

We include four lags of r, y, and LOIB in our probit tests to account for potential informa-

tiveness about relatively long-run security values (Foucault, Hombert, and Roşu 2016). We

test the following probit regression model for z ∈ {B, S}:

Pr(1j,t,z|·) =
4∑

k=1

βk,zrj,t−k + λk,zyj,t−k + φk,zLOIBj,t−k + δj + εj,t−1, (7)

where t denotes a 15-minute time interval and δj denotes stock fixed effects. Standard errors

are double clustered by stock and date.

The results from the probit regression tests are reported in the first two columns

of Table 9. Column 1 examines the predictability of institutional buy orders. Overall, we

find that past returns, trade imbalances, and limit-order imbalances are all positively asso-

ciated with a higher probability of institutional buying in the upcoming period. The return
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coefficients from previous lags are also positive, but monotonically decreasing in the lag.

Interestingly, we find that normalized trade imbalances are more predictive of institutional

buys at higher lags, suggesting that trade imbalances provide information about the overall

trajectory of a multiperiod institutional buy order. Finally, we find that limit-order imbal-

ances also provide information about the likelihood of an upcoming institutional buy order,

reflecting our earlier observation that 43% of the shares in an average institutional order

are executed using standing limit orders. Like past returns, the coefficients on limit-order

imbalances are also monotonically decreasing in the lag. The regression reported in Col-

umn 2 tests the predictability of institutional sell orders, and we find similar results, in that

negative returns, trade imbalances, and limit-order imbalances from previous periods are

associated with a higher likelihood of an institutional sell order in the upcoming period.

Having established that past returns, trade imbalances, and order imbalances are

predictive of institutional trades, we next move on to examining whether these publicly

observable variables are also predictive of HFT inventory changes. We test an OLS regression

model of normalized HFT inventory changes (∆Im,j,t) on these predictive variables. Like in

our previous tests of inventory changes, we also include controls for the HFT inventory level

(Im,j,t−1 ×Dj for j ∈ {1, 2, 3, 4}). These results are reported in Column 3 of Table 9. First,

we find that the coefficients on the inventory level controls are similar to those reported in

our previous inventory change regressions, illustrating the robustness of those results. More

importantly, we find that past returns are positively related to future HFT inventory changes.

This suggests that HFTs use past returns to predict institutional order flow and compete with

those orders. Furthermore, this is consistent with the probit regression results showing that

past returns are associated with a higher likelihood of a same-direction institutional order.

Interestingly, we find that trade and order imbalances at higher lags are negatively related

to HFT inventory changes in the current period. This is consistent with the prediction in

Yang and Zhu (2017) that HFT demand is negatively related to the previous period trade

imbalance, as HFTs utilize their information advantage relative to this imbalance.
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In the final two regressions in Columns 4 and 5 of Table 9, we test how HFT

inventory changes depend on current inventory levels and the predicted component of the

signed indicator variable for a large institutional trade (L). The predicted component is

calculated using a first-stage regression of L on the publicly observable variables from the

regressions in Columns 1 to 3. Consistent with these previous tests, we find that the predicted

component of L is positively related to inventory changes by the HFT, suggesting that

HFTs compete with institutional trades using information that is predictive of these trades.

However, one issue is that HFTs might be just chasing momentum or past order flow, and

thus not necessarily trading directly in response to large institutional trades. We address

this issue by testing the relationship between HFT inventory changes and the predicted

component of L for aggressive institutional trades only. We define an institutional trade as

“aggressive” if the percentage of its trade volume using marketable limit orders is above the

median value for all institutional trades (about 57%). Aggressive institutional trades are

more likely to be based on private information because they generally occur with greater

urgency. Furthermore, because aggressive trades deplete limit-order book liquidity and move

prices, it is more likely that observed price movements and order imbalances are being driven

by these trades. The results of this test are reported in Column 5, and we find that HFTs are

even more likely to compete with aggressive institutional trades using publicly observable

information, with a coefficient on the predicted value of L that is about twice as large as the

same coefficient from the regression using all institutional trades in Column 4.

5 Conclusion

High-frequency traders play an important market-making role in modern equities

markets, and the continued modernization of financial markets in other asset classes will

expand the role of HFTs in these spaces as well. Thus, it is more important than ever

to understand and identify the potential benefits and drawbacks of HFT in these markets.
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Motivated by the theoretical microstructure literature, we examine how HFTs interact with

large institutional trades in modern equities markets and what this ultimately implies for the

costs of these trades. Using a regulatory change that increased the cost of sending messages

to Canadian exchanges, we show that the price impact of large institutional trades decreased

by about 15% following this regulatory change, providing an important link between HFT

and institutional trading costs. Spreads also widened following this regulatory change. To-

gether, this evidence suggests that the integrated fee model increased the cross-subsidy from

small, uninformed traders to large, informed traders. We also show that HFTs compete

with large institutional orders over time, partially because the HFTs are reversing inventory

positions accumulated from providing liquidity to past institutional child orders but also

because the HFT is competing with the institutional order using information inferred from

past child orders. Past returns, trade imbalances, and limit-order book imbalances are all

important predictors of large institutional orders, and HFTs appear to use this information

to competitively trade with subsequent institutional child orders. Overall, our evidence sug-

gests that HFT is associated with higher execution costs for large and information-based

institutional orders and lower costs for small, uninformed orders. Regulatory bodies may

wish to incorporate this multifaceted effect of HFT on execution costs when contemplating

regulatory changes.
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Figure 1. Price evolution around institutional trade by informed type
This graph displays the mean cumulative return relative to the price at the beginning of
an institutional trade (p0). For institutional buy (sell) orders, we calculate the cumulative
return at t as (the negative of) (pt − p0)/p0. The y-axis is reported in basis points.
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Figure 2. Average implementation shortfall by informed type
This figure displays the weekly mean implementation shortfall (IS) for all traders (panel A)
and the three informed groups (panels B to D). The vertical line in each panel indicates the
day that the integrated fee model went into effect. The horizontal lines indicate the average
IS before and after the fee change. For each panel, we report the mean difference in the
horizontal lines and the standard error of the difference in the caption and based on the
daily average IS. The y-axis is reported in basis points.
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Table 1. Summary statistics for high-frequency trading activity
Percentage of trade volume is the ratio of HFT trading volume to total trading volume
(double counted) for each stock-day. Percentage of orders is the ratio of total HFT limit-
order size to total limit-order size for each stock-day. Order-to-trade ratio is the ratio of the
number of HFT limit orders to the number of HFT trades. Aggressiveness is the percentage
of HFT trades that are executed using marketable limit orders, as opposed to passive limit
orders. Trade size is the number of shares composing a single HFT trade. Trade value is
the dollar value of the shares composing a single HFT trade. Inventory ($K) is the dollar
inventory of the highest-volume market-making HFT in a stock and 15-minute period, and
∆Inventory ($K) is the change in this variable across 15-minute periods. We also report
summary statistics for these variables expressed as a percentage of dollar volume by the HFT
in that stock and 15-minute period. For each variable, “PX” represents the Xth percentile
of its distribution, and “SD” represents its standard deviation.

HFT summary statistics (N = 67,787)

Mean Median P5 P25 P75 P95 SD

Percentage of trade volume (%) 31.6 30.8 11.5 22.0 40.6 53.4 13.1
Percentage of orders (%) 55.4 56.0 21.0 41.3 69.2 85.9 22.9

Order-to-trade ratio 33.1 16.9 5.4 10.5 32.7 119.8 49.5
Aggressiveness (%) 27.8 26.9 7.8 18.2 36.2 50.9 13.3
Trade size (shares) 328 147 111 125 260 1,261 531

Trade value (dollars) 4,354 2,685 459 1,092 5,531 12,133 6,095
Inventory ($K) 3.7 1.3 -105.5 -16.9 23.6 119.4 72.9
Inventory (%) 2.5 0.2 -49.8 -3.3 5.8 63.6 52.1

∆Inventory ($K) 0.0 0.0 -55.6 -7.5 7.5 55.8 48.7
∆Inventory (%) 0.0 0.0 -100.0 -19.4 18.9 100.0 46.9
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Table 2. Summary statistics for large institutional trades
Trade size is the dollar value of the institutional trade, measured in millions of dollars.
Number of orders is the total number of orders submitted by the institution during the
execution of the institutional trade. Number of trades is the number of smaller trades it
takes to execute the large institutional trade. Aggressiveness is the percentage of the large
institutional trade that is executed using marketable limit orders. Time to completion is
the number of hours it takes to execute the institutional trade. Implementation shortfall is
defined in the text and measured in basis points. For each variable, “PX” represents the
Xth percentile of its distribution, and “SD” represents its standard deviation.

Institutional trade statistics (N = 1,173,482)

Mean Median P5 P25 P75 P95 SD

Trade size ($M) 0.72 0.28 0.11 0.16 0.64 2.53 1.91
Number of orders 234 48 1 11 178 855 2,207
Number of trades 118 50 3 20 124 438 261

Order-to-trade ratio 4.9 1.0 0.1 0.4 1.8 6.4 36.2
Aggressiveness (%) 57.0 61.1 0.0 22.1 96.5 100.0 36.6

Time to completion (hours) 3.0 1.7 0.0 0.1 5.3 6.5 4.0
Implementation shortfall (bps) 7.1 2.5 -97.9 -8.8 23.0 119.3 81.9
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Table 3. HFT activity statistics around regulatory fee changes
This table reports cross-sectional summary statistics for the average daily number of trades,
orders, and cancellations submitted by all HFTs in each stock during the 3-month periods
surrounding the integrated fee model. Cross-sectional statistics are also reported for the
percentage changes in HFT trades, orders, and cancellations around the regulatory change.
For the mean percentage changes, ***, **, and * indicate statistical significance at the 1%,
5%, and 10% levels, respectively.

A. Daily number of HFT trades

Pre-regulation Post-regulation Percentage change

Mean 5,220 4,451 -14.7%***
25th percentile 1,417 1,114 -21.4%

Median 3,089 2,386 -22.8%
75th percentile 6,586 5,587 -15.2%

B. Daily number of HFT orders

Pre-regulation Post-regulation Percentage change

Mean 116,783 91,778 -21.4%***
25th percentile 29,463 21,444 -27.2%

Median 60,590 50,989 -15.8%
75th percentile 161,291 137,355 -14.8%

C. Daily number of HFT cancellations

Pre-regulation Post-regulation Percentage change

Mean 112,611 88,250 -21.6%***
25th percentile 26,929 20,317 -24.6%

Median 57,522 49,182 -14.4%
75th percentile 156,566 125,434 -19.9%
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Table 4. Institutional trading costs around regulatory fee changes
This table reports results from OLS regressions that test the effect of the integrated fee model
on the spread and price impact for large institutional trades. The dependent variable is the
implementation shortfall of large institutional trades. Key dependent variables include Fee
and Fee× ln(TSize). The regressions in Columns 1 and 2 restrict the sample to the 6-month
period surrounding the fee change. Column 3 uses the entire time sample. Columns 4 and
5 use the entire time sample and restrict the minimum institutional trade size to $500,000
and $1 million, respectively. All control variables are specified in the main body of the
text. Standard errors are double clustered by stock and date. t-statistics are reported in
parentheses below the regression coefficients. ***, **, and * indicate statistical significance
at the 1%, 5%, and 10% levels, respectively.

[-3,+3] months All months Size > $500K Size > $1M

(1) (2) (3) (4) (5)

ln(TSize) 6.742*** 8.938*** 9.114*** 13.141*** 15.569***
(22.07) (26.6) (29.67) (20.69) (15.72)

Fee 3.002*** 3.615*** 2.859*** 2.057** 2.261**
(4.25) (4.50) (5.26) (2.46) (2.20)

ln(TSize)× Fee -0.981** -1.135** -1.467*** -1.976*** -2.778**
(-2.16) (-2.36) (-4.46) (-2.73) (-2.40)

Mret 0.245*** 0.247*** 0.237*** 0.282*** 0.304***
(21.21) (21.53) (28.18) (28.01) (25.42)

|Mret| 49.126 46.234 67.574 64.475 12.754
(0.76) (0.68) (1.62) (0.99) (0.14)

Agg 0.185*** 0.166*** 0.134*** 0.098***
(22.83) (36.99) (17.63) (9.16)

Time -0.942*** -1.080*** -1.135*** -1.086***
(-5.76) (-11.55) (-8.76) (-7.26)

ln(Dvol) -4.059*** -4.405*** -5.483*** -4.262***
(-6.15) (-12.12) (-8.59) (4.65)

SE clustering Stock-date Stock-date Stock-date Stock-date Stock-date
Fixed effects Stock Stock Stock Stock Stock

N 279,140 251,584 733,890 263,419 141,739
R-squared 0.061 0.071 0.063 0.077 0.085
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Table 5. Institutional trading costs around fee change by informed type
The first three columns of this table report results from OLS regressions that examine the
effect of the integrated fee model on the spread and price impact of large institutional trades
for each informed group g ∈ {H,M,L}. Column 4 reports the results of a pooled regression
containing all informed types. The dependent variable in all of the regression tests is the
implementation shortfall of large institutional trades. All control variables are specified
in the main body of the text. Standard errors are double clustered by stock and date. t-
statistics are reported in parentheses below the regression coefficients. ***, **, and * indicate
statistical significance at the 1%, 5%, and 10% levels, respectively.

Trader informativeness

High Medium Low Pooled

(1) (2) (3) (4)

ln(TSize) 9.790*** 8.797*** 8.581*** 9.067***
(14.98) (19.17) (10.50) (24.02)

Fee 0.424 2.129*** 4.579*** 0.156
(0.35) (3.07) (3.43) (0.14)

Fee× ln(Tsize) -2.693*** -0.889* -1.069 -2.342***
(-3.74) (-1.86) (-1.26) (-4.97)

Fee× 1M 2.138*
(1.80)

Fee× ln(TSize)× 1M 1.203***
(3.56)

Fee× 1L 4.202***
(2.81)

Fee× ln(TSize)× 1L 1.333***
(3.54)

Fee× (1 + 1M) 2.294***
p-value .001

Fee× ln(TSize)× (1 + 1M) -1.139***
p-value .007

Fee× (1 + 1L) 4.358***
p-value .000

Fee× ln(TSize)× (1 + 1L) -1.009**
p-value .027

Clustering Stock-date Stock-date Stock-date Stock-date
Controls Yes Yes Yes Yes

Fixed effects Stock Stock Stock Stock-Group
N 168,056 327,499 165,766 650,492

R-squared 0.068 0.057 0.061 0.064
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Table 6. Inventory mean reversion
This table displays inventory regression coefficients that represent inventory mean reversion
rates as a function of inventory levels. Dk is an indicator variable representing inventory
levels within a (k−1) to k standard deviation band around the mean for k ∈ {1, 2, 3}. D4 is
an indicator variable representing inventory levels greater than a 3-standard-deviation band
around the mean. L is a signed indicator variable that equals 1 (−1) if an institutional
buy (sell) order is being executed in that period. Implied half-life is measured in minutes.
Differences in coefficients are reported in the panel below the regression coefficients; for
regression Column 4, the differences are calculated as Im,j,t−1 × (1 + |Lm,j,t−1|)× (Dk −D1)
for k ∈ {2, 3, 4}. Standard errors are double clustered by stock and date. t-statistics are
reported in parentheses below the regression coefficients. ***, **, and * indicate statistical
significance at the 1%, 5%, and 10% levels, respectively.

HFT net inventory change (∆Im,j,t)

Full sample Inst. buy Inst. sell Full sample

(1) (2) (3) (4)

Im,j,t−1 ×D1 -0.276*** -0.323*** -0.329*** -0.216***
(-126.8) (-101.4) (-102.9) (86.9)

Im,j,t−1 ×D2 -0.281*** -0.330*** -0.332*** -0.218***
(-111.2) (-105.9) (-110.5) (-77.4)

Im,j,t−1 ×D3 -0.312*** -0.360*** -0.362*** -0.254***
(-75.6) (-67.8) (-72.0) (-53.7)

Im,j,t−1 ×D4 -0.377*** -0.398*** -0.418*** -0.347***
(-25.4) (-22.6) (-26.4) (-16.6)

(Im,j,t−1 ×D1)× |Lj,t−1| -0.109***
(-38.0)

(Im,j,t−1 ×D2)× |Lj,t−1| -0.112***
(-42.0)

(Im,j,t−1 ×D3)× |Lj,t−1| -0.106***
(-22.4)

(Im,j,t−1 ×D4)× |Lj,t−1| -0.069***
(-2.8)

Lj,t−1 0.020***
(19.1)

Agg -0.0010*** -0.0011*** -0.0011***
(-28.9) (-31.2) (-44.8)

Time 0.0004*** 0.0005*** 0.0005***
(5.0) (6.7) (8.9)

TSize -0.0031*** -0.0033*** -0.0032***
(-8.2) (-8.4) (-11.3)
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Im,j,t−1 × (D2 −D1) -0.005** -0.007** -0.003 -0.005**
Im,j,t−1 × (D3 −D1) -0.036*** -0.037*** -0.033*** -0.034***
Im,j,t−1 × (D4 −D1) -0.101*** -0.076*** -0.089*** -0.090***

Implied half-life (D1) 32.2 26.7 26.1 26.5
Implied half-life (D2) 31.5 26.0 25.9 26.0
Implied half-life (D3) 27.8 23.3 23.1 23.3
Implied half-life (D4) 22.0 20.5 19.3 19.3

SE clustering Stock-date Stock-date Stock-date Stock-date
N 1,576,111 414,032 450,795 1,576,111

R-squared 0.147 0.172 0.174 0.155
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Table 7. HFT quote behavior
The regression tests in this table examine the relationship between HFT net order submission
activity (Q) and HFT inventory levels in the presence of large institutional trades. Dk is
an indicator variable representing inventory levels within a (k − 1)- to k-standard-deviation
band around the mean for k ∈ {1, 2, 3}. D4 is an indicator variable representing inventory
levels greater than a 3-standard-deviation band around the mean. L is a signed indicator
variable that equals 1 (−1) if an institutional buy (sell) order is being executed in that
period. Differences in coefficients are reported in the panel below the regression coefficients;
for regression Column 4, the differences are calculated as Im,j,t−1×(1+ |Lm,j,t−1|)×(Dk−D1)
for k ∈ {2, 3, 4}. Standard errors are double clustered by stock and date. t-statistics are
reported in parentheses below the regression coefficients. ***, **, and * indicate statistical
significance at the 1%, 5%, and 10% levels, respectively.

HFT net order submission (Qm,j,t)

(1) (2) (3) (4)

Im,j,t−1 ×D1 -0.096*** -0.094*** -0.094*** -0.078***
(-41.9) (-41.3) (-41.0) (-24.6)

Im,j,t−1 ×D2 -0.102*** -0.100*** -0.100*** -0.082***
(-54.6) (-54.3) (-54.2) (-36.5)

Im,j,t−1 ×D3 -0.112*** -0.110*** -0.109*** -0.085***
(-40.3) (-39.9) (-39.9) (-24.2)

Im,j,t−1 ×D4 -0.124*** -0.123*** -0.122*** -0.093***
(-14.5) (-14.5) (-14.5) (-9.6)

Lm,j,t−1 0.040*** 0.020*** 0.019***
(25.7) (14.0) (13.4)

(Im,j,t−1 ×D1)× |Lm,j,t−1| -0.028***
(-6.4)

(Im,j,t−1 ×D2)× |Lm,j,t−1| -0.031***
(-10.2)

(Im,j,t−1 ×D3)× |Lm,j,t−1| -0.044***
(-9.1)

(Im,j,t−1 ×D4)× |Lm,j,t−1| -0.066***
(-4.5)

Im,j,t−1 × (D2 −D1) -0.006** -0.006** -0.006** -0.007**
Im,j,t−1 × (D3 −D1) -0.015*** -0.016*** -0.016*** -0.023***
Im,j,t−1 × (D4 −D1) -0.027*** -0.028*** -0.029*** -0.052***

SE clustering Stock-date Stock-date Stock-date Stock-date
Controls No No Yes Yes

N 1,576,111 1,576,111 1,576,111 1,576,111
R-squared 0.011 0.012 0.013 0.013
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Table 8. HFT buying and selling activity
This table examines how HFT buying and selling activity are affected by their inventory
levels and institutional trade activity. The dependent variables in Columns 1 and 2 are
normalized HFT buy and sell trade activity, and the dependent variables in Columns 3 and
4 are normalized HFT buy and sell order activity. Standard errors are double clustered by
stock and date. t-statistics are reported in parentheses below the regression coefficients. ***,
**, and * indicate statistical significance at the 1%, 5%, and 10% levels, respectively.

Buy volume Sell volume Buy orders Sell orders

(1) (2) (3) (4)

Im,j,t−1 ×D1 -0.064*** 0.074*** -0.035*** 0.059***
(-16.7) (18.7) (-8.0) (14.3)

Im,j,t−1 ×D2 -0.060*** 0.081*** -0.035*** 0.065***
(-22.7) (29.1) (-11.1) (20.6)

Im,j,t−1 ×D3 -0.064*** 0.092*** -0.041*** 0.069***
(-16.0) (21.7) (-8.1) (13.6)

Im,j,t−1 ×D4 -0.071*** 0.115*** -0.052*** 0.070***
(-8.5) (11.7) (-4.7) (6.3)

1B 0.061*** 0.026** 0.048*** 0.027**
(5.2) (2.3) (3.7) (2.2)

1S 0.022* 0.056*** 0.017 0.036***
(1.9) (4.6) (1.3) (2.7)

Agg -0.0007*** 0.0003*** 0.0003*** -0.0006***
(-8.5) (4.0) (3.0) (-6.7)

Time 0.0008*** 0.0005** -0.0002 0.0009***
(3.0) (1.9) (-0.8) (3.4)

TSize -0.0011 0.0012 0.0019 -0.0012
(-0.7) (0.7) (1.4) (-0.9)

DV ol 0.755*** 0.752*** 0.658*** 0.662***
(42.5) (42.6) (49.5) (49.7)

1B − 1S 0.039*** -0.030*** 0.032*** -0.009
p-value .000 .000 .000 .270

SE clustering Stock-Date Stock-Date Stock-Date Stock-Date
N 1,576,111 1,576,111 1,576,111 1,576,111

R-squared 0.184 0.184 0.117 0.118

50

 Electronic copy available at: https://ssrn.com/abstract=2567016 



Table 9. Large trade predictors and HFT activity
Columns 1 and 2 represent probit regressions of a large buy and large sell indicator vari-
able, respectively, on publicly observable variables. r is the percentage price change; y is a
normalized measure of the net number of shares purchased in that stock; and LOIB is a
normalized measure of the net number of shares submitted to the limit-order book. Column
3 is an OLS regression of ∆Im,j,t on the large trading predictors (r, y, LOIB) and HFT
inventory levels. Column 4 is an OLS regression of HFT inventory change on HFT inventory
level and the predicted value of L. L is predicted using the publicly observable variables in
Column 1. Column 5 is similar to Column 4, but uses aggressive institutional trades only
for predicting L. Standard errors are double clustered by stock and date. ***, **, and *
indicate statistical significance at the 1%, 5%, and 10% levels, respectively.

Probit regression OLS regression

Inst. buy Inst. sell ∆Im,j,t ∆Im,j,t Agg. trades

(1) (2) (3) (4) (5)

rt−1 0.057*** -0.052*** 0.018***
rt−2 0.047*** -0.041*** 0.006***
rt−3 0.039*** -0.034*** 0.003***
rt−4 0.036*** -0.030*** 0.002*

yt−1 0.004** -0.001 0.012***
yt−2 0.006*** -0.004** -0.001*
yt−3 0.008*** -0.006*** -0.004***
yt−4 0.008*** -0.007*** -0.004***

LOIBt−1 0.023*** -0.025*** -0.000
LOIBt−2 0.011*** -0.013*** -0.003***
LOIBt−3 0.007*** -0.008*** -0.002***
LOIBt−4 0.008*** -0.009*** -0.003***

Im,j,t−1 ×D1 -0.282*** -0.277*** -0.279***
Im,j,t−1 ×D2 -0.288*** -0.284*** -0.286***
Im,j,t−1 ×D3 -0.317*** -0.314*** -0.315***
Im,j,t−1 ×D4 -0.379*** -0.378*** -0.379***

Pred. Lj,t 0.161*** 0.338***

Clustering Stock-date Stock-date Stock-date Stock-date Stock-date
N 1,490,416 1,490,416 1,490,416 1,490,416 1,490,416

R-squared 0.154 0.157 0.152 0.113 0.118
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