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Preface

The Chair of Quantitative Finance was created at École Centrale Paris, now
CentraleSupélec, in 2007. Since its inception, most of its research activities
were devoted to the study of high frequency financial data. The interdisci-
plinary nature of the team, composed of mathematicians, financial engineers,
computer scientists and physicists, gave it a special dimension. A sizeable por-
tion of its research efforts have been focused on the characterization and math-
ematical modelling of limit order books. Literally at the core of every modern,
electronic financial market, the limit order book has triggered a huge amount
of research in the past twenty years, marked by the seminal work of Biais et al.
(1995) on the empirical analysis of the Paris exchange and revitalized a few
years later, in a fascinating manner, by the work of Smith et al. (2003). How-
ever, much as this topic is interesting, important and challenging, we realized
that there was still no reference book on the subject! We therefore decided
to assemble in a single document, a survey of the existing literature and our
own contributions on limit order books, whether they were pertaining to their
statistical properties, mathematical modeling or numerical simulation.

We have tried to follow the intellectual approach of an experimental physi-
cist: empirical data should come first, and only empirical analyses may be
considered as a reliable ground for building up any kind of theory. The math-
ematical modelling follows. Models address the different phenomena that are
observed and highlighted, they provide a framework to explain and reproduce
these phenomena, and they are studied from theoretical, analytical and numer-
ical perspectives.

The book is thus organised as follows: the first part is devoted to the empiri-
cal properties of limit order books; the second part, to their mathematical mod-
elling and the third, to their numerical analysis. The fourth part deals with some
advanced topics such as imperfection and predictability. Each part presents a
survey of the existing scientific literature, as well as our own contributions.
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1
A short introduction to limit order books

“One of the funny things about the stock market is that every time one person buys,
another sells, and both think they are astute.” – William Feather, American publisher
and author (1889–1981)

What is a limit order book? It is a device that the vast majority of organized
electronic markets (all equity, futures and other listed derivatives markets) use
to store in their central computer the list of all the interests of market partici-
pants. It is essentially a file in a computer that contains all the orders sent to
the market, with their characteristics such as the sign of the order (buy or sell),
the price, the quantity, a timestamp giving the time the order was recorded
by the market, and often, other market-dependent information. In other words,
the limit order book contains, at any given point in time, on a given market,
the list of all the transactions that one could possibly perform on this market.
Its evolution over time describes the way the market moves under the influ-
ence of its participants. In fact, the study of limit order books can provide deep
insight into the understanding of the financial market, which is an excellent
example of an evolving “complex system” where the different market partic-
ipants collectively interact to find the best price of an asset. Hence, this field
attracts mathematicians, economists, statistical physicists, computer scientists,
financial engineers and many others, besides the practitioners.

A market in which buyers and sellers meet via a limit order book, is called
an order-driven market. In order-driven markets, buy and sell orders are
matched as they arrive over time, subject to some priority rules. Priority is al-
ways based on price, and then, in most markets, on time, according to a FIFO
(First in, first out) rule. These priority rules are enforced in the vast majority
of financial markets, although there exist some notable exceptions or variants:
for instance, the Chicago Mercantile Exchange (CME) uses for some order

1



2 A short introduction to limit order books

books a prorata rule in place of (or: mixed with) time priority. Several differ-
ent market mechanisms have been studied in the microstructure literature, see
e.g. Garman (1976); Kyle (1985); Glosten (1994); O’Hara (1997); Biais et al.
(1997); Hasbrouck (2007). We will not review these mechanisms in this book
(except Garman (1976) in Chapter 5), and rather keep our focus on the almost
universal standard of price/time priority.

Essentially, three types of orders can be submitted:

• Limit order: an order to specify a price at which one is willing to buy or sell
a certain number of shares, with their corresponding price and quantity, at
any point in time;

• Market order: an order to immediately buy or sell a certain quantity, at the
best available opposite quote;

• Cancellation order: an order to cancel an existing limit order.

In the literature dealing with limit order books or market microstructure, agents
who submit limit orders are referred to as liquidity providers, while those who
submit market orders are referred to as liquidity takers. In real markets, ever
since the various deregulation waves hit the US markets in 2005 and the eu-
ropean markets in 2007 (see for instance, Abergel et al. (2014)), there is no
such thing as a pure liquidity provider or taker, and this classification should
be understood as a convenient shorthand rather than a realistic description of
the behaviour of market participants.

It is to be noted that depending on the market under consideration, there exist
many variations of the three basic types of orders described above. A catalogue
of real order types one can encounter on financial markets is given in Appendix
A. Needless to say, the list provided there may not be exhaustive, and will be
expanding with time passing by. In this book, for practical reasons related to
the structure of the available datasets, and because we are mainly interested in
understanding and modelling universal features of limit order books, the focus
will be on a somewhat stylized view of the market where orders can be simply
of the ”market”, ”limit” or ”cancellation” type.

Limit orders are stored in the order book, until they are either executed
against an incoming market order or canceled. The ask price PA (or simply
the ask) is the price of the best (i.e., lowest) limit sell order. The bid price PB

(or simply the bid) is the price of the best (i.e., highest) limit buy order. The
gap between the bid and the ask

S := PA − PB, (1.1)

is always positive, and is called the spread. We define the mid-price as the
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Figure 1.1 A schematic illustration of the order book. A buy market order arrives
and removes liquidity from the ask side, then sell limit orders are submitted and
liquidity is restored.

average between the bid and the ask

P :=
PA + PB

2
. (1.2)

Prices are not continuous, but rather have a discrete resolution ∆P, the tick size,
which represents the smallest quantity by which they can change.

Why study limit order books ? It is clear that the study of the empirical
properties, as well as the mathematical modelling and numerical simulation,
of limit order books, is of paramount importance for the researcher keen on
gaining a deep understanding of financial markets.

Traditionnally in financial econometrics, the data consist in time series of
prices of one or several assets, and models are based on the statistical prop-
erties of the various quantities one can build from these time series: returns,
volatility, correlation... However, in order-driven markets, the price dynamics
is controlled by the interplay between the incoming order flow and the order
book (Bouchaud et al., 2002b). Figure 1.1 is a schematic illustration of this
process (Ferraris, 2008), with the conventional representation of quantities on
the bid side by non-positive numbers.
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The study of the limit order book therefore reveals, as a by-product, the price
dynamics. One of our main motivations has been to understand the extent to
which the mechanisms of the order book have an impact on the price dynam-
ics at the microstructure level, and whether this impact remains visible at lower
frequencies, i.e., when observing hourly or daily prices. Furthermore, the gen-
uine scientific curiosity for this area of research has recently been very defi-
nitely enhanced by the rapid growth of algorithmic trading and high frequency
trading. Market making strategies, optimal execution strategies, statistical ar-
bitrage strategies, being executed at the individual order level, all require a
perfect understanding of the limit order book. Some of the statistical properties
presented in this book, in particular those pertaining to market imperfections,
may be seen as building blocks of such an understanding.

How to model limit order books ? There are several steps to take when
modelling limit order books. Probably, the first one is to select a mechanis-
tic description of the way incoming orders are stored and market orders are
executed. This prerequisite is achieved, at least in a stylized form, in all the
mathematical models of limit order books, and plays an important role in the
simulation of limit order books, for which realistic matching engines must be
developped in order to study trading strategies. The second step, at a more
conceptual and scientifically more fundamental stage, consists in chosing a
mechanism for the arrival of orders, that is, for the submission of an order of a
particular type at a specific date and time. Regarding this aspect, two main ap-
proaches have been successful in capturing key properties of the order book—
at least to some extent. The first one, led by economists, models the interac-
tions between rational agents who act strategically: the agents choose their
trading decisions as solutions to individual utility maximization problems (see
e.g., Parlour and Seppi (2008), and references therein). In the second approach,
proposed by econophysicists1, agents are described statistically. In the simplest
form along this line of research, the agents are supposed to act randomly. This
approach is sometimes referred to as zero-intelligence order book modeling,
in the sense that the arrival times and placements of orders of various types
are random and independent, the focus being primarily on the “mechanistic”
aspects of the continuous double auction rather than the strategic interactions
between agents. Despite this apparently unrealistic simplification, statistical
models of the order book do capture many salient features of real markets,
and exhibit interesting, non-trivial mathematical properties that form the basis
of a thorough understanding of limit order books. It is however necessary to

1 Scholars who work in the interdisciplinary field of “Econophysics”, comprised of the two
fields economics and physics, using ideas and tools from both areas to study complex
socio-economic systems.
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depart from this overly simplified approach and study models were agents do
interact, at least in a statistical way. Although there exists a rather vast, fasci-
nating literature on models of financial markets with interacting or competing
agents (see e.g. Brock and Hommes (1998)Lux and Marchesi (2000)), very
little is concerned with order-driven markets. Some recent results in this direc-
tion, based on a statistical approach using mutually exciting arrival processes,
are presented in this book.

What is in this book ? Our approach has been to start with the limit order
book data, trying to assess their empirical properties. Hence, Chapter 2 is a
survey of stylized facts on limit order books, Chapter 3 focuses on the shape of
the order book and its relation to the size of incoming orders, whereas Chapter
4 is concerned with experimental evidence of the interaction between liquid-
ity providers and takers on order-driven markets. We then moved on to the
mathematical models: Chapter 5 is a survey of early works on limit order book
modelling; Chapters 6 and 7 present an in-depth, rigourous mathematical the-
ory of zero-intelligence models. In Chapter 8, we review some more advanced
agent-based models, and present recent results on limit order books driven
by interacting and competing statistical agents. We then provide in Chapter
9 a framework for simulations, and analyze and discuss some numerical re-
sults. Finally, in Chapter 10, we return to empirical studies, but with a differ-
ent, more practical motivation, that of the profitability of trading strategies in
order-driven markets.

We certainly hope that this book devoted to the statistical properties, math-
ematical modeling and numerical analysis of limit order books, will lend an
impetus to many others.





PART ONE

EMPIRICAL PROPERTIES OF
ORDER-DRIVEN MARKETS





2
Statistical properties of limit order books: a

survey

2.1 Introduction

The computerization of financial markets in the second half of the 1980’s pro-
vided empirical scientists with easier access to extensive data on order books.
Biais et al. (1995) is an early study of the data flows on the newly (at that
time) computerized Paris Bourse. Many subsequent papers offer complemen-
tary empirical findings and modelling perspectives, e.g. Gopikrishnan et al.
(2000), Challet and Stinchcombe (2001), Maslov and Mills (2001), Bouchaud
et al. (2002a), Potters and Bouchaud (2003a). In this chapter, we present a sum-
mary of some fundamental empirical facts. Basic statistical properties of limit
order books, which can be observed from real data, are described and studied.
Many variables crucial to a fine modelling of order flows and dynamics of or-
der books are studied: time of arrival of orders, placement of orders, size of
orders, shape of order books, etc.

The markets we are dealing with are order-driven markets with no official
market maker, in which orders are submitted in a double auction and execu-
tions follow price/time priority. In order to make the results we present both
self-contained and reproducible, the statistics have been computed directly us-
ing our own database. The set of data that we have used in this chapter is
detailed in Appendix B.

2.2 Time of arrivals of orders

We compute the empirical distribution for interarrival times – or durations –
of market orders for the stock BNP Paribas using the data set described in
Appendix B.2. The results are plotted in figures 2.1 and 2.2, both in linear and
log scale. It is clearly observed that the exponential fit is not a good one. We

9
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Figure 2.1 Distribution of interarrival times for stock BNPP.PA in log-scale.

check however that the Weibull distribution fit is potentially a very good one.
Weibull distributions have been suggested for example in Ivanov et al. (2004).
Politi and Scalas (2008) also obtain good fits with q-exponential distributions.

In the Econometrics literature, these observations of non-Poisson arrival
times have given rise to a large trend of modelling of ”irregular” financial data.
Engle and Russell (1997) and Engle (2000) have introduced autoregressive
condition duration or intensity models that may help modelling these processes
of orders’ submission (see Hautsch (2004) for a textbook treatment). Another
trend of modelling that accounts for the non-exponential durations is based on
the subordination of stochastic processes (Clark, 1973; Silva and Yakovenko,
2007; Huth and Abergel, 2012): a Poisson process with a change of time clock
may be used to model financial data. Finally, this observation also leads to
the use of Hawkes processes in financial modelling. These processes will be
studied in Chapters 8 and 9.

We also compute using the same data the empirical distribution of the num-
ber of transactions in a given time period τ. Results are plotted in figure 2.3.
It seems that the log-normal and the gamma distributions are both good candi-
dates, however none of them really describes the empirical result, suggesting a
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Figure 2.2 Distribution of interarrival times for stock BNPP.PA (Main body, lin-
ear scale).

complex structure of arrival of orders. A similar result on Russian stocks was
presented in Dremin and Leonidov (2005).

Chapter 4 contains a more in-depth study of the arrival times of orders and
their dependencies.

2.3 Volume of orders

Empirical studies show that the distribution of order sizes is complex to charac-
terize. A power-law distribution is often suggested. Gopikrishnan et al. (2000)
and Maslov and Mills (2001) observe a power law decay with an exponent
1 + µ ≈ 2.3 − 2.7 for market orders and 1 + µ ≈ 2.0 for limit orders. Challet
and Stinchcombe (2001) emphasize on a clustering property: orders tend to
have a “round” size in packages of shares, and clusters are observed around
100’s and 1000’s. As of today, no consensus emerges in proposed models, and
it is plausible that such a distribution varies very wildly with products and
markets.

In figure 2.4, we plot the distribution of volume of market orders for four dif-



12 Statistical properties of limit order books: a survey

 0

 0.01

 0.02

 0.03

 0.04

 0.05

 0.06

 0  1  2  3  4  5  6

E
m

p
ir

ic
a

l 
d

en
si

ty

Normalized number of trades

τ = 1 minute
τ = 5 minutes

τ = 15 minutes
τ = 30 minutes

Figure 2.3 Distribution of the number of trades in a given time period τ for stock
BNPP.PA. This empirical distribution is computed using data from 2007, October
1st until 2008, May 31st.

ferent stocks. Quantities are normalized by their mean. Power-law coefficient
is estimated by a Hill estimator (see e.g. Hill (1975); de Haan et al. (2000)). We
find a power law with exponent 1 + µ ≈ 2.7 which confirms studies previously
cited. Figure 2.5 displays the same distribution for limit orders (of all avail-
able limits). We find an average value of 1 + µ ≈ 2.1, consistent with previous
studies. However, we note that the power law is a poorer fit in the case of limit
orders: data normalized by their mean collapse badly on a single curve, and
computed coefficients vary with stocks.

2.4 Placement of orders

Bouchaud et al. (2002a) observe a broad power-law placement around the best
quotes on French stocks, confirmed in Potters and Bouchaud (2003a) on US
stocks. Observed exponents are quite stable across stocks, but exchange depen-
dent: 1 + µ ≈ 1.6 on the Paris Bourse, 1 + µ ≈ 2.0 on the New York Stock Ex-
change, 1 + µ ≈ 2.5 on the London Stock Exchange. Mike and Farmer (2008)
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Figure 2.4 Distribution of volumes of market orders. Quantities are normalized
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propose to fit the empirical distribution with a Student distribution with 1.3
degree of freedom.

We plot the distribution of the following quantity computed on our data set,
i.e. using only the first five limits of the order book: ∆p = b0(t−) − b(t) (resp.
a(t) − a0(t−)) if an bid (resp. ask) order arrives at price b(t) (resp. a(t)), where
b0(t−) (resp.a0(t−)) is the best bid (resp. ask) before the arrival of this order.
Results are plotted on figures 2.6 (in semilog scale) and 2.7 (in linear scale).
We observe that the empirical distribution of the placement of arriving limit

orders is maximum at ∆p = 0; i.e. at the same best quote. We also observe
heavy tails in the distribution. Finally, we also observe an asymmetry in the
empirical distribution: the left side is less broad than the right side. Since the
left side represent limit orders submitted inside the spread, this is expected: the
left side of the distribution is linked to the spread distribution.

2.5 Cancellation of orders

Challet and Stinchcombe (2001) show that the distribution of the average life-
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time of limit orders fits a power law with exponent 1 + µ ≈ 2.1 for cancelled
limit orders, and 1 + µ ≈ 1.5 for executed limit orders. Mike and Farmer (2008)
find that in either case the exponential hypothesis (Poisson process) is not sat-
isfied on the market.

We compute the average lifetime of cancelled and executed orders on our
dataset. Since our data does not include a unique identifier of a given order,
we reconstruct life time orders as follows: each time a cancellation is detected
by the algorithm described in Appendix B.1, we go back through the history
of limit order submission and look for a matching order with same price and
same quantity. If an order is not matched, we discard the cancellation from
our lifetime data. Results are presented in figure 2.8 and 2.9. We observe a
power law decay with coefficients 1 + µ ≈ 1.3 − 1.6 for both cancelled and
executed limit orders, with little variations among stocks. These results are a
bit different from the ones presented in previous studies: similar for executed
limit orders, but our data exhibits a lower decay as for cancelled orders. Note
that the observed cut-off in the distribution for lifetimes above 20000 seconds
is due to the fact that we do not take into account execution or cancellation of
orders submitted on a previous day.



2.6 Average shape of the order book 15

10-6

10-5

10-4

10-3

10-2

10-1

100

-0.6 -0.4 -0.2  0  0.2  0.4  0.6

P
ro

b
a

b
il

it
y 

d
en

si
ty

 f
u

n
ct

io
n

∆p

BNPP.PA
Gaussian

Student

Figure 2.6 Placement of limit orders using the same best quote reference in
semilog scale. Data used for this computation is BNP Paribas order book from
September 1st, 2007, until May 31st, 2008.

2.6 Average shape of the order book

Contrarily to what one might expect, the maximum of the average offered vol-
ume in an order book is located away from the best quotes (Bouchaud et al.,
2002a). Our data confirms this observation: the average quantity offered on the
five best quotes grows with the level. This result is presented in figure 2.10. We
also compute the average price of these levels in order to plot a cross-sectional
graph similar to the ones presented in Biais et al. (1995). Our result is presented
for stock BNP.PA in figure 2.11 and displays the expected shape. Results for
other stocks are similar. We find that the average gap between two levels is
constant among the five best bids and asks (less than one tick for FTE.PA, 1.5
tick for BNPP.PA, 2.0 ticks for SOGN.PA, 2.5 ticks for RENA.PA). We also
find that the average spread is roughly twice as large the average gap (factor
1.5 for FTE.PA, 2 for BNPP.PA, 2.2 for SOGN.PA, 2.4 for RENA.PA).

Chapter 3 presents more detailed results on the shape of the order book and
its relation to the size of incoming orders.
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Figure 2.7 Placement of limit orders using the same best quote reference in linear
scale. Data used for this computation is BNP Paribas order book from September
1st, 2007, until May 31st, 2008.

2.7 Intraday seasonality

Activity on financial markets is of course not constant throughout the day.
Figure 2.12 and 2.13 plot the (normalized) number of market and limit orders
arriving in a 5-minute interval. It is clear that a U shape is observed (an ordinary
least-square quadratic fit is plotted): the observed market activity is larger at
the beginning and the end of the day, and more quiet around mid-day. Such
a U-shaped curve is well-known, see Biais et al. (1995), for example. On our
data, we observe that the number of orders on a 5-minute interval can vary with
a factor 10 throughout the day.

Challet and Stinchcombe (2001) note that the average number of orders sub-
mitted to the market in a period ∆T vary wildly during the day. The authors
also observe that these quantities for market orders and limit orders are highly
correlated. Such a type of intraday variation of the global market activity is a
well-known fact, already observed in Biais et al. (1995), for example.
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Figure 2.10 Average quantity offered in the limit order book.
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2.8 Conclusion

In this introductory chapter, some elementary statistical features of limit order
books have been produced, related to the size of order, the shape of the order
book and the arrival times of orders. The next two chapters will delve further
into two particular questions of interest: the connection between order sizes
and the shape of the order book, and the mutual excitation of orders of different
types.



3
The order book shape as a function of the

average size of limit orders

3.1 Introduction

Building on the results presented in section 2.6, this chapter focuses on the
shape of limit order books and the influence of the size of incoming orders. It
confirms the theoretical findings of the models studied in Chapters 6 and 7.

3.2 Methodology

We use the order book data described in Appendix B.3. All movements on the
first 10 limits of the ask side and the bid side of the order book are available,
which allows us to reconstruct the evolution of the first limits of the order book
during the day. Each trading day is divided into 12 thirty-minute intervals from
10am to 4pm. We obtain T = 391 intervals for each stock1. For each interval
t = 1, . . . ,T , and for each stock k = 1, . . . , 14, we compute the total number of
limit orders Lk(t) and market orders Mk(t), and the average volume (in euros) of
limit orders Vk

L(t) and market orders Vk
M(t). Table 3.1 gives the average number

of orders and their volumes (the overline denotes the average over the time
intervals: L

k
= 1

T
∑T

t=1 Lk(t), and similarly for other quantities). The lowest
average activity is observed on UBIP.PA and LAGA.PA (which are the only
two stocks in the sample with less than 200 market orders and 4000 limit orders
in average). The highest activity is observed on BNPP.PA (which is the only
stock with more than 600 market orders and 6000 limit orders on average).
The smallest sizes of orders are observed on AIRP.PA (108.25 and 205.4 for
market and limit orders), and the largest sizes are observed on AXA.PA (535.6
and 876.6 for market and limit orders).

1 Three and a half days of trading are missing or with incomplete information in our dataset:
January 15th, the morning of January 21st, February 18th and 19th.

21
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Stock k Mk Vk
M Lk Vk

L
(min, max) (min, max) (min, max) (min, max)

AIRP.PA 290.9 108.2 4545.4 205.4
59 1015 60.2 236.9 972 24999 153.6 295.7

ALSO.PA 349.7 181.3 5304.2 289.2
68 1343 75.7 310.8 817 31861 234.5 389.6

AXAF.PA 521.8 535.6 4560.6 876.6
119 2169 311.4 1037.4 1162 20963 603.4 1648.3

BNPP.PA 773.7 203.1 6586.0 277.6
160 4326 113.1 379.5 946 42939 189.2 518.7

BOUY.PA 218.3 227.4 4544.5 369.7
38 1021 113.1 421.9 652 25546 274.5 475.2

CARR.PA 309.5 275.3 4391.4 513.3
49 1200 156.1 517.3 813 14752 380.8 879.6

DANO.PA 385.7 214.4 4922.1 393.1
86 2393 112.6 820.3 1372 18186 286.1 537.4

LAGA.PA 140.8 201.5 3429.0 338.2
22 544 87.2 376.8 632 11319 219.0 504.0

MICP.PA 301.2 137.9 5033.5 240.7
45 1114 74.4 235.4 1012 23799 178.0 315.1

PEUP.PA 294.9 333.2 3790.6 536.7
57 1170 159.1 657.7 967 14053 316.8 828.3

RENA.PA 463.2 266.9 4957.6 384.3
103 1500 133.7 477.2 1383 27851 283.1 539.8

SASY.PA 494.0 241.4 4749.1 421.2
106 1722 128.7 511.7 986 22373 311.1 670.2

SGEF.PA 366.1 188.4 5309.9 353.4
70 1373 107.7 452.3 983 21372 274.2 515.1

UBIP.PA 153.3 384.9 1288.9 754.0
18 998 198.4 675.1 240 7078 451.4 1121.0

Table 3.1 Basic statistics on the number of orders and the average volumes of
orders per 30-minute time interval for each stock.

We also compute the average cumulative order book shape at 1 to 10 ticks
from the best opposite side. Denoting by PB(t) and PA(t) the best Bid and Ask
prices at time t, the average depth2 Bk

i (t) is the cumulative quantity available
in the order book for stock k in the price range {PB(t) + 1, . . . , PB(t) + i} (in
ticks) for ask limit orders, or in the price range {PA(t) − i, . . . , PA(t) − 1} for
bid limit orders, averaged over time during interval t. For i 6 10, our data is
always complete since the first ten limits are available. For larger i however,
we may not have the full data: Bk

10+ j(t) is not exact if the spread reaches a level
lower or equal to j ticks during interval t. Hence, we impose that i 6 10 in
the following empirical analysis. Figure 3.1 plots the empirical average shapes
B

k
i = 1

T
∑T

t=1 Bk
i (t) (arbitrarily scaled to B

k
10 = 1 for easier comparison).

2 See Chapter 6 for the general definitions of these quantities
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Figure 3.1 Mean-scaled shapes of the cumulative order book as a function of the
distance (in ticks) from the opposite best price for the 14 stocks studied.

3.3 The regression model

We investigate the influence of the number of limit orders Lk(t) and their aver-
age size Vk

L(t) on the depth on the order book at the first limits with a regression
model. We wish to study this relationship with the number of limit orders and
their size all others things being equal, i.e. the global market activity being
held constant. A fairly natural proxy for the market activity is the traded vol-
ume (transactions) per period. The total volume of market orders submitted
during interval t for the stock k is Mk(t)Vk

M(t). We may also consider the total
volume of incoming limit orders Lk(t)Vk

L(t).
Therefore, we have the following regression model for some measure of the

book depth Bk(t):

Bk(t) = β1Lk(t) + β2Vk
L(t) + β3Lk(t)Vk

L(t) + β4Mk(t)Vk
M(t) + εk,t. (3.1)

We test this regression using Bk(t) = Bk
5(t) (cumulative depth up to 5 ticks away

from the best opposite price), then using Bk(t) = Bk
10(t) (cumulative depth

up to 10 ticks away from the best opposite price) and finally using Bk(t) =
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Bk
10(t) − Bk

5(t) (cumulative volume between 6 and 10 ticks away from the best
opposite price). For each of these three models, we provide results with or
without the interaction term LkVk

L. All models are estimated as panel regression
models with fixed effects, i.e. the error term εk,t is the sum of a non-random
stock specific component δk (fixed effect) and a random component ηk,t. While
the regression coefficients are stock-independent, the variables δk translate the
idiosyncratic characteristics of each stock.

Note that we use data from 10am to 4pm each day, in order to avoid very ac-
tive periods, right after the opening of the market or before its closing. By con-
centrating on the heart of the trading day, we focus on smoother variations of
the studied variables. However, even with this restriction, the data nonetheless
exhibits some intraday seasonality, such as the well-known U-shaped curve of
the number of submissions of orders (see Chapter 2), or the fact that the order
book seems to grow slightly fuller during the day and decline in the end. This
intraday seasonality may be observed by computing, for each stock, the (intra-
day) seasonal means of the variables of the model, e.g. the average of a given
variable for a given stock at a given time of the day across the whole sample.
This is illustrated for example in figures 3.2 and 3.3 where we plot, for the 14
stocks studied, the (mean-scaled) seasonal averages of the number of submit-
ted market orders and the (mean-scaled) seasonal averages of the cumulative
size of the order book up to the tenth limit. For the sake of completeness, we
run the statistical regressions defined at equation (3.1) both on raw data and on
deseasonalized data (by subtracting the seasonal mean). Results are given in
table 3.2 in the first case, and in table 3.3 in the latter one.

In all cases, irrespective of the presence of the interaction term LkVk
L and ir-

respective of the deseasonalization, we observe a positive relationship between
the order book depth and the average size of limit orders Vk

L, and a negative re-
lationship between the order book depth and the number of limit orders Lk.
Note also that the estimated β’s for these two quantities are all significant to
the highest level in all the cases using deseasonalized data, and to the 0.2% for
all but one case using the raw data (2% level in this worst case).

Therefore, all others things being equal, it thus appears we have identified
the following effect : for a given total volume of arriving limit and market or-
ders LkVk

L and MkVk
M , the relative size of the limit orders has a strong influence

on the average shape of the order book: the larger the arriving orders are, the
deeper the order book is; the more there are arriving limit orders, the shallower
the order book is. The average shape of the order book is deeper when a few
large limit orders are submitted, than when many small limit orders are submit-
ted. We will provide in Chapter 7, and in particular in section 7.4, a theoretical
order book model that precisely describes this effect.
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Figure 3.2 Mean-scaled number market orders as a function of the time of day (in
seconds) for the 14 stocks studied.

As a side comment, we may also look at the influence of the global volume
of trades MkVk

M . Using raw data, we observe a positive influence of this term
on the depth of the order book. At a first glance, this is in line with the phe-
nomenon observed for example in Næs and Skjeltorp (2006), where a positive
relationship between the number of trades and the order book slope of the first
5 limits of the order book is exhibited. This apparent similarity is to be taken
with great caution, since the slope and the depth are two different variables:
their relationship and the possible link between their evolutions is not known.
Note in particular that the positive influence of the global volume of trades does
not hold using deseasonalized data in our sample. A second observation made
by Næs and Skjeltorp (2006) is that the influence of market activity on the or-
der book depth is much stronger closer to the spread, and then decresases when
taking into account further limits. We also observe this phenomenon using raw
data: the lower panel of table 3.2 shows that this influence is not significant
anymore if we take only the ”furthest” limits, i.e. the limits between 6 and 10



28 The order book shape as a function of the average size of limit orders

Figure 3.3 Mean-scaled shapes of the cumulative order book up to 10 ticks away
from the opposite best price as a function of the time of day (in seconds), for the
14 stocks studied.

ticks away from the best price. This is however unclear with deseasonalized
data.

3.4 conclusion

The statistics presented in this chapter provide clear evidence of the influence
on the shape of the limit order book of the size and numbers of limit orders:
larger limit orders and fewer limit orders lead to fatter order books. Such empir-
ical findings will come in support of the theoretical work presented in Chapter
7.



4
Empirical evidence of market making and

market taking

4.1 Introduction

In this chapter, we present an empirical study that shed some new light on
the dependencty structure of order arrival times, in particular, on the mutual
and self-excitations of limit and market orders. Exemples for various assets
and markets (equity mainly, bond futures and index futures as well in the first
section) are provided. These empirical studies lay the ground for the mathe-
matical models studied in Chapter 8 and the numerical simulations presented
in Chapter 9.

4.2 Re-introducing physical time

As seen in Chapter 2, the Poisson hypothesis for the arrival times of orders
of different kinds does not stand under careful scrutiny. In fact, the study of
arrival times of orders in an order book has not been a primary focus in the
first attempts at order book modelling. Toy models leave this dimension aside
when trying to understand the complex dynamics of an order book. In many
order-driven market models (Cont and Bouchaud, 2000; Lux and Marchesi,
2000; Alfi et al., 2009a), and in some order book models as well (Preis et al.,
2006), a time step in the model is an arbitrary unit of time during which many
events may happen. We may call that clock aggregated time. In most order
book models (Challet and Stinchcombe, 2001; Mike and Farmer, 2008), one
order is simulated per time step with given probabilities, i.e. these models use
the clock known as event time. In the simple case where these probabilities
are time-homogeneous and independent of the state of the model, such a time
treatment is equivalent to the assumption that order flows are homogeneous
Poisson processes. A likely reason for the use of non-physical time in order

29
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Figure 4.1 Empirical distribution function of the bid-ask spread in event time and
in physical (calendar) time. In inset, same data using a semi-log scale. This graph
has been computed with 15 four-hour samples of tick data on the BNPP.PA stock
(see section ?? for details).

book modelling – leaving aside the fact that models can be sufficiently com-
plicated without adding another dimension – is that many puzzling empirical
observations can be made in event time (e.g. autocorrelation of the signs of
limit and market orders) or in aggregated time (e.g. volatility clustering) (see
Chapter 2).

However, it is clear that physical (calendar) time has to be taken into account
for the modelling of a realistic order book model. For example, market activ-
ity varies widely, and intraday seasonality is often observed as a well known
U-shaped pattern. Even for a short time scale model – a few minutes, a few
hours – durations of orders (i.e. time intervals between orders) are very broadly
distributed. Hence, the Poisson assumption and its exponential distribution of
arrival times have to be discarded, and models must take into account the way
these irregular flows of orders affect the empirical properties studied on order
books.

Let us give one illustration. On figure 4.1, we plot examples of the empirical
distribution function of the observed spread in event time (i.e. spread is mea-
sured each time an event happens in the order book), and in physical (calendar)
time (i.e. measures are weighted by the time interval during which the order
book is idle). It appears that the frequencies of the most probable values of the
time-weighted distribution are higher than in the event time case. Symmetri-
cally, the frequencies of the least probable events are even smaller when phys-
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ical time is taken into account. This tells us a few things about the dynamics of
the order book, which could be summarized as follows: the wider the spread,
the faster its tightening. We can get another insight of this empirical property
by measuring on our data the average waiting time before the next event, con-
ditionally on the spread size. When computed on the lower one-third-quantile
(small spread), the average waiting time is 320 milliseconds. When computed
on the upper one-third-quantile (large spread), this average waiting time is 200
milliseconds. These observations complement some of the ones that can be
found in the early paper Biais et al. (1995).

4.3 Distributions of durations

4.3.1 Empirical evidence of market making

A first idea for an enhanced model of order flows is based on the following
observation: once a market order has been placed, the next limit order is likely
to take place faster than usual. To illustrate this, we compute for several assets:

• the empirical probability distribution of the time intervals of the counting
process of all orders (limit orders and market orders mixed), i.e. the time
step between any order book event (other than cancellation)

• and the empirical probability distribution of the time intervals between a
market order and the immediately following limit order.

If an independent Poisson assumption held, then these empirical distributions
should be identical. However, we observe a very high peak for short time in-
tervals in the second case. The first moment of these empirical distributions
is significant: for the studied assets, we find that the average time between a
market order and the following limit order is 1.3 (BNPP.PA) to 2.6 (LAGA.PA)
times shorter than the average time between two random consecutive events.

On the graphs shown in figure 4.2, we plot the full empirical distributions
for four of the five studied assets1. We observe their broad distribution and
the sharp peak for the shorter times: on the Footsie future market for exam-
ple, 40% of the measured time steps between consecutive events are less that
50 milliseconds ; this figure jumps to nearly 70% when considering only mar-
ket orders and their following limit orders. This observation is an evidence for
some sort of market making behaviour of some participants on those markets.
It seems that the submission of market orders is monitored and triggers auto-

1 Observations are identical on all the studied assets.
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Figure 4.2 Empirical distributions of the time intervals between two consecutive
orders (any type, market or limit) and of the time intervals between a market order
and the immediately following limit order. X-axis is scaled in seconds. In insets,
same data using a log-log scale. Studied assets: BNPP.PA (top left), LAGA.PA
(top right), FEIZ9 (bottom left), FFIZ9 (bottom right).

matic limit orders that add volumes in the order book (and not far from the best
quotes, since we only monitor the five best limits).

In order to confirm this finding, we perform non-parametric statistical test on
the measured data. For all studied markets, omnibus Kolmogorov-Smirnov and
Cramer-von Mises tests performed on random samples establish that the con-
sidered distributions are statistically different. If assuming a common shape, a
Wilcoxon-Mann-Withney U test clearly states that the distribution of time in-
tervals between a market orders and the following limit order is clearly shifted
to the left compared to the distributions of time intervals between any orders,
i.e. the average “limit following market” reaction time is shorter than the aver-
age time interval between random consecutive orders.

Note that there is no apparent link between the sign of the market order and
the sign of the following limit order. For example for the BNP Paribas (resp.
Peugeot and Lagardere) stock, they have the same sign in 48.8% (resp. 51.9%
and 50.7%) of the observations. And more interestingly, the “limit following
market” property holds regardless of the side on which the following limit
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Figure 4.3 Empirical distributions of the time intervals between a market order
and the immediately following limit order, whether orders have been submitted on
the same side and on opposite sides. X-axis is scaled in seconds. In insets, same
data using a log-log scale. Studied assets: BNPP.PA (left), LAGA.PA (right).

order is submitted. On figure 4.3, we plot the empirical distributions of time
intervals between a market order and the following limit order, conditionally on
the side of the limit order: the same side as the market order or the opposite one.
It appears for all studied assets that both distributions are roughly identical. In
other words, we cannot distinguish on the data if liquidity is added where the
market order has been submitted or on the opposite side. Therefore, we do not
infer any empirical property of placement: when a market order is submitted,
the intensity of the limit order process increases on both sides of the order
book.

This effect we have thus identified is a phenomenon of liquidity replenish-
ment of an order book after the execution of a trade. The fact that it is a bilateral
effect makes its consequences similar to that of a market making strategy, even
though there is no official market maker involved on every studied market.

4.3.2 A reciprocal effect ?

We now check if a similar or opposite distortion is to be found on market
orders when they follow limit orders. To investigate this, we compute for all
our studied assets the “reciprocal” measures:

• the empirical distribution of the time intervals of the counting process of all
orders (limit orders and market orders mixed), i.e. the time step between any
order book event (other than cancellation)

• and the empirical distribution of the time step between a market order and
the previous limit order.
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Figure 4.4 Empirical distributions of the time intervals between two consecutive
orders (any type, market or limit) and of the time intervals between a limit order
and an immediately following market order. In insets, same data using a log-log
scale. Studied assets: BNPP.PA (top left), LAGA.PA (top right), FEIZ9 (bottom
left), FFIZ9 (bottom right).

As previously, if an independence assumption held, then these empirical dis-
tribution should be identical. Results for four assets are shown on figure 4.4.
Contrary to previous case, no effect is very easily interpreted. For the three
stocks (BNPP.PA, LAGA.PA and PEUP.PA (not shown)), it seems that the em-
pirical distribution is less peaked for small time intervals, but the difference is
much less important than in the previous case. As for the FEI and FFI markets,
the two distributions are even much closer.

Non-parametric tests confirms these observations. Performed on data from
the three equity markets, Kolmogorov tests indicate different distributions and
Wilcoxon tests enforce the observation that time intervals between a limit or-
der and a following market order are stochastically larger than time intervals
between unidentified orders. As for the future markets on Footsie (FFI) and
3-month Euribor (FEI), Kolmogorov tests does not indicate differences in the
two observed distributions, and the result is confirmed by a Wilcoxon test that
concludes at the equality of the means.
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However, the results of this section have been obtained by considering all
limit orders and all market orders, whereas market taking behaviours are more
likely to be observed when considering only aggressive orders, i.e. orders that
instantaneously change the price. In the next section, we provide some con-
vincing empirical evidences of this effect, making a distinction between pas-
sive and aggressive orders and using a different method based on lagged cor-
relation matrices.

4.4 Using the lagged correlation matrices

As we have just seen, the direct study of arrival time helps one identify some
lead-lag relationships between events, which can be interpreted in terms of
causality. Here, we introduce an indicator based on the covariance matrix of
inter-event duration. Let then (Nt)t∈R+

be a M-dimensional point process de-
fined by (N1(t), . . . ,NM(t)) (see Appendix C.1 for more details on point pro-
cesses). For a duration h and a lag τ, the lagged covariance matrix Ch

τ =(
Ch
τ(i, j)

)
1≤i, j≤M

of the process is defined by:

Ch
τ(i, j) =

1
h

Cov(Ni(t + h + τ) − Ni(t + τ),N j(t + h) − N j(t)). (4.1)

When comparing two different types of events, such a construct helps reveal
possible causal relationships, see e.g. Bacry et al. (2012) for a detailed study
of this measure in the contaxt of mutually excited point processes.

In order to avoid side effects caused by the wide variability of the frequen-
cies across event type, it is actually more robust to rely on the lagged linear
correlation matrix

Dh
τ(i, j) = Correlation(Ni(t + h + τ) − Ni(t + τ),N j(t + h) − N j(t)). (4.2)

In this paragraph, the lagged correlation matrix is used to qualitatively study
the time dependencies between different types of orders. The components of
the process (Nt)t∈R+

will thus be the different types of events under scrutiny,
summarized in Table 4.1. Orders that move the price will be calle aggressive
in what follows.

The time step h is chosen as 0.1 second and τ ∈ {0.1, 0.2, . . . 0.9}. The em-
pirical lagged correlation coefficients are computed per day per stock, using
the market data. The result is then averaged over all the stocks and the days.
For each couple of types of events (i, j), the function τ 7→ Dh

τ(i, j) describes
the temporal decay of the impact function of events of type j on events of type
i.
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Notation Definition

M0
buy, M0

sell buy/sell market order that does not change the mid price:
i.e. order quantity < best ask/bid available quantity.

M1
buy, M1

sell buy/sell market order that changes the mid price:
ie. order quantity ≥ best ask/bid available quantity.

L0
buy, L0

sell buy/sell limit order that does not change the mid price:
i.e. order price ≤ / ≥ best bid/ask price.

L1
buy, L1

sell buy/sell limit order that changes the mid price:
ie. order price > / < best bid/ask price.

C0
buy, C0

sell buy/sell cancellation that does not change the mid price:
i.e. partial cancellation at best bid/ask limit or cancellation
at another limit.

C1
buy, C1

sell buy/sell cancellation that changes the mid price:
ie. total cancellation of best bid/ask limit order.

Table 4.1 Event types definitions

Figure 4.5 Impact functions on M1
buy arrival intensity: The graph confirms that the

most relevant events to explain the instantaneous intensity of M1
buy are M0

buy, M1
buy

and L1
sell.

Figure 4.5 details the impact of the different types of orders on the intensity
of occurrence of an order of type M1

buy. We see that the number of aggres-
sive market orders M1

buy is primarily correlated with previous market orders on
the same side (M1

buy and M0
buy), which expresses the classical clustering phe-

nomenon. More interestingly, the fact that it is also highly correlated with past
aggressive limit orders is a clear illustration of the ”market taking” effect we
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described in paragraph 4.3.2: when a limit order is submitted inside the spread,
there is a clear incentive to grab the liquidity and reset the spread to its previous
value. Note however that this ”market taking” effect does not necessarily occur
on the same side (L1

sell), but rather, affects both sides: L1
sell and L1

buy exhibit sim-
ilar correlation levels with M1

buy. By focusing our attention on aggressive limit
orders, we have thus highlighted a ”market taking” effect that was not clearly
identified when considering all limit orders without distinction.

For the sake of completeness, we provide in Figure 4.6 the same results
computed for the six types of aggressive events. In order to plot only the most
relevant information, an arbitrary threshold of 6% is chosen: events for which
the highest correlation coefficient is lower than 6% are discarded. The intensity
of L1

buy event increases by the arrival of any Lbuy or Mbuy event. This means
that liquidity providers follow on average the market consensus and provide
more aggressive prices when the stock seems to move in the convenient sens.
Both figures for L1

buy and L1
sell confirm the conclusions of the previous section.

Cancellations show a primary correlation with limit orders on the same side.
This corresponds to the numerous observations where a new limit is rapidly
canceled.

We conclude by observing that figure 4.6 clearly shows that for all orders
(market, limit, cancellations) the bid and ask sides of the order book exhibit
symmetric behaviors. This justifies the fact that many empirical studies on
limit order books merge samples from the bid and ask sides, as it has been
done in the previous section.

4.5 Conclusion

This chapter has provided several empirical evidences of the clustering of or-
ders, of a market making (or: liquidity resilience) effect and also of a market
taking effect (market participants tends to seize the liquidity when it tightens
the spread below usual levels). Two different methods have been presented,
one relying directly on the estimate of inter-arrival times, the other based on
lagged correlation matrices. These results lay the ground for the ”better order
book models” that we present in Chapter 8.
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Figure 4.6 Impact functions on the six events O1.



PART TWO

MATHEMATICAL MODELLING OF LIMIT
ORDER BOOKS





5
Agent-based modelling of limit order books: a

survey

5.1 Introduction

This chapter is dedicated to a review of agent-based models of limit order
books, that is, models depicting, at the individual agent level, possibly from a
statistical point of view, the interactions that lead to a transaction on a financial
market. Far from being exhaustive, the survey is based on selected models that
we feel are representative of some important, specific trends in agent-based
modelling.

Although known, at least partly, for a long time – Mandelbrot (1963) gives a
reference for a paper dealing with non-normality of price time series in 1915,
followed by several others in the 1920’s – some stylized facts of asset re-
turns (heavy tails, volatility clustering, etc.) have often been left aside when
modelling financial markets. They were even often referred to as ”anomalous”
characteristics, as if observations failed to comply with theory. Much has been
done these past twenty years in order to address this challenge and provide new
models that can reproduce these facts. These recent developments have been
built on top of early attempts at modelling mechanisms of financial markets
with agents. Stigler (1964), investigating some rules of the SEC1, or Garman
(1976), investigating double-auction microstructure, belong to those histori-
cal works. It seems that the first modern attempts at that type of models were
made in the field of behavioural finance. This field aims at improving financial
modelling based on the psychology and sociology of the investors. Models
are built with agents who can exchange shares of stocks according to exoge-
nously defined utility functions reflecting their preferences and risk aversions.
LeBaron (2006a,b) shows that this type of modelling offers good flexibility for
reproducing some of the stylized facts and provides a review of that type of

1 Securities and Exchange Commission, the agency supervising the organization of regulator of
the US stock exchanges

41
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model. However, although achieving some of their goals, these models suffer
from many drawbacks: first, they are very complex, and it may be a very dif-
ficult task to identify the role of their numerous parameters and the types of
dependence to these parameters; second, the chosen utility functions do not
necessarily reflect what is observed on the mechanisms of a financial market.

A sensible change in modelling appears with much simpler models imple-
menting only well-identified and presumably realistic “behaviour”: Cont and
Bouchaud (2000) uses noise traders that are subject to “herding”, i.e. form ran-
dom clusters of traders sharing the same view on the market. The idea is used
in Raberto et al. (2001) as well. A complementary approach is to characterize
traders as fundamentalists, chartists or noise traders. Lux and Marchesi (2000)
propose an agent-based model in which these types of traders interact. In all
these models, the price variation directly results from the excess demand: at
each time step, all agents submit orders and the resulting price is computed.
Therefore, everything is cleared at each time step and there is no structure of
order book to keep track of orders.

One big step is made with models really taking into account limit orders
and keeping them in an order book once submitted and not executed. Chiarella
and Iori (2002) build an agent-based model where all traders submit orders de-
pending on the three elements identified in Lux and Marchesi (2000): chartists,
fundamentalists, noise. Orders submitted are then stored in a persistent order
book. In fact, one of the first simple models with this feature was proposed in
Bak et al. (1997). In this model, orders are particles moving along a price line,
and each collision is a transaction. Due to numerous caveats in this model, the
authors propose in the same paper an extension with fundamentalist and noise
traders in the spirit of the models previously evoked. Maslov (2000) goes fur-
ther in the modelling of trading mechanisms by taking into account fixed limit
orders and market orders that trigger transactions, and really simulating the
order book. This model was analytically solved using a mean-field approxima-
tion by Slanina (2001).

Following this trend of modelling, the more or less “rational” agents com-
posing models in Economics tends to vanish and be replaced by the notion
of flows: orders are not submitted any more by an agent following a strategic
behaviour, but are viewed as an arriving flow whose properties are to be deter-
mined by empirical observations of market mechanisms. Challet and Stinch-
combe (2001) propose a simple model of order flows: limit orders are deposited
in the order book and can be removed if not executed, in a simple deposition-
evaporation process. Bouchaud et al. (2002a) use this type of model with em-
pirical distribution as inputs. Mike and Farmer (2008) is a very complete em-
pirical model, where order placement and cancellation models are proposed
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and fitted on empirical data. Finally, new challenges arise as scientists try to
identify simple mechanisms that allow an agent-based model to reproduce non-
trivial behaviours: herding behaviour inCont and Bouchaud (2000), dynamic
price placement in Preis et al. (2007), threshold behaviour in Cont (2007), etc.

5.2 Early order-driven market modelling: market
microstructure and policy issues

The pioneering works in simulation of financial markets were aimed to study
market regulations. The very first one, Stigler (1964), tries to investigate the
effect of regulations of the SEC on American stock markets, using empirical
data from the 20’s and the 50’s. Twenty years later, at the start of the comput-
erization of financial markets, Hakansson et al. (1985) implements a simulator
in order to test the feasibility of automated market making. We will not review
the huge microstructure literature in the line of the books by O’Hara (1997) or
Hasbrouck (2007). However, by presenting a small selection of early models,
we here underline the grounding of recent order book modelling.

5.2.1 A pioneer order book model

To our knowledge, the first attempt to simulate a financial market was by
Stigler (1964). This paper was a biting and controversial reaction to the Report
of the Special Study of the Securities Markets of the SEC (Cohen (1963a)),
whose aim was to “study the adequacy of rules of the exchange and that the
New York stock exchange undertakes to regulate its members in all of their ac-
tivities” (Cohen (1963b)). According to Stigler, this SEC report lacks rigorous
tests when investigating the effects of regulation on financial markets. Stat-
ing that “demand and supply are [...] erratic flows with sequences of bids and
asks dependent upon the random circumstances of individual traders”, he pro-
poses a simple simulation model to investigate the evolution of the market. In
this model, constrained by simulation capability in 1964, price is constrained
within L = 10 ticks. (Limit) orders are randomly drawn, in trade time, as fol-
lows: they can be bid or ask orders with equal probability, and their price level
is uniformly distributed on the price grid. Each time an order crosses the op-
posite best quote, it is a market order. All orders are of size one. Orders not
executed N = 25 time steps after their submission are cancelled. Thus, N is the
maximum number of orders available in the order book.

In the original paper, a run of a hundred trades was manually computed
using tables of random numbers. Of course, no particular results concerning
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the stylized facts of financial time series was expected at that time. However,
in his review of some order book models, Slanina (2008) makes simulations of
a similar model, with parameters L = 5000 and N = 5000, and shows that price
returns are not Gaussian: their distribution exhibits power law with exponent
0.3, far from empirical data. As expected, the limitation L is responsible for a
sharp cut-off of the tails of this distribution.

5.2.2 Microstructure of the double auction

Garman (1976) provides an early study of the double auction market with a
point of view that does not ignore temporal structure, and really defines or-
der flows. Price is discrete and constrained to be within {p1, pL}. Buy and sell
orders are assumed to be submitted according to two Poisson processes of in-
tensities λ and µ. Each time an order crosses the best opposite quote, it is a
market order. All quantities are assumed to be equal to one. The aim of the au-
thor was to provide an empirical study of the market microstructure. The main
result of its Poisson model was to support the idea that negative correlation of
consecutive price changes is linked the microstructure of the double auction
exchange. This paper is very interesting because it can be seen as precursor
that clearly sets the challenges of order book modelling. First, the mathemati-
cal formulation is promising. With its fixed constrained prices, Garman (1976)
can define the state of the order book at a given time as the vector (ni)i=1,...,L

of awaiting orders (negative quantity for bid orders, positive for ask orders).
Future analytical models will use similar vector formulations that can be cast
it into known mathematical processes in order to extract analytical results –
see e.g. Cont et al. (2010) reviewed below. Second, the author points out that,
although the Poisson model is simple, analytical solution is hard to work out,
and he provides Monte Carlo simulation. The need for numerical and empirical
developments is a constant in all following models. Third, the structural ques-
tion is clearly asked in the conclusion of the paper: “Does the auction-market
model imply the characteristic leptokurtosis seen in empirical security price
changes?”. The computerization of markets that was about to take place when
this research was published – Toronto’s CATS2 opened a year later in 1977 –
motivated many following papers on the subject.

5.2.3 Zero-intelligence

In the models by Stigler (1964) and Garman (1976), orders are submitted in
a purely random way on the grid of possible prices. Traders do not observe
2 Computer Assisted Trading System
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the market here and do not act according to a given strategy. Thus, these two
contributions clearly belong to a class of “zero-intelligence” models. Gode
and Sunder (1993) is (one of ?) the first paper to introduce the expression
“zero-intelligence” in order to describe non-strategic behaviour of traders. It is
applied to traders that submit random orders in a double auction market. The
expression has since been widely used in agent-based modelling, sometimes in
a slightly different meaning (see more recent models described in this review).
In Gode and Sunder (1993), two types of zero-intelligence traders are studied.
The first are unconstrained zero-intelligence traders. These agents can submit
random order at random prices, within the allowed price range {1, . . . , L}. The
second are constrained zero-intelligence traders. These agents submit random
orders as well, but with the constraint that they cannot cross their given ref-
erence price pR

i : constrained zero-intelligence traders are not allowed to buy
or sell at loss. The aim of the authors was to show that double auction mar-
kets exhibit an intrinsic “allocative efficiency” (ratio between the total profit
earned by the traders divided by the maximum possible profit) even with zero-
intelligence traders. An interesting fact is that in this experiment, price series
resulting from actions by zero-intelligence traders are much more volatile than
the ones obtained with constrained traders. This fact will be confirmed in future
models where “fundamentalists” traders, having a reference price, are expected
to stabilize the market (see Wyart and Bouchaud (2007) or Lux and Marchesi
(2000) below). Note that the results have been criticized by Cliff and Bruten
(1997), who show that the observed convergence of the simulated price to-
wards the theoretical equilibrium price may be an artefact of the model. More
precisely, the choice of traders’ demand carry a lot of constraints that alone
explain the observed results.

Modern works in Econophysics owe a lot to these early models or contri-
butions. Starting in the mid-90’s, physicists have proposed simple order book
models directly inspired from Physics, where the analogy “order ≡ particle” is
emphasized. Three main contributions are presented in the next section.

5.3 Order-driven market modelling in Econophysics

5.3.1 The order book as a reaction-diffusion model

A very simple model directly taken from Physics was presented in Bak et al.
(1997). The authors consider a market with N noise traders able to exchange
one share of stock at a time. Price p(t) at time t is constrained to be an integer
(i.e. price is quoted in number of ticks) with an upper bound p̄: ∀t, p(t) ∈
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{0, . . . , p̄}. Simulation is initiated at time 0 with half of the agents asking for
one share of stock (buy orders, bid) with price:

p j
b(0) ∈ {0, p̄/2}, j = 1, . . . ,N/2, (5.1)

and the other half offering one share of stock (sell orders, ask) with price:

p j
s(0) ∈ {p̄/2, p̄}, j = 1, . . . ,N/2. (5.2)

At each time step t, agents revise their offer by exactly one tick, with equal
probability to go up or down. Therefore, at time t, each seller (resp. buyer)
agent chooses his new price as:

p j
s(t + 1) = p j

s(t) ± 1 (resp. p j
b(t + 1) = p j

b(t) ± 1 ). (5.3)

A transaction occurs when there exists (i, j) ∈ {1, . . . ,N/2}2 such that pi
b(t +

1) = p j
s(t + 1). In such a case the orders are removed and the transaction

price is recorded as the new price p(t). Once a transaction has been recorded,
two orders are placed at the extreme positions on the grid: pi

b(t + 1) = 0 and
p j

s(t+1) = p̄. As a consequence, the number of orders in the order book remains
constant and equal to the number of agents. In figure 5.1, an illustration of these
moving particles is given.

As pointed out by the authors, this process of simulation is similar to the
reaction-diffusion model A + B→ ∅ in Physics. In such a model, two types of
particles are inserted at each side of a pipe of length p̄ and move randomly with
steps of size 1. Each time two particles collide, they’re annihilated and two new
particles are inserted. The analogy is summarized in table 5.1. Following this
analogy, it thus can be showed that the variation ∆p(t) of the price p(t) verifies

Figure 5.1 Illustration of the Bak, Paczuski and Shubik model: white particles
(buy orders, bid) moving from the left, black particles (sell orders, ask) moving
from the right. Reproduced from Bak et al. (1997).
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Table 5.1 Analogy between the A + B→ ∅ reaction model and the order book
in Bak et al. (1997).

Physics Bak et al. (1997)

Particles Orders
Finite Pipe Order book
Collision Transaction

:

∆p(t) ∼ t1/4(ln(
t
t0

))1/2. (5.4)

Thus, at long time scales, the series of price increments simulated in this model
exhibit a Hurst exponent H = 1/4. As for the stylized fact H ≈ 0.7, this sub-
diffusive behavior appears to be a step in the wrong direction compared to the
random walk H = 1/2. Moreover, Slanina (2008) points out that no fat tails are
observed in the distribution of the returns of the model, but rather fits the em-
pirical distribution with an exponential decay. Other drawbacks of the model
could be mentioned. For example, the reintroduction of orders at each end of
the pipe leads to unrealistic shape of the order book, as shown on figure 5.2.
Actually here is the main drawback of the model: “moving” orders is highly
unrealistic as for modelling an order book, and since it does not reproduce
any known financial exchange mechanism, it cannot be the base for any larger
model. Therefore, attempts by the authors to build several extensions of this
simple framework, in order to reproduce stylized facts by adding fundamental
traders, strategies, trends, etc. are not of interest for us in this review. However,
we feel that the basic model as such is very interesting because of its simplicity
and its “particle” representation of an order-driven market that has opened the
way for more realistic models.

5.3.2 Introducing market orders

Maslov (2000) keeps the zero-intelligence structure of the Bak et al. (1997)
model but adds more realistic features in the order placement and evolution of
the market. First, limit orders are submitted and stored in the model, without
moving. Second, limit orders are submitted around the best quotes. Third, mar-
ket orders are submitted to trigger transactions. More precisely, at each time
step, a trader is chosen to perform an action. This trader can either submit a
limit order with probability ql or submit a market order with probability 1− ql.
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Figure 5.2 Snapshot of the limit order book in the Bak, Paczuski and Shubik
model. Reproduced from Bak et al. (1997).

Once this choice is made, the order is a buy or sell order with equal probability.
All orders have a one unit volume.

As usual, we denote p(t) the current price. In case the submitted order at
time step t + 1 is a limit ask (resp. bid) order, it is placed in the book at price
p(t) + ∆ (resp. p(t) − ∆), ∆ being a random variable uniformly distributed
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Figure 5.3 Empirical probability density functions of the price increments in the
Maslov model. In inset, log-log plot of the positive increments. Reproduced from
Maslov (2000).

in ]0; ∆M = 4]. In case the submitted order at time step t + 1 is a market
order, one order at the opposite best quote is removed and the price p(t + 1)
is recorded. In order to prevent the number of orders in the order book from
large increase, two mechanisms are proposed by the author: either keeping a
fixed maximum number of orders (by discarding new limit orders when this
maximum is reached), or removing them after a fixed lifetime if they have not
been executed.

Numerical simulations show that this model exhibits non-Gaussian heavy-
tailed distributions of returns. On figure 5.3, the empirical probability density
of the price increments for several time scales are plotted. For a time scale
δt = 1, the author fit the tails distribution with a power law with exponent 3.0,
i.e. reasonable compared to empirical value. However, the Hurst exponent of
the price series is still H = 1/4 with this model. It should also be noted that
Slanina (2001) proposed an analytical study of the model using a mean-field
approximation.

This model brings very interesting innovations in order book simulation:
order book with (fixed) limit orders, market orders, necessity to cancel orders
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waiting too long in the order book. These features are of prime importance in
any following order book model.

5.3.3 The order book as a deposition-evaporation process

Challet and Stinchcombe (2001) continue the work of Bak et al. (1997) and
Maslov (2000), and develop the analogy between dynamics of an order book
and an infinite one dimensional grid, where particles of two types (ask and
bid) are subject to three types of events: deposition (limit orders), annihilation
(market orders) and evaporation (cancellation). Note that annihilation occurs
when a particle is deposited on a site occupied by a particle of another type.
The analogy is summarized in table 5.2. Hence, the model goes as follows:

Table 5.2 Analogy between the deposition-evaporation process and the order
book in Challet and Stinchcombe (2001).

Physics Challet and Stinchcombe (2001)

Particles Orders
Infinite lattice Order book

Deposition Limit orders submission
Evaporation Limit orders cancellation
Annihilation Transaction

At each time step, a bid (resp. ask) order is deposited with probability λ at a
price n(t) drawn according to a Gaussian distribution centred on the best ask
a(t) (resp. best bid b(t)) and with variance depending linearly on the spread
s(t) = a(t) − b(t): σ(t) = Ks(t) + C. If n(t) > a(t) (resp. n(t) < b(t)), then it is
a market order: annihilation takes place and the price is recorded. Otherwise,
it is a limit order and it is stored in the book. Finally, each limit order stored in
the book has a probability δ to be cancelled (evaporation).

Figure 5.4 shows the average return as a function of the time scale. It ap-
pears that the series of price returns simulated with this model exhibit a Hurst
exponent H = 1/4 for short time scales, and that tends to H = 1/2 for larger
time scales. This behaviour might be the consequence of the random evapora-
tion process (which was not modelled in Maslov (2000), where H = 1/4 for
large time scales). Although some modifications of the process (more than one
order per time step) seem to shorten the sub-diffusive region, it is clear that no
over-diffusive behaviour is observed.
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Figure 5.4 Average return 〈r∆t〉 as a function of ∆t for different sets of parame-
ters and simultaneous depositions allowed in the Challet and Stinchcombe model.
Reproduced from Challet and Stinchcombe (2001).

5.4 Empirical zero-intelligence models

The three models presented in the previous section 5.3 have successively iso-
lated essential mechanisms that are to be used when simulating a “realistic”
market: one order is the smallest entity of the model; the submission of one
order is the time dimension (i.e. event time is used, not an exogenous time
defined by market clearing and “tatonnement” on exogenous supply and de-
mand functions); submission of market orders (as such in Maslov (2000), as
“crossing limit orders” in Challet and Stinchcombe (2001)) and cancellation of
orders are taken into account. On the one hand, one may try to describe these
mechanisms using a small number of parameters, using Poisson process with
constant rates for order flows, constant volumes, etc. This might lead to some
analytically tractable models, such as the ones presented in Chapters 6 and 7.
On the other hand, one may try to fit more complex empirical distributions to
market data without analytical concern.

The latter type of modelling is best represented by Mike and Farmer (2008).
It is the first model that proposes an advanced calibration on the market data as
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for order placement and cancellation methods. As for volume and time of ar-
rivals, assumptions of previous models still hold: all orders have the same vol-
ume, discrete event time is used for simulation, i.e. one order (limit or market)
is submitted per time step. Following Challet and Stinchcombe (2001), there
is no distinction between market and limit orders, i.e. market orders are limit
orders that are submitted across the spread s(t). More precisely, at each time
step, one trading order is simulated: an ask (resp. bid) trading order is randomly
placed at n(t) = a(t) + δa (resp. n(t) = b(t) + δb) according to a Student distri-
bution with scale and degrees of freedom calibrated on market data. If an ask
(resp. bid) order satisfies δa < −s(t) = b(t)−a(t) (resp. δb > s(t) = a(t)−b(t)),
then it is a buy (resp. sell) market order and a transaction occurs at price a(t)
(resp. b(t).

During a time step, several cancellations of orders may occur. The authors
propose an empirical distribution for cancellation based on three components
for a given order:

• the position in the order book, measured as the ratio y(t) =
∆(t)
∆(0) where ∆(t)

is the distance of the order from the opposite best quote at time t,
• the order book imbalance, measured by the indicator Nimb(t) =

Na(t)
Na(t)+Nb(t)

(resp. Nimb(t) =
Nb(t)

Na(t)+Nb(t) ) for ask (resp. bid) orders, where Na(t) and Nb(t)
are the number of orders at ask and bid in the book at time t,

• the total number N(t) = Na(t) + Nb(t) of orders in the book.

Their empirical study leads them to assume that the cancellation probability
has an exponential dependence on y(t), a linear one in Nimb and finally de-
creases approximately as 1/Nt(t) as for the total number of orders. Thus, the
probability P(C|y(t),Nimb(t),Nt(t)) to cancel an ask order at time t is formally
written :

P(C|y(t),Nimb(t),Nt(t)) = A(1 − e−y(t))(Nimb(t) + B)
1

Nt(t)
, (5.5)

where the constants A and B are to be fitted on market data. Figure 5.5 shows
that this empirical formula provides a quite good fit on market data.

Finally, the authors mimic the observed long memory of order signs by sim-
ulating a fractional Brownian motion. The auto-covariance function Γ(t) of the
increments of such a process exhibits a slow decay :

Γ(k) ∼ H(2H − 1)t2H−2 (5.6)

and it is therefore easy to reproduce exponent β of the decay of the empirical
autocorrelation function of order signs observed on the market with H = 1 −
β/2.
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Figure 5.5 Lifetime of orders for simulated data in the Mike and Farmer model,
compared to the empirical data used for fitting. Reproduced from Mike and
Farmer (2008).

The results of this empirical model are quite satisfying as for return and
spread distribution. The distribution of returns exhibit fat tails which are in
agreement with empirical data, as shown on figure 5.6. The spread distribution
is also very well reproduced. As their empirical model has been built on the
data of only one stock, the authors test their model on 24 other data sets of
stocks on the same market and find for half of them a good agreement between
empirical and simulated properties. However, the bad results of the other half
suggest that such a model is still far from being “universal”.

Despite these very nice results, some drawbacks have to be pointed out. The
first one is the fact that the stability of the simulated order book is far from
ensured. Simulations using empirical parameters in the simulations may bring
situations where the order book is emptied by large consecutive market orders.
Thus, the authors require that there is at least two orders in each side of the
book. This exogenous trick might be important, since it is activated precisely
in the case of rare events that influence the tails of the distributions. Also, the
original model does not focus on volatility clustering. Gu and Zhou (2009)
propose a variant that tackles this feature. Another important drawback of the
model is the way order signs are simulated. As noted by the authors, using
an exogenous fractional Brownian motion leads to correlated price returns,
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Figure 5.6 Cumulative distribution of returns in the Mike and Farmer model,
compared to the empirical data used for fitting. Reproduced from Mike and
Farmer (2008).

which is in contradiction with empirical stylized facts. We also find that at
long time scales it leads to a dramatic increase of volatility. As already seen in
chapter 2, the correlation of trade signs can be at least partly seen as an artefact
of execution strategies. Therefore this element is one of the numerous that
should be taken into account when “programming” the agents of the model.
In order to do so, we have to leave the (quasi) “zero-intelligence” world and
see how modelling based on heterogeneous agents might help to reproduce
non-trivial behaviours. Prior to presenting such developments in chapter 8, we
briefly review some analytical works on the “zero-intelligence” models.

5.5 Some analytical and mathematical developments in
zero-intelligence order book modelling

This last section is a brief introduction to the developments of Chapters 6 and
7.

Smith et al. (2003) investigates the scaling properties of some liquidity and
price characteristics in a limit order book model. These results are summarized
in table 5.3. In Smith et al. (2003), orders arrive on an infinite price grid (This
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Quantity Scaling relation

Average asymptotic depth λL/λC

Average spread λM/λL f (ε,∆P/pc)

Slope of average depth profile
(
λL

)2
/λMλCg(ε,∆P/pc)

Price “diffusion” parameter at short time scales
(
λM

)2
λC/λLε−0.5

Price “diffusion” parameter at long time scales
(
λM

)2
λC/λLε0.5

Table 5.3 Results of Smith et al. ε := q/
(
λM/2λC

)
is a “granularity”

parameter that characterizes the effect of discreteness in order sizes,
pc := λM/2λL is a characteristic price interval, and f and g are slowly

varying functions.

is consistent as limit orders arrival rate per price level is finite). Moreover,
the arrival rates are independent of the price level, which has the advantage
of enabling the analytical predictions summarized in table 5.3. These results
are obtained by mean-field approximations, which assume that the fluctuations
at adjacent price levels are independent. This allows fruitful simplifications
of the complex dynamics of the order book. In addition, the authors do not
characterize the convergence of the coarse-grained price process in the sense of
stochastic-process limits, nor do they show that the limiting process is precisely
a Wiener process (theorem 6.5).

Cont et al. (2010) is an important step in zero-intelligence modelling of limit
order books, because of the simplicity of the model and the consequent analyt-
ical tractability. In this model, the bid and ask prices are integers, constrained
on a grid {1, . . . , n} (in ticks). Limit orders are submitted according to Poisson
processes with rate λi, where i is the distance to the opposite best price. i ≥ 0
ensures that these limit orders are not marketable. Market orders are also Pois-
son, with rate µ. The rate of cancellations at a given price is proportional to
the volume standing in the book at that price, which is equivalent to assume
that each standing order can be cancelled after an exponential life time with
parameter θ > 0. All orders are unit-sized. This model is (one of) the first to
clearly treat the order book as a complex Markovian queueing system. The
authors show that this model admits a stationary state, propose some simu-
lations and prove that some analytical results for quantities of interest can be
obtained, such as the probability of increase of the mid-price, or the probability
of execution before a mid-price move.
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5.6 Conclusion

Several pioneering works in agent-based modelling of order-driven markets
have been reviewed in this chapter, and the emphasis has been set on the more
statistical approaches. Building on these earlier works, we will continue in
chapters 6 9 and 8 our study of limit order book models by introducing a proper
mathematical framework. Questions such as the ergodicity of the order book
and invariance principles for the suitably rescaled price process will be studied,
and numerical analyses will be performed.



6
The mathematical structure of zero-intelligence

limit order book models

6.1 Introduction

In this chapter, we introduce a general framework to study the mathematical
properties of limit order books in a Markovian context. One of our main moti-
vations is to understand the interplay between the structure of limit order books
and more traditional objects of interest on financial markets, namely, the price
and spread dynamics. After casting the study of limit order books in the appro-
priate setting of Markovian point processes, we derive several mathematical
results in the case of independent Poissonian arrival times. In particular, we
show that the cancellation rate plays an important role, ensuring the ergodic-
ity of the order book and the exponential convergence towards its stationary
distribution. We also address the convergence of the price process induced by
the order book dynamics to a diffusive process at macroscopic time scales.
This natural question has attracted a lot of interest of late, as it is an important
building block in establishing the compatibility of microstructural models with
more classical models used in continuous time finance.

6.1.1 An elementary approximation: perfect market making

We start with the simplest agent-based market model, which we call the Bache-
lier market since it provides an order-driven rerpesentation of the Bachelier
model for asset prices:

• the order book starts in a full state: all limits above PA(0) and below PB(0)
are filled with one limit order of unit size q. The spread starts equal to 1 tick;

• the flow of market orders is modeled by two independent Poisson processes
M+(t) (buy orders) and M−(t) (sell orders) with constant arrival rates (or
intensities) λ+ and λ−;

57
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• there is one liquidity provider, who reacts immediately after a market order
arrives so as to maintain the spread constantly equal to 1 tick. He places a
limit order on the same side as the market order (i.e. a buy limit order after a
buy market order and vice versa) with probability u and on the opposite side
with probability 1 − u.

The mid-price dynamics can be written in the following form

dP(t) = ∆P (dM+(t) − dM−(t))Z, (6.1)

where Z is a Bernoulli random variable

Z = 0 with probability (1 − u), (6.2)

and

Z = 1 with probability u, (6.3)

and the price increment ∆P is equal to the tick size.
The infinitesimal generator L associated with this dynamics is

L f (P) = u
[
λ+ ( f (P + ∆P) − f ) + λ− ( f (P − ∆P) − f )

]
, (6.4)

where f denotes a test function. It is well known that a continuous limit is
obtained under suitable assumptions on the intensity and tick size. Noting that
(6.4) can be rewritten as

L f (P) =
1
2

u
(
λ+ + λ−

)
(∆P)2 f (P + ∆P) − 2 f + f (P − ∆P)

(∆P)2

+ u
(
λ+ − λ−

)
∆P

f (P + ∆P) − f (P − ∆P)
2∆P

, (6.5)

and under the following assumptions

u
(
λ+ + λ−

)
(∆P)2 −→σ2 as ∆P→ 0, (6.6)

and

u
(
λ+ − λ−

)
∆P−→µ as ∆P→ 0, (6.7)

the generator converges to the classical diffusion operator

σ2

2
∂2 f
∂P2 + µ

∂ f
∂P

, (6.8)

corresponding to a Wiener process with drift. This simple case is worked out as
an example of the type of limit theorems that we will be interested in in the se-
quel. Of course, an alternate approach using the Functional Central limit The-
orem (FCLT) as in Billingsley (1999) or Whitt (2002) yields similar results:
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for given, fixed values of λ+, λ− and ∆P, the rescaled-centred price process

P(nt) − nµt
σ
√

n
(6.9)

converges as n→ ∞, to a standard Wiener process, where

σ = ∆P
√

(λ+ + λ−) u, (6.10)

and

µ = ∆P
(
λ+ − λ−

)
u. (6.11)

One can easily achieve more complex diffusive limits, such as a local volatility
model, by imposing that the limit is a function of P and t

u
(
λ+ + λ−

)
(∆P)2 → σ2(P, t), (6.12)

and

u
(
λ+ − λ−

)
∆P→ µ(P, t). (6.13)

This may indeed be the case if the original intensities are functions of P and t
themselves.

6.2 Order book dynamics

In this section, we introduce the general setup and notations for the study of
limit order books.

6.2.1 Model setup: Poissonian arrivals, reference frame and
boundary conditions

Order book representation
Each side of the order book is supposed to be fully described by a finite number
of limits K, ranging from 1 to K ticks away from the best available opposite
quote. We use the notation

(a(t); b(t)) := (a1(t), . . . , aK(t); b1(t), . . . , bK(t)) ,

where a := (a1, . . . , aK) represents the ask side of the order book, ai being
the number of shares available i ticks away from the best opposite quote; and
similarly for b := (b1, . . . , bK) on the bid side. In other words, we adopt a finite
moving frame. This representation reflects faithfully the limit order books as
seen by traders on their screens. For this reason, a,b will sometimes be referred
to as the visible limits. Note that this representation is different from the ones
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used in Cont et al. (2010) or Smith et al. (2003) (see also Gatheral and Oomen
(2010) for an interesting discussion).

The quantities ai, bi’s are supposed to live in the discrete space qZ, where
q ∈ N∗ is the minimum order size on each specific market (the lot size), but
most of our results can be extended to the more general case of real-valued
ai, bi’s when orders arrive with random sizes.

Of interest are also the integrated quantities actually describing the shape of
the order book. They are the cumulative depth A,B defined by

Ai :=
i∑

k=1

ak, (6.14)

and

Bi :=
i∑

k=1

|bk |. (6.15)

Also useful are the generalized inverse functions thereof

A−1(q′) := inf{p : Ap > q′}, (6.16)

and

B−1(q′) := inf{p : Bp > q′}, (6.17)

where q′ designates a certain quantity of shares. For the sake of notational
simplicity, one can conveniently introduce the indices corresponding to the
first non-empty limit. Their common value, which will be denoted by iS , is
equal to the spread S in number of ticks:

iS := A−1(0) = B−1(0) =
S

∆P
. (6.18)

The boundary conditions described below will ensure that iS < ∞.

Boundary conditions
Constant boundary conditions are imposed outside the moving frame of size
2K: every time the moving frame leaves a price level, the number of shares at
that level is set to a∞ or b∞, depending on the side of the book. Our choice of
a finite moving frame and constant boundary conditions has three motivations:
firstly, it assures that the order book does not become empty and that the best
ask (resp. best bid) price PA (resp. PB) is always defined. Secondly, it keeps the
spread S and the increments of PA, PB bounded - this will be important when
addressing the scaling limit of the price. Thirdly, it helps make the order book
model Markovian, as we do not keep track of the price levels that have been
visited, and then left, by the moving frame at some prior time.
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Figure 6.1 Order book dynamics: in this example, K = 9, q = 1, a∞ = 4,
b∞ = −4. The shape of the order book is such that a = (0, 0, 0, 0, 1, 3, 5, 4, 2)
and b = (0, 0, 0, 0,−1, 0,−4,−5,−3). The spread in ticks is given by
iS = 5. Assume that a sell market order arrives, then a,b, iS become a′ =
(0, 0, 0, 0, 0, 0, 1, 3, 5), b′ = (0, 0, 0, 0, 0, 0,−4,−5,−3) and i′S = 7. Assume
instead that a new buy limit order arrives one tick away from the best ask
price, then a′ = (1, 3, 5, 4, 2, 4, 4, 4, 4), b′ = (−1, 0, 0, 0,−1, 0,−4,−5,−3)
and i′S = 1.

Figure 6.1 is a representation of the order book using the above notations.

Arrival of orders
The state of the order book evolves under the action of the agents operating on
the market via the following events :

• arrival of a new market order;
• arrival of a new limit order;
• cancellation of an already existing limit order.

These events are described by independent Poisson processes:

• M±(t): counting processes of market orders, with constant intensities λM+

and λM− ;
• L±i (t): counting processes of limit orders at level i, with constant intensities
λL±

i ;
• C±i (t): counting processes of cancellations of limit orders at level i, with

stochastic intensities λC+

i ai and λC−
i |bi|.
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The superscript “+” (respectively “−”) refers to the ask (respectively bid) side
of the book. Also, as already mentioned in Paragraph 6.2.1, all orders have a
fixed unit size q. This assumption is convenient to carry out our analysis and is,
for now, of secondary importance in the general questions we are addressing.
Its influence on the limit order book - particularly, its shape - will be put under
careful scrutiny in Chapter 7.

Note that the intensity of the cancellation process at level i is proportional to
the available quantity at that level. This assumption is equivalent to saying that
each order at level i has a lifetime drawn from an exponential distribution with
intensity λC±

i . This strict proportionality assumption will be somewhat relaxed
in Section 6.4. Note finally that buy limit orders L−i (t) arrive below the ask
price PA(t), and sell limit orders L+

i (t) arrive above the bid price PB(t).

6.2.2 Evolution of the order book

We can write the following coupled stochastic differential equations (SDE) for
the quantities of outstanding limit orders on each side of the order book:

dai(t) = −1{ai(t),0} (q − Ai−1)+ dM+(t) + qdL+
i (t) − qdC+

i (t)

+
(
JM− (a) − a

)
i
dM−(t) +

K∑
i=1

(
JL−i (a) − a

)
i
dL−i (t)

+

K∑
i=1

(
JC−i (a) − a

)
i
dC−i (t), (6.19)

and

dbi(t) = 1{bi(t),0} (q − Bi−1)+ dM−(t) − qdL−i (t) + qdC−i (t)

+
(
JM+

(b) − b
)

i
dM+(t) +

K∑
i=1

(
JL+

i (b) − b
)

i
dL+

i (t)

+

K∑
i=1

(
JC+

i (b) − b
)

i
dC+

i (t) (6.20)

(remember that, by convention, the bi’s are non-positive). In Equations (6.19)
and (6.20), the first three terms describe in a straightforward manner the evo-
lution of the queue at a given limit i under the influence of the three type of
events that can directly affect it:

• a buy market order decreasing by an amount q the first non-zero limit on the
ask side, possibly hitting the liquidity reservoir if all visible limits are empty
(and similarly on the bid side);
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• a new limit order increasing by an amount q the corresponding limit;
• a cancellation order decreasing by an amount q the corresponding limit.

By assumption, the intensity of the point processes triggering a cancellation
is 0 when the corresponding quantity is 0, avoiding all inconsistencies. As for
the market orders, no such assumption is made, hence the use of the indicator
function.

As for the J’s, they are shift operators corresponding to the renumbering of
the ask side following an event affecting the bid side of the book and vice versa.
For instance the shift operator corresponding to the arrival of a sell market
order dM−(t) of size q is

JM− (a) =

0, 0, . . . , 0︸      ︷︷      ︸
k times

, a1, a2, . . . , aK−k

 , (6.21)

with

k = inf{p :
p∑

j=1

|b j| > q} − inf{p : |bp| > 0} (6.22)

= A−1(q) − iS

(with the notations introduced in (6.14) and (6.15)), expressing the fact that
the limit order book always has exactly K visible limits, and that the reference
price for the ask side of the book possibly changes if a sell market order eats
up all the available liquidity at the best bid price. Similarly, the cancellation of
a limit order at the best bid will have exactly the same effect on the ask side:

JC−iS (a) = JM− (a) , (6.23)

whereas a cancellation at other limits on the bid side has no effect on the ask
side. Finally, a new buy limit order within the spread, k ticks away from the
previous best bid price, will shift the ask side according to

JL−i (a) =

a1+k, a2+k, . . . , aK , a∞, ..., a∞︸     ︷︷     ︸
k times

 , (6.24)

with

k := iS − i > 0.

Of course, similar expressions can be derived for the shift operators acting on
the bid side of the order book.
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In the next sections, we will study some general properties of the order book,
starting with the generator associated with this 2K-dimensional continuous-
time Markov chain.

6.2.3 Infinitesimal generator

The following result characterizes the generator associated to the Markovian
point process driving the order book (basic definitions concerning point pro-
cesses are recalled in Appendix C, see also Brémaud (1981a)Daley and Vere-
Jones (2003)Daley and Vere-Jones (2008) for an in-depth treatment).

Proposition 6.1 The infinitesimal generator associated to the dynamics of
the limit order book is the operator L defined by

L f (a; b) = λM+
(

f
(
[ai − (q − A(i − 1))+]+; JM+

(b)
)
− f

)
+

K∑
i=1

λL+

i

(
f
(
ai + q; JL+

i (b)
)
− f

)
+

K∑
i=1

λC+

i ai

(
f
(
ai − q; JC+

i (b)
)
− f

)
+ λM−

(
f
(
JM− (a) ; [bi + (q − B(i − 1))+]−

)
− f

)
+

K∑
i=1

λL−
i

(
f
(
JL−i (a) ; bi − q

)
− f

)
+

K∑
i=1

λC−
i |bi|( f

(
JC−i (a) ; bi + q

)
− f ), (6.25)

where we write f (ai; b) instead of f (a1, . . . , ai, . . . , aK ; b) etc. to ease the nota-
tions, and

x+ := max(x, 0), x− := min(x, 0), x ∈ R. (6.26)

The operator above, although cumbersome to put in writing, is simple to de-
cipher: a series of standard difference operators corresponding to the “deposition-
evaporation” of orders at each limit, combined with the shift operators express-
ing the moves in the best limits and therefore, in the origins of the frames for
the two sides of the order book. Note the coupling of the two sides: the shifts
on the a’s depend on the b’s, and vice versa. More precisely the shifts depend
on the profile of the order book on the other side. Also, one can easily check
that the formulation with an indicator function for the case of empty limits is
equivalent to its reformulation with the nested positive parts.
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6.2.4 Price dynamics

We now focus on the dynamics of the best ask and bid prices, denoted by PA(t)
and PB(t). One can write the following SDE:

dPA(t) = ∆P[
(
A−1(q) − iS

)
dM+(t)

−

K∑
i=1

(iS − i)+dL+
i (t) +

(
A−1(q) − iS

)
dC+

iS (t)] (6.27)

and

dPB(t) = −∆P[
(
B−1(q) − iS

)
dM−(t)

−

K∑
i=1

(iS − i)+dL−i (t) +
(
B−1(q) − iS

)
dC−iS (t)], (6.28)

which describe the various events that affect them: change due to a market
order, change due to limit orders inside the spread, and change due to the can-
cellation of a limit order at the best price. Equivalently, the respective dynamics
of the mid-price and the spread are:

dP(t) =
∆P
2

[(
A−1(q) − iS

)
dM+(t) −

(
B−1(q) − iS

)
dM−(t)

−

K∑
i=1

(iS − i)+dL+
i (t) +

K∑
i=1

(iS − i)+dL−i (t)

+
(
A−1(q) − iS

)
dC+

iS (t) −
(
B−1(q) − iS

)
dC−iS (t)

]
, (6.29)

dS (t) = ∆P
[(

A−1(q) − iS
)

dM+(t) +
(
B−1(q) − iS

)
dM−(t)

−

K∑
i=1

iS − i)+dL+
i (t) −

K∑
i=1

(iS − i)+dL−i (t)

+
(
A−1(q) − iS

)
dC+

iS (t) +
(
B−1(q) − iS

)
dC−iS (t)

]
. (6.30)

The equations above are interesting in that they relate in an explicit way the
profile of the order book to the size of an increment of the mid-price or the
spread, therefore linking the price dynamics to the order flow. For instance the
conditional infinitesimal drifts of the mid-price and the spread, given the shape
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of the order book at time t, are given by:

E [dP(t)| (a; b)] =
∆P
2

[(
A−1(q) − iS

)
λM+

−
(
B−1(q) − iS

)
λM−

−

K∑
i=1

(iS − i)+λ
L+

i +

K∑
i=1

(iS − i)+λ
L−
i

+
(
A−1(q) − iS

)
λC+

iS aiS −
(
B−1(q) − iS

)
λC−

iS |biS |
]

dt, (6.31)

and

E [dS (t)| (a; b)] = ∆P
[(

A−1(q) − iS
)
λM+

+
(
B−1(q) − iS

)
λM−

−

K∑
i=1

(iS − i)+λ
L+

i −

K∑
i=1

(iS − i)+λ
L−
i

+
(
A−1(q) − iS

)
λC+

iS aiS +
(
B−1(q) − iS

)
λC−

iS |biS |
]

dt. (6.32)

6.3 Ergodicity and diffusive limit

In this section, our interest lies in the following questions:

(i) Is the order book model defined above stable?
(ii) What is the stochastic-process limit of the price at large time scales?

6.3.1 Ergodicity of the order book

Denote by Qt(X, .) the transition probability function at time t of the Markov
process Xt starting from X at time 0, and by ||µ|| the total variation norm of
a probability measure µ (see Appendix C.2.1 for details). Then, the following
result holds:

Theorem 6.2 If λC = min1≤i≤K{λ
C±
i } > 0, then (X(t))t≥0 = (a(t); b(t))t≥0 is an

ergodic Markov process. In particular (X(t)) has a unique stationary distribu-
tion Π. Moreover, the rate of convergence of the order book to its stationary
state is exponential. That is, there exist r, 0 < r < 1, and R < ∞ such that

||Qt(X, .) − Π(.)|| ≤ RrtV(X), t ∈ R+,X ∈ S. (6.33)

Proof Let

V(X) := V(a; b) :=
K∑

i=1

ai +

K∑
i=1

|bi| + q (6.34)
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be the total number of shares in the book (+q shares). V is a positive function
and tends to +∞ as a; b tend to∞: in other words, V is coercive.

Using the expression of the infinitesimal generator (6.25) we have

LV (X) ≤ −
(
λM+

+ λM−
)

q +

K∑
i=1

(
λL+

i + λL−
i

)
q −

K∑
i=1

(
λC+

i ai + λC−
i |bi|

)
q

+

K∑
i=1

λL−
i (iS − i)+a∞ +

K∑
i=1

λL+

i (iS − i)+|b∞| (6.35)

≤ −
(
λM+

+ λM−
)

q +
(
ΛL− + ΛL+

)
q − λCqV(X)

+ K
(
ΛL−a∞ + ΛL+

|b∞|
)
, (6.36)

where

ΛL± :=
K∑

i=1

λL±
i and λC := min

1≤i≤K
{λC±

i } > 0. (6.37)

The first three terms in the right hand side of inequality (6.35) correspond
respectively to the arrival of a market, limit or cancellation order - ignoring the
effect of the shift operators. The last two terms are due to shifts occurring after
the arrival of a limit order inside the spread. The terms due to shifts occurring
after market or cancellation orders (which we do not put in the r.h.s. of (6.35))
are negative, hence the inequality. To obtain inequality (6.36), we used the
fact that the spread iS is bounded by K + 1 - a consequence of the boundary
conditions we impose - and hence (iS − i)+ is bounded by K.

The drift condition (6.36) can be rewritten as

LV (X) ≤ −βV(X) + γ, (6.38)

which is readily improved to

LV (X) ≤ −βV(X) + γ1K (6.39)

for some positive constants β, γ and a compact subset K of the state space,
thanks to the coercivity of the Lyapunov function V . Inequality (6.39), together
with the countability of the state space ensuring that all compact sets are petite
sets in the sense of Meyn and Tweedie (2009) (see Appendix C.2.1 for a dis-
cussion and precise references) let us assert that (X) is V-uniformly ergodic,
hence (6.33). �

As an easy consequence, there holds the following corollary:

Corollary 6.3 The spread S (t) = iS ∆P has a well-defined stationary distri-
bution.
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6.3.2 Large-scale limit of the price process

This section is devoted to the asymptotics of the suitably rescaled, centered
price process.

Such limit theorems are actively researched of late: in Cont and de Larrard
(2012), the authors show that in a simplified model of an order book for a liquid
stock, one can derive a diffusive limit for the volume at the best quotes of the
book. These types of results are also the focus of Guo et al. (2015), which
also deals with the relative position of an order inside the queue. Other limit
theorems are obtained in Horst and Paulsen (2015). The authors prove that
under some simplifying assumptions and a specific scaling, one may obtain in
the limit coupled differential equations for the bid and ask price dynamics, as
well as the for the shape of the order book. A somewhat related description
of the limiting shapes of the order book as solution of differential equations is
also the subject of Gao et al. (2014).

In our treatment of these questions, we combine the ergodic theory of Markov
processes with martingale convergence theorems. This approach is extremely
general and flexible, and prone to many generalizations for Markovian models
of limit order books. We state and prove our main result concerning the long-
time price dynamics in the case of Poissonian arrival times. The case of more
general drivers will be studied in Chapter 8.

For notational convenience, we recast the equation for the price, or rather,
any of the prices, under the general form

Pt =

∫ t

0

∑
i

Fi (X(u)) dN i(u), (6.40)

where the N i’s are the point processes driving the events affecting the limit
order book and therefore, the price, νi ≡ νi (X) is the (possibly state-dependent)
intensity of N i, and the Fi’s are the jumps in the price of interest when process
N i jumps.

Denote by Π the stationary distribution of X as provided by Proposition 6.2.
Using the Ergodic Theorem C.7 together with the Martingale Convergence
Theorem C.8, one can show the following proposition:

Proposition 6.4 Consider the price process described by Equation (6.40)
above, and introduce the sequence of martingales P̂n formed by the centered,
rescaled price

P̂n(t) ≡
P(nt) − Q(nt)

√
n

,
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where Q is the predictable compensator of P

Qt =
∑

i

∫ t

0
νi (X(s)) Fi (X(s)) ds.

Then, P̂n converges in distribution to a Wiener process σ̂W, where the volatility
σ̂ is given by

σ̂2 = lim
t→+∞

1
t

∑
i

∫ t

0
νi (X(s)) (Fi (X(s)))2 ds =

∑
i

∫
νi (X) (Fi (X))2 Π (dX)

(6.41)
(where we use, with a slight abuse of notations, the same letter for a process
and the corresponding state variable in the state space).

Proof Proposition 6.4 will follow from the convergence of the predictable
quadratic variation of P̂n. By construction, there holds

< P̂n, P̂n > (t) =
1
n

∑
i

∫ nt

0
νi (X(s)) (Fi (X(s)))2 ds,

or else

< P̂n, P̂n > (t) = t(
1
n

∑
i

∫ nt

0
νi (X(s)) (Fi (X(s)))2 ds),

and Theorem C.7 ensures that
a.s.
lim

t→+∞

1
nt

∑
i

∫ nt

0
νi (X(s)) (Fi (X(s)))2 ds =

∑
i

∫
νi (X) (Fi (X))2 Π(dX)

whenever the integrability conditions in Theorem C.7 are satisfied. Now, those
are easily seen to hold true, since the integrand in the predictable quadratic
variation is a bounded function. As a matter of fact, the only possibly un-
bounded term would come from the intensity of cancellation orders, propor-
tional to the ai, |bi|’s. However, whenever a cancellation order causes a price
change, then necessarily, the book is in a state where the quantity at the best
limit that moves is precisely equal to q. Hence, the boundedness follows.

The other condition for the martingale convergence theorem to apply is triv-
ially satisfied, since the size of the jumps of P̂n is bounded by C

√
n , C being

some constant. �

Appealing as it first seems, Proposition 6.4 is not satisfactory: in order to
give a more precise characterization of the dynamics of the rescaled price pro-
cess, it is necessary to understand thoroughly the behaviour of its compensator
Qnt. As a matter of fact, Qnt itself satisfies an ergodic theorem, and if its asymp-
totic variance is not negligible with respect to nt, one cannot conclude directly
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from Proposition 6.4 that the rescaled price process Pnt√
n behaves like a Wiener

process with a deterministic drift.
The next result provides a more accurate answer, valid under general ergod-

icity conditions.

Theorem 6.5 Write as above the price

Pt =
∑

i

∫ t

0
Fi (X(s)) dN i(s)

and its compensator

Qt =
∑

i

∫ t

0
νi (X(s)) Fi (X(s)) ds.

Define

h =
∑

i

νi (X) Fi (X)

and let

α =
a.s.
lim

t→+∞

1
t

∑
i

∫ t

0
νi (X(s)) (Fi (X(s))) ds =

∫
h(X)Π(dX).

Finally, introduce the solution g to the Poisson equation

Lg = h − α (6.42)

and the associated martingale

Zt = g(X(t)) − g(X(0)) −
∫ t

0
Lg(X(s))ds ≡ g(X(t)) − g(X(0)) − Q(t) + αt.

Then, the deterministically centred, rescaled price

P̄n(t) ≡
P(nt) − αnt
√

n

converges in distribution to a Wiener process σ̄W. The asymptotic volatility σ̄
satisfies the identity

σ̄2 = lim
t→+∞

1
t

∑
i

∫ t

0
νi (X(s))

((
Fi − ∆i(g)

)
(X(s))

)2
ds (6.43)

≡
∑

i

∫
νi (X)

((
Fi − ∆i(g)

)
(X)

)2
Π(dX) (6.44)

where ∆i(g) (X) denotes the jump of the process g(X) when the process N i

jumps and the limit order book is in the state X.
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Proof The martingale method, see e.g. Glynn and Meyn (1996)Duflo (1990)Ja-
cod and Shyriaev (2003), consists in rewriting the price process under the form

P(t) = (P(t) − Q(t)) − Z(t) + g(X(t)) − g(X(0)) + αt (6.45)

≡ (M(t) − Z(t)) + g(X(t)) − g(X(0)) + αt,

so that

P̄n(t) =
M̃(nt) + g(X(t)) − g(X(0))

√
n

,

where M̃ = M − Z is a martingale. Therefore, the theorem is proven if (see
Glynn and Meyn (1996), Theorem 4.2 or Bhattacharya (1982)) one can show
that g(X(t))−g(X(0))

√
n converges to 0 in L2 (Π(dX)), or simply, that g ∈ L2 (Π(dX)).

Theorem 4.4 of Glynn and Meyn (1996) states that the condition

h2 6 V (6.46)

(where V is a Lyapunov function for the process) is sufficient for g to be in
L2 (Π(dX)) - but Condition (6.46) is trivially satisfied since h is bounded. �

6.3.3 Interpreting the asymptotic volatility

A general formula for the low frequency volatility of the price process is pro-
vided in (6.43); it is related to the frequency of events that cause a price change,
and to the size of price jumps when a change occurs. Although Formula (6.43)
can easily be implemented numerically by using its formulation as a time av-
erage, its analytical computation requires the knowledge of the stationary dis-
tribution of the order book. However, some simplifying hypotheses help shed
some light on its interpretation and qualitative dependency on the model pa-
rameters. Assume for instance that one is interested in modelling large tick
assets, for which the price change is always equal to 1 tick. In our framework,
this is made possible by choosing K = 1: only one limit on each side of the
order book is modelled. In this case, all the Fi’s introduced in Section 6.3.2 are
equal to 1 or 0, and the asymptotic variance can be rewritten by separating the
events that change the price from those that do not.

Similarly to the empirical approach presented in section 4.4, let us classify
market, limit and cancellation orders depending on whether they change the
price or not - using a 1 (resp. 0) superscript to indicate that the event changes
(resp. does not change) the price:

M± = M±,1 + M±,0,

L±i = L±,1i + L±,0i ,
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C±i = C±,1i + C±,0i .

Now, should all these processes be independent Poisson processes, the asymp-
totic variance would be given using (6.41) or (6.43) (see comment below) by

σ̄2 = (∆P)2

λM+,1 + λM−,1 +
∑

i

(
λL+,1

i + λL−,1
i

)
+ λC+,1

iS
+ λC−,1

iS

 ,
where all the quantities involved are easily interpreted, and can be measured
empirically from the data.

Another interesting question concerning Formula (6.43) is the role played by
the correcting term coming from the solution g to the Poisson equation (6.42).
In the case of Poisson arrival for the price-changing processes and determinis-
tic price changes, the right-hand-side of (6.42) is 0, so that the correcting terms
are also 0: Formulae (6.41) and (6.43) coincide. In general this is not the case,
and one should find an estimate of the correcting terms - essentially, a control
of the variance of h =

∑
i ν

i (X) Fi ((X)) when the λi’s are now random. This
more general case is analytically very intricate, although easily attainable via
numerical simulations.

6.4 The role of cancellations

In this short section, we address in more generality the role played by the
cancellation rate in the ergodicity and price diffusivity of the limit order book
model introduced in Section 6.2. The results presented here rely on the use of a
more general Lyapunov function, and require a less stringent condition on the
cancellation rate.

Assume now that in the set of assumptions listed in 6.2.1, those concerning
the cancellation rates are modified as follows:

• C±i (t): cancellation of a limit order at level i, with intensity λC+

i (a; b) and
λC−

i (a; b), where the functions λC+

i and λC−
i are positive, bounded away from

0 and tend to∞ as (a; b)→ ∞.

Then, there holds the

Proposition 6.6 The properties stated in Theorem 6.2 and Theorem 6.5 hold
without change.

Proof The method is exactly the same, based on the use of an ad hoc Lya-
punov function. Of course, the linear function V introduced in the proof of
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Theorem 6.2 (see (8.5)) does not work under the general assumptions 6.4.
However, it is straightforward to check that the function

Ṽ (X) := exp (V (X)) (6.47)

actually solves the problem: upon calculating LṼ as in the proof of Theorem
6.2, one easily sees that the exponential factors out and - since by assumption
the intensity of incoming limit orders is dominated by that of the cancellation
orders - that an inequality of the form

LṼ 6 −β′Ṽ + γ′ (6.48)

(compare to (6.39)) holds for some positive constants β′, γ′. Consequently, the
ergodicity of the limit order book is proven in a similar fashion. As for the
dynamics of the rescaled price process and its convergence to a Wiener process,
one simply observes again that the RHS h of the Poisson equation (6.42) is still
a bounded function, so that one can safely apply Theorem 4.4 in Glynn and
Meyn (1996) to obtain the FCLT exactly as in the proof of Theorem 6.5. �

6.5 Conclusions

In this chapter, we have analysed a simple Markovian order book model, in
which elementary changes in the price and spread processes are explicitly
linked to the instantaneous shape of the order book and the order flow param-
eters. Our assumptions are: independent arrivals of orders of different types,
strong intensity of cancellations, constant order sizes, and the presence of two
reservoirs of liquidity K ticks away from the best quotes.

Two fundamental properties were investigated: the ergodicity of the order
book and the large-scale limit of the price process. The first property is desir-
able in that it assures the stability of the order book in the long run, and gives
a theoretical underpinning to statistical measurements on order book data. The
second addresses the natural question of the behaviour of the price sampled
at lower frequency, and relates it to a Wiener process. In a sense, this chapter
serves as a mathematical justification to the simple Bachelier model of asset
prices, from a market microstructure perspective.

We believe that the approach presented here is interesting mainly for the
introduction of a general framework and a set of mathematical tools well-suited
to further investigations of more sophisticated models. Some results in this
direction will be presented in Chapter 8.

Meanwhile, the next chapter focuses on a different, yet also quite natural
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question: that of the shape of a limit order book, and its sensitivity to the size
of incoming orders.



7
The order book as a queueing system

7.1 Introduction

In this chapter, we move forward on the study of order-driven markets by de-
riving some analytical properties of a limit order book under the assumptions
introduced in Section 6.2. The model is then extended to the case of random
order sizes, thereby allowing to study the relationship between the size of the
incoming limit orders and the shape of the order book.

What is called the shape of the order book is simply the function which for
any price gives the number of shares standing in the order book at that price;
and the ”cumulative shape” up to price p is the total quantity offered in the
order book between the best limit and price p. These quantities measure the
depth of the order book, they are naturally associated to the a, b and A, B in-
troduced in Section 6.2.1 of Chapter 6. In a probabilistic model of the order
book in which the random variable describing the (cumulative) shape admits a
stationary distribution, its expectation with respect to this stationary distribu-
tion will be simply called the average (cumulative) shape.

Understanding the average shape of an order book and its link to the order
flows is not straightforward. The first empirical observations of the shape of an
order book stated that, at least for the first limits, the shape of the order book
is increasing away from the spread (Biais et al., 1995). With better data, one
can complement this view and state that ”the average order book has a max-
imum away from the current bid/ask, and a tail reflecting the statistics of the
incoming orders” (Bouchaud et al., 2002a; Potters and Bouchaud, 2003b), i.e.
that the limit order book is hump-shaped. The decrease of the tail of the order
book is difficult to estimate because one needs complete data, including limit
orders submitted far away from the best quotes, which is often not disclosed by
exchanges. A power law decrease (Bouchaud et al., 2002a) or an exponential
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decrease (Gu et al., 2008) or even a whole lognormal shape (Preis et al., 2006)
have been suggested.

The hump-shaped order book appears quite easily in simulations, as we will
see later in Chapter 9. Studying simulation results, Cont et al. (2010) observe
that ”the average profile of the order book displays a hump [. . . ] that does not
result from any fine-tuning of model parameters or additional ingredients such
as correlation between order flow and past price moves”, but no explicit link
between the average shape and the order flows is made. The results presented
in this chapter hopefully closes this gap, at least partially.

7.2 A link between the flows of order and the shape of an
order book

7.2.1 The basic one-side queueing system

The aim of this section is to present the basic one-side order book model,
discuss the relevance of its assumptions and recall some results from queueing
theory in the context of this order book model. Let us consider a one-side order
book model, i.e. a model in which all limit orders are ask orders, and all market
orders are buy orders. Bid price is assumed to be constantly equal to zero,
and consequently spread and ask price are identically equal. From now on,
this quantity will be simply referred to as the price. We will use the notations
already introduced in Chapter 6, sometimes slightly simplified to the one-side
setting of this chapter. Let PA(t) denote the price at time t. {PA(t), t ∈ [0 ∈ ∞)}
is a continuous-time stochastic process with value in the discrete set {1, . . . ,K}.
In other words, the price is given in number of ticks. Let ∆P be the tick size,
such that the price range of the model in currency is actually {∆P, . . . ,K∆P}.
For realistic modelling and empirical fitting performance, one may assume that
the maximum price K is chosen very large, but in fact it will soon be obvious
that this upper bound does not affect in any way the order book for lower prices.
For all i ∈ {1, . . . ,K}, (ask) limit orders at price i are submitted according to a
Poisson process with parameter λL

i (we drop the ± of the notation introduced
in Chapter 6 since we only deal with one side of the book and all limit orders
are ask orders). These processes as assumed to be mutually independent, so
that the number of orders submitted at prices 1 . . . , r is a Poisson process with
parameter ΛL

r defined as ΛL
r =

∑r
i=1 λ

L
i . All limit orders standing in the book

may be cancelled. It is assumed that the time intervals between submission and
cancellation form a set of mutually independent random variables identically
distributed according to an exponential distribution with parameter λC > 0
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(here again we simplify the notation of Chapter 6, dropping the unnecessary
index and ± symbol). Finally, (buy) market orders are submitted at random
times according to a Poisson process with parameter λM . Note that all orders
are assumed to be of unit size. This restriction will be dropped in Sections 7.4
et sq.

Still using the notations of Chapter 6, let {Ak(t), t ∈ [0,∞)} be the stochastic
process representing the number of limit orders at prices 1, . . . , k standing in
the order book at time t. Ak is thus the cumulative shape of the order book in
our model. Ak can be viewed as a birth-death process with birth rate ΛL

k and
death rate λM + nλC in state n ; it may equivalently be viewed as the size of a
M/M/1+M queueing system with arrival rate ΛL

k , service rate λM and reneging
rate λC (see e.g. (Feller, 1968, Chapter XVII) or (Brémaud, 1999, Chapter 8)
among many textbook references). This queueing system will now be refered
to as the 1 → k queueing system. Ak admits a stationary distribution πAk (·) as
soon as λC > 0. The matrix form of the infinitesimal generator is written:

−ΛL
k ΛL

k 0 0 0 . . .

λM + λC −(ΛL
k + λM + λC) ΛL

k 0 0 . . .

0 λM + 2λC −(ΛL
k + λM + 2λC) ΛL

k 0 . . .
...

...
. . .

. . .
. . .

. . .

 .
(7.1)

The infinitesimal generator is here conveniently written in matrix form in this
discrete setting, but note that it is equivalent to the functional operator form
L used in Chapter 6. The stationary probability πAk is classically obtained and
written for all n ∈ N∗:

πAk (n) = πAk (0)
n∏

i=1

ΛL
k

λM + iλC , (7.2)

and setting
∑∞

n=0 πAk (n) = 1 gives:

πAk (0) =

 ∞∑
n=0

n∏
i=1

ΛL
k

λM + iλC

−1

. (7.3)

Introducing the normalized parameters Λ̄L
k =

ΛL
k

λC and λ̄M = λM

λC , and after some
simplifications, we write for all n ∈ N:

πAk (n) =
e−Λ̄L

k

(
Λ̄L

k

)λ̄M

λ̄MΓΛ̄L
k
(λ̄M)

n∏
i=1

Λ̄L
k

i + λ̄M
, (7.4)
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where Γy is the lower incomplete version of the Euler gamma function:

Γy : R+ → R, x 7→
∫ y

0
tx−1e−tdt. (7.5)

Now, the price in the one-side order book model is equal to k if and only if
the ”1 → k − 1” queueing system is empty and the ”1 → k” system is not.
Therefore, if Ak is distributed according to the invariant distribution πAk , then
the distribution πPA of the price PA is written:

πPA (1) = 1 −
e−Λ̄L

1

(
Λ̄L

1

)λ̄M

λ̄MΓΛ̄L
1
(λ̄M)

, πPA (K) =
e−Λ̄L

K−1

(
Λ̄L

K−1

)λ̄M

λ̄MΓΛ̄L
K−1

(λ̄M)
, (7.6)

and for all k ∈ {2, . . . ,K − 1},

πPA (k) =
e−Λ̄L

k−1

(
Λ̄L

k−1

)λ̄M

λ̄MΓΛ̄L
k−1

(λ̄M)
−

e−Λ̄L
k

(
Λ̄L

k

)λ̄M

λ̄MΓΛ̄L
k
(λ̄M)

. (7.7)

Using previous results, the average size E[Ak] of the ”1→ k” queueing system
is easily computed. From equation (7.4), we can write after some simplifica-
tions:

E[Ak] = Λ̄L
k −

ΓΛ̄L
k
(1 + λ̄M)

ΓΛ̄L
k
(λ̄M)

. (7.8)

Still using the notations of Chapter 6, ak = Ak − Ak−1 is the number of orders
in the book at price k ∈ {1, . . . ,K}. Thus the average shape of the order book
at price k is obviously :

E[ak] = λ̄L
k −

ΓΛ̄L
k
(1 + λ̄M)

ΓΛ̄L
k
(λ̄M)

−
ΓΛ̄L

k−1
(1 + λ̄M)

ΓΛ̄L
k−1

(λ̄M)

 , (7.9)

with λ̄L
k =

λL
k
λC .

7.2.2 A continuous extension of the basic model

In order to facilitate the comparison with existing results, we propose a contin-
uous version of the previous toy model. Price is now assumed to be a positive
real number. Mechanisms for market orders and cancellations are identical:
unit-size market orders are submitted according to a Poisson process with rate
λM , and standing limit orders are cancelled after some exponential random
time with parameter λC . As for the submission of limit orders, the mechanism
is now slightly modified: since the price is continuous, instead of a finite set of
homogeneous Poisson processes indexed by the number of ticks k ∈ {1, . . . ,K},
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we now consider a spatial Poisson process on the positive quadrant R2
+. Let

λL(p, t) be a non-negative function denoting the intensity of the spatial Poisson
process modelling the arrival of limit orders, the first coordinate representing
the price, the second one the time (see e.g. Privault, 2013, Chapter 12 for a
textbook introduction on the construction of spatial Poisson processes). As in
the discrete case, this process is assumed to be time-homogeneous, and it is
hence assumed that price and time are separable. Let hλL : R+ → R+ de-
note the spatial intensity function of the random events, i.e. limit orders. Then,
λL(p, t) = αhλL (p) is the intensity of the spatial Poisson process representing
the arrival of limit orders.

We recall that in this framework, for any p1 < p2 ∈ [0,∞), the number
of limit orders submitted at a price p ∈ [p1, p2] is a homogeneous Poisson
process with intensity

∫ p2

p1
λL(p, t) dp. Furthermore, if p1 < p2 < p3 < p4 on

the real positive half-line, then the number of limit orders submitted in [p1, p2]
and [p3, p4] form two independent Poisson processes.

Now, let A([0, p]) be the random variable describing the cumulative size of
our new order book up to price p ∈ R+. Given the preceding remarks, A([0, p])
is, as in the previous section, the size of a M/M/1 + M queueing system with
arrival rate α

∫ p
0 hλL (u) du, service rate λM and reneging rate λC . Using the

results of Section 7.2.1, we obtain from equation (7.8):

E[A([0, p])] =

∫ p

0
λ̄L(u) du − f

(
λ̄M ,

∫ p

0
λ̄L(u) du

)
, (7.10)

where we have defined λ̄L(u) =
αhλL (u)
λC and :

f (x, y) =
Γy(1 + x)

Γy(x)
. (7.11)

From now on, Λ̄L(p) =
∫ p

0 λ̄L(u) du will be the (normalized) arrival rate of
limit orders up to price p, and A(p) = E[A([0, p])] will be the average cumu-
lative shape of the order book up to price p. Then a(p) =

dA(p)
dp will be the

average shape of the order book (per price unit, not cumulative). Straightfor-
ward differentiation of equation (7.10) and some terms rearrangements lead to
the following proposition.

Proposition 7.1 In a continuous order book with homogeneous Poisson ar-
rival of market orders with intensity λM , spatial Poisson arrival of limit orders
with intensity αhλL (p), and exponentially distributed lifetimes of non-executed
limit orders with parameter λC , the average shape of the order book b is com-
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puted for all p ∈ [0,∞) by:

a(p) = λ̄L(p)
[
1 − λ̄M

(
gλ̄M ◦ Λ̄L

)
(p)

[
1 − λ̄M[Λ̄L(p)]−1

[
1 −

(
gλ̄M ◦ Λ̄L

)
(p)

]]]
,

(7.12)
where

gλ̄M (y) =
e−yyλ̄

M

λ̄MΓy(λ̄M)
. (7.13)

Let us give a few comments on the average shape we obtain. Firstly, note
that by identification to equation (7.4), observing that πAk (0) = gλ̄M (Λ̄L

k ) in the
discrete model, gλ̄M (Λ̄L(p)) is to be interpreted as the probability that the order
book is empty up to a price p. Secondly, note that letting λ̄M → 0 in equation
(7.12) gives a(p)→ λ̄L(p) (cf. limλ̄M→0 gλ̄M (y) = e−y). Indeed, if there were no
market orders, then the average shape of the order book would be equal to the
normalized arrival rates. Thirdly, as p → ∞, we have a(p) ∼ k λ̄L(p) for some
constant k. This leads to our main comment, which we state as the following
proposition.

Proposition 7.2 The shape of the order book a(p) can be written as:

a(p) = λ̄L(p)C(p), (7.14)

where C(p) is the probability that a limit order submitted at price p will be
cancelled before being executed.

This proposition translates a law of conservation of the flows of orders: the
shape of the order book is exactly the fraction of arriving limit orders that will
be cancelled. The difference between the flows of arriving limit orders and the
order book is exactly the fraction of arriving limit orders that will be executed.

The proof is straightforward. Indeed, in the 1 → k queueing system, the
average number of limit orders at price k that are cancelled per unit time is
λCE[ak] (λCE[Ak] is the reneging rate of 1 → k queue using queueing system
vocabulary). Therefore, the fraction of cancelled orders at price k over arriving
limit orders at price k, per unit time, is Ck = λCE[ak]

λL
k

. Using equation (7.9) and
some straightforward computations, the fraction Ck of limit orders submitted
at price k which are cancelled is:

Ck = 1 −
λ̄M

Λ̄L
k

(
gλ̄M (Λ̄L

k−1) − gλ̄M (Λ̄L
k )

)
. (7.15)

Therefore, in the continuous model up to price p ∈ R+ with average cumulative
shape A(p), the fraction of limit orders submitted at a price in [p, p + ε] which
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are cancelled is written:

1 −
λ̄M

Λ̄L(p + ε) − Λ̄L(p)

(
gλ̄M (Λ̄L(p)) − gλ̄M (Λ̄L(p + ε))

)
. (7.16)

By letting, ε → 0, we obtain that the fraction C(p) of limit orders submitted at
price p ∈ R+ which are cancelled is :

C(p) = 1 − λ̄Mg′
λ̄M (Λ̄L(p)) (7.17)

= 1 − λ̄M(gλ̄M ◦ Λ̄L)(p)
(
1 −

λ̄M

Λ̄L(p)
(1 − (gλ̄M ◦ Λ̄L)(p))

)
, (7.18)

which gives the final result.
This law of conservations of the flows of orders explains the relationship

between the shape of the order book and the flows of arrival of limit orders.
For high prices, two cases are to be distinguished. On the one hand, if the total
arrival rate of limit orders is a finite positive constant α (for example when hλL

is a probability density function on [0,+∞), in which case limp→+∞ Λ̄L(p) =∫ ∞
0 λ(u, t) du = α ∈ R∗+), then the proportionality constant between the shape of

the order book a(p) and the normalized limit order flow λ̄L(p) is, as p → +∞,
C∞ defined as:

C∞ = lim
p→∞

C(p) = 1 − λ̄Mgλ̄M (α)
(
1 −

λ̄M

α

(
1 − gλ̄M (α)

))
< 1. (7.19)

In such as case, the shape of the order book as p → +∞ is proportional to the
normalized rate of arrival of limit orders λ̄L(p), but not equivalent. The fraction
of cancelled orders does not tend to 1 as p→ +∞, i.e. market orders play a role
even at high prices. On the other hand, in the case where limp→+∞ Λ̄L(p) = ∞,
then very high prices are not reached by market orders, and the tail of the
order book behaves exactly as if there were no market orders: a(p) ∼ λ̄L(p)
as p → +∞. We may remark here that there exists an empirical model for
the probability of execution F(p) = 1 − C(p) in Mike and Farmer (2008). In
this latter model, it is assumed to be the complementary cumulative distribu-
tion function of a Student distribution with parameter s = 1.3. As such, it is
decreasing towards 0 as p−s. In our model however, it is exponentially decreas-
ing, and, in view of the previous discussion, does not necessarily tends towards
0.
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7.3 Comparison to existing results on the shape of the order
book

The model presented in Section 7.2 belongs to the class of ”zero-intelligence”
Markovian order book models: all order flows are independent Poisson pro-
cesses. Although very simple, it turns out it replicates the shapes of the order
book usually obtained in previous empirical and numerical studies, as we will
now see.

7.3.1 Numerically simulated shape in Smith et al. (2003)

A first result on the shape of the order book is provided in Smith et al. (2003),
on figures 3a) and 3b). These figures are obtained by numerical simulations of
an order book model very similar to the one presented in Section 7.2, where
all order flows are Poisson processes: market orders are submitted are rate
λM

S with size σS , limit orders are submitted with the same size at rate λL
S per

unit price on a grid with tick size ∆PS , and all orders are removed randomly
with constant probability δS per unit time1. Figures 3a) and 3b) in Smith et al.
(2003) are obtained for different values of a ”granularity” parameter εS ∝

δSσS

λM
S

.
It is observed that, when εS gets larger, the average book becomes deeper close
to the spread, and thinner for higher prices.

Using our own notations, εS actually reduces to 1
λ̄M , i.e. the inverse of the

normalized rate of arrival of market orders. Using Smith et al. (2003)’s as-
sumption that limit orders arrive at constant rate λL

S per unit price and unit
time, we obtain in our model λL(p, t) = λL

S , i.e. Λ̄L(p) = λL
S p. On figure 7.1,

we plot the average shapes and cumulative shapes of the order book given at
equations (7.12) and (7.10) with this Λ̄L. It turns out that when λ̄M varies,
our basic model indeed reproduces precisely figure 3a) and 3b) of Smith et al.
(2003). Therefore we are able to analytically describe the shapes that were only
numerically obtained. These shapes can be straightforwardly obtained with dif-
ferent regimes of market orders in our basic model: when the arrival rates of
market orders increases (i.e. when εS increases), all other things being equal,
the average shape of the order book is thinner for lower prices.

7.3.2 Empirical and analytical shape in Bouchaud et al. (2002a)

We now give two more examples of order book shapes obtained with equation
(7.12) of proposition 7.1. We successively consider two types of normalized
intensities of arrival rates of limit orders:
1 we have indexed all variables with an S to differentiate them from our own notations
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Figure 7.1 Shape (top panel) and cumulative shape (bottom panel) of the order
book computed using equations (7.12) and (7.10) with λ̄L(p) = α, α = 8 and
λ̄M = 1 (full line), λ̄M = 2 (dashed), λ̄M = 6 (dotdashed), λ̄M = 16 (dotted). Note
that results are scaled on the same dimensionless axes used in Smith et al. (2003).

• exponentially decreasing with the price: λ̄L(u) = α
λC βe−βu ;

• power-law decreasing with the price: λ̄L(u) = α
λC (γ − 1)(1 + u)−γ, γ > 1.

The first case is the one observed on Chinese stocks by Gu et al. (2008). The
second case is the one suggested in an empirical study by Bouchaud et al.
(2002a), in which γ ≈ 1.5 − 1.7. Moreover, the latter paper provides the only
analytical formula previoulsy proposed (to our knowledge) linking the order
flows and the average shape of a limit order book: Bouchaud et al. (2002a)
derives an analytical formula from a zero-intelligence model by assuming that
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the price process is diffusive with diffusion constant D. Using our notations,
their average order book, denoted here bBP, is for any p ∈ (0,∞):

bBP(p) ∝ e−σ
−1 p

∫ p

0
hλL (u) sinh(σ−1u) du + sinh(σ−1 p)

∫ ∞

p
hλL (u)e−σ

−1u du,

(7.20)
where the parameter σ2 is homogeneous to the variance of a price (it is pro-
portional to the diffusion coefficient divided by the cancellation rate). σ is thus
interpreted in Bouchaud et al. (2002a) as ”the typical variation of price dur-
ing the lifetime of an order, and [it] fixes the scale over which the order book
varies”. Therefore, although σ is not available in our model, since our one-side
model does not have a diffusive price, we may however obtain a satisfying or-
der of magnitude for the parameter by computing the standard deviation of the
price in our model, using numerical simulations (see also remark 7.3 below).

We plot the shape of Bouchaud et al. (2002a) for the two types of normal-
ized arrival rates of limit orders previously mentionned. Note that the formula
(7.20) is defined up to a multiplicative constant that we arbitrarily fix such that
the maximum offered with respect to the price in our model is equal to the
maximum of equation (7.20). Results are plotted in figure 7.2, and numerical
values given in caption. It turns out that our model (7.12) and equation (7.20)
provide similar order book shapes. Since equation (7.20) has been success-
fully tested with empirical data in Bouchaud et al. (2002a), figure 7.2 provides
a good hint that the shape (7.12) could provide good empirical fittings as well.
As p → ∞, both formulas lead to a shape a(p) decreasing as the arrival rate
of limit orders λ̄L(p), which was already observed in Bouchaud et al. (2002a),
and discussed here in Section 7.2. The main difference between the shapes oc-
curs as p→ 0. Equation (7.20) imposes that bBP = 0, whereas the result (7.12)
allows a more flexible behaviour with b(0) =

λ̄L(0)
1+λ̄M , a quantity that depends on

the three types of order flows. The difference of behaviour close to the spread
is not surprising considering the different natures of both models.

Remark 7.3 We have used numerical simulations of our model to compute
the standard deviation of the price in our model. Note however that this could
be found by a numerical evaluation of the analytical form of the standard de-
viation of the price. Indeed, the stationary distribution of the price in our con-
tinuous model can be explicitly derived. Assuming this distribution admits a
density function πPA , then the same observation that leads to equations (7.6)
and (7.7) in the discrete case gives here for any p ∈ [0,∞):∫ p

0
πPA (p) dp = 1 −

e−Λ̄L(p)[Λ̄L(p)]λ̄
M

λ̄MΓΛ̄L(p)(λ̄M)
, (7.21)
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Figure 7.2 Comparison of the shapes of the order book in our model (black
curves) and using the formula proposed by Bouchaud et al. (2002a) (red curves).
Three examples are plotted: arrival of limit orders with exponential prices, α = 20,
β = 0.75, λM = 4, λC = 1 (full lines) ; idem with λM = 8 (dashed lines) ; arrival of
limit orders with power-law prices, α = 40, γ = 1.6, λM = 4, λC = 1 (dash-dotted
lines).

which is written by straighforward differentiation and some terms rearrange-
ments:

πPA (p) = λ̄L(p)(gλ̄M ◦ Λ̄L)(p)
(
1 − λ̄M[Λ̄L(p)]−1(1 − (gλ̄M ◦ Λ̄L)(p))

)
(7.22)

= λ̄L(p)
1 −C(p)
λ̄M

. (7.23)

Some examples of this distribution are plotted on figure 7.3. Now, using this
explicit distribution of the price in our order book model, we may compute
its standard deviation in the example cases described above, by numerically
evaluating the integrals defining the first two moments of the distribution.

Finally, let us recall that the price process in our model is a jump process
with right-continuous paths, so it is not diffusive. Note however that the price
process in similar two-sided order book models has been shown to admit a
diffusive limit with an appropriate time scaling (see Chapter 6).
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Figure 7.3 Price density function πPA as a function of the price, computed with
equation (7.22), with hλL constant (full line), exponentially decreasing (dotted)
and power-law decreasing (dashed).

7.4 A model with varying sizes of limit orders

We now allow for random sizes of limit orders in our model. As in Section 7.2,
we start by describing the basic model as a queueing system, and then extend
it to the case of a continuous price.

Let us recall that we deal with a one-side order book model, i.e. a model
in which all limit orders are ask orders, and all market orders are bid orders.
Let PA(t) denote the price at time t. {PA(t), t ∈ [0 ∈ ∞)} is a continuous-time
stochastic process with value in the discrete set {1, . . . ,K}, i.e. the price is
given in number of ticks. For all i ∈ {1, . . . ,K}, (ask) limit orders at price i are
submitted according to a Poisson process with parameter λL

i . These processes
as assumed to be mutually independent, so that the number of orders submitted
at prices between 1 and r (included) is a Poisson process with parameter ΛL

r

defined as ΛL
r =

∑r
i=1 λ

L
i .

The contribution of this section is to allow for random sizes of limit orders,
instead of having unit-size limit orders as in the basic model of Section 7.2.
We assume that all the sizes of limit orders are independent random variables.
We also assume that the sizes of limit orders submitted at a given price are
identically distributed, but we allow this distribution to vary depending on the
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price. For a given price k ∈ N∗, let gk
n, n ∈ N∗, denote the probability that a

limit order at price k is of size n. Let gk denote the mean size of a limit order
at price k, which is assumed to be finite. It is a well known property of the
Poisson process to state that the rate of arrival of limit orders of size n at price
i is λL

i gi
n, hence the rate of arrival of limit orders of size n with a price lower or

equal to k is
∑k

i=1 λ
L
i gi

n. Similarly, the probability that a limit order with a price

lower or equal to k is of size n is Gk
n =

∑k
i=1

λL
i

ΛL
k
gi

n. Let Gk =
∑k

i=1
λL

i
ΛL

k
gi denote

the mean size of a limit order with price up to k.
Mechanism for cancellation is unchanged: all limit orders standing in the

book may be cancelled. Note however that a limit order is not cancelled all
at once, but unit by unit, i.e. share by share (see also Remark 7.6 below). It is
assumed that the time intervals between the submission of a limit order and the
cancellation of one share of this order form a set of mutually independent ran-
dom variables identically distributed according to an exponential distribution
with parameter λC > 0. Finally, (buy) market orders are submitted at random
times according to a Poisson process with parameter λM . All market orders are
assumed to be of unit size.

As in Section 7.2, let {Ak(t), t ∈ [0,∞)} be the stochastic process represent-
ing the number of limit orders at prices 1, . . . , k standing in the order book at
time t. Ak is thus the cumulative shape of the order book in our model. It can
be viewed as the size of a MX/M/1 + M queueing system with bulk arrival
rate ΛL

k , bulk volume distribution (Gk
n)n∈N∗ , service rate λM and reneging rate

λC (see e.g. Chaudhry and Templeton (1983) for queueing systems with bulk
arrivals). The infinitesimal generator of the process Ak is thus written:

−ΛL
k ΛL

k Gk
1 ΛL

k Gk
2 ΛL

k Gk
3 ΛL

k Gk
4 . . .

λM + λC −(ΛL
k + λM + λC) ΛL

k Gk
1 ΛL

k Gk
2 ΛL

k Gk
3 . . .

0 λM + 2λC −(ΛL
k + λM + 2λC) ΛL

k Gk
1 ΛL

k Gk
2 . . .

0 0 λM + 3λC −(ΛL
k + λM + 3λC) ΛL

k Gk
1 . . .

...
...

. . .
. . .

. . .
. . .


.

(7.24)
The stationary distribution πAk = (πAk (n))n∈N of Ak hence satisfies the fol-

lowing system of equations:
0 = −ΛL

kπAk (0) + (λM + λC)πAk (1),
0 = −(ΛL

k + λM + nλC)πAk (n) + (λM + (n + 1)λC)πAk (n + 1)
+

∑n
i=1 ΛL

k Gk
i πAk (n − i), (n ≥ 1),

(7.25)

which can be solved by introducing the probability generating functions. Let
ΦAk (z) =

∑
n∈N πAk (n)zn and ΦGk (z) =

∑
n∈N∗ Gk

nzn. Let us also introduce the
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normalized parameters

λ̄M =
λM

λC and Λ̄L
k =

ΛL
k

λC . (7.26)

By multiplying the n-th line by zn and summing, the previous system leads to
the following differential equation:

d
dz

ΦAk (z) +

(
λ̄M

z
− Λ̄L

kϕGk (z)
)
ΦAk (z) =

λ̄M

z
πAk (0), (7.27)

where we have set ϕGk (z) =
1−ΦGk (z)

1−z . This equation is straightforwardly solved
to obtain:

ΦAk (z) = z−λ̄
M
λ̄MπAk (0)eΛ̄L

k

∫ z
0 ϕGk (u) du

∫ z

0
vλ̄

M−1e−Λ̄L
k

∫ v
0 ϕGk (u) du dv, (7.28)

and the condition ΦAk (1) = 1 leads to

πAk (0) =

(
λ̄M

∫ 1

0
vλ̄

M−1eΛ̄L
k

∫ 1
v ϕGk (u) du dv

)−1

, (7.29)

which by substituting in the general solution gives:

ΦAk (z) = z−λ̄
M

∫ z
0 vλ̄

M−1eΛ̄L
k

∫ z
v ϕGk (u) du dv∫ 1

0 vλ̄M−1eΛ̄L
k

∫ 1
v ϕGk (u) du dv

. (7.30)

Now, turning back to the differential equation (7.27), then taking the limit when
z tends increasingly to 1 and using basic properties of probability generating
functions (limz→1

t<1
ΦAk (z) = 1, limz→1

t<1

d
dz ΦAk (z) = E[Ak] and limz→1

t<1
ϕGk (z) =

Gk), we obtain the result stated in the following proposition.

Proposition 7.4 In the discrete one-side order book model with Poisson ar-
rival at rate λM of unit size market orders, Poisson arrival of limit orders with
rate λL

k at price k and random size with distribution (gk
n)n∈N∗ on N∗, and expo-

nential lifetime of non-executed limit orders with parameters λC , the average
cumulative shape of the order book up to price k is given by:

E[Ak] = Λ̄L
k Gk − λ̄M +

(∫ 1

0
vλ̄

M−1eΛ̄L
k

∫ 1
v ϕGk (u) du dv

)−1

. (7.31)

Note that by taking the sizes of all limit orders to be equal to 1, i.e. by setting
gk

1 = 1 and gk
n = 0, n ≥ 2, equation (7.31) reduces to equation (7.8) of Section

7.2, as expected.
We now introduce a specification of the model where the sizes of limit or-

ders are geometrically distributed with parameter q ∈ (0, 1) and independent of
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the price, i.e. for any price k ∈ N∗, gk
n = (1 − q)n−1q. This specification is em-

pirically founded, as it has been observed that the exponential distribution may
be a rough continuous approximation of the distribution of the sizes of limit
orders (see Chapter 2). This specification of the volume distribution straight-
fowardly gives ϕGk (z) = 1

1−(1−q)z and with some computations we obtain:

E[Ak] =
Λ̄L

k

q
− λ̄M +

λ̄Mq
Λ̄L

k
1−q

2F1(λ̄M ,
−Λ̄L

k
1−q , 1 + λ̄M , 1 − q)

, (7.32)

where 2F1 is the ordinary hypergeometric function (see e.g. Seaborn, 1991,
chapter 2).

Now, following the idea presented in Section 7.2, we consider an order book
with a continuous price, in which limit orders are submitted according to a
spatial Poisson process with intensity λL(p, t) = αhλL (p). Recall that hλL is as-
sumed to be a real non-negative function with positive support, denoting the
spatial intensity of arrival rates, i.e. the function such that the number of limit
orders submitted in the order book in the price interval [p1, p2] is a homo-
geneous Poisson process with rate

∫ p2

p1
αhλL (u) du. Using notations defined in

Section 7.2, the cumulative shape at price p ∈ [0,+∞) of this continuous order
book is thus:

A(p) =
1
q

Λ̄L(p) − λ̄M +
λ̄Mq

Λ̄L (p)
1−q

2F1(λ̄M , −Λ̄L(p)
1−q , 1 + λ̄M , 1 − q)

, (7.33)

which can be derived to obtain the average shape a(p) of the order book, which
we state in the following proposition.

Proposition 7.5 In a continuous one-side order book with homogeneous
Poisson arrival of unit-size market orders with intensity λM , spatial Poisson
arrival of limit orders intensity αhλL (p), geometric distribution of the sizes of
limit orders with parameter q, and exponentially distributed lifetimes of non-
executed limit orders with parameter λC , the average shape of the order book
b is computed for all p ∈ [0,∞) by:

a(p) =
λ̄L(p)

q
+

d
dp

 λ̄Mq
Λ̄L (p)

1−q

2F1(λ̄M , −Λ̄L(p)
1−q , 1 + λ̄M , 1 − q)

 . (7.34)
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7.5 Influence of the size of limit orders on the shape of the
order book

We now use the results of Section 7.4 to investigate the influence of the size
of the limit orders on the shape of the order book. Recall that market orders
are submitted at rate λM with size 1, that non-executed limit orders are can-
celled share by share after a random time with exponential distribution with
parameter λC , and that the distribution of the sizes of limit orders is a geo-
metric distribution with parameter q (i.e. with mean 1

q ). We study in detail the
influence of the parameter q on the theoretical shape of the order book.

In a first example, we assume that the normalized intensity of arrival of limit
orders λ̄L is constant (i.e. as in Smith et al., 2003) and equal to αq. Note that
when q varies, the mean total volume V(p) of arriving limit orders up to price
p per unit time remains constant:

V(p) =
1
q

∫ p

0
λ̄L(u) du = pα. (7.35)

In other words, when q decreases, limit orders are submitted with larger sizes
in average, but less often, keeping the total submitted volume constant. The
first remarkable observation is that, although the mean total volumes of limit
and market orders are constant, the shape of the order book varies widely with
q. On figure 7.4, we plot the shape a(p) defined at equation (7.34), and cumu-
lative shape defined at equation (7.33), of an order book with arriving volumes
of limit orders as in equation (7.35). With the chosen numerical values, the
average volume of one limit order ranges from approximately 1 (q = 0.99) to
20 (q = 0.05). It appears that when q decreases, the shape of the order book
increases for lower prices. In other words, the larger the size of incoming limit
orders, the deeper the order book around the spread, all other things being
equal.

We observe that figure 7.4 here is similar to figure 7.1 here and figure 3 in
Smith et al. (2003). However, volumes of limit and market orders are equal
in the two latter cases, and we have shown in Section 7.3 that these different
shapes can actually be obtained with different regimes of market orders, but
equal sizes of market and limit orders: when the arrival rates of market orders
increases, all other things being equal, the average shape of the order book is
thinner for lower prices.

Therefore, the observation made now is different. In similar trading regimes
where the mean total volume of limit and market orders are equal, we highlight
the influence of the relative volume of limit orders (compared to unit market
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Figure 7.4 Shape of the order book as computed in equation (7.34) (top) and
cumulative shape of the order book as computed in equation (7.33) (bottom) with
λ̄M = 10, λ̄L(p) =

αq
K 1(0,K), α = 40, K = 8, and q = 0.99 (full line), q = 0.5

(dotted), q = 0.25 (dotdashed), q = 0.10 (short-dashed), q = 0.05 (long-dashed)

orders) on the order book shape: the smaller the average size of limit orders,
the shallower the order book close to the spread.

We provide a second example of the phenomenon by assuming that the in-
tensity of incoming limit orders exhibits a power-law decrease with the price,
as tested in Section 7.3 to compare to the analytical shape provided in Bouchaud
et al. (2002a). We thus have now λ̄L(p) = qα(γ − 1)(1 + p)−γ. There again,
when q varies, the average total volume of incoming limit orders up to price
p remains constant and equal to α(γ − 1)

∫ p
0 (1 + u)−γ du = α(1 − (1 + p)1−γ).
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Figure 7.5 Shape of the order book as computed in equation (7.34) with λ̄M = 10,
λ̄L(p) = qα(γ − 1)(1 + p)−γ, α = 40 γ = 1.6, and q = 0.99 (full line), q = 0.5
(dotted), q = 0.25 (dotdashed), q = 0.10 (short-dashed), q = 0.05 (long-dashed).

Figure 7.5 plots the shape of the order book with these characteristics, when
q varies. The observed phenomenon is equally clear with this more realistic
distribution of incoming limit orders: the order book deepens at the first limits
when the average volume of limit orders increases, the total volume of limit
orders and unit-size market orders submitted being constant.

Finally, one might remark that, by assuming unit-size market orders, our
model with geometric distribution of limit orders’ sizes does not predict the
order book shape in the case where the average size of limit orders is smaller
than the average size of market orders. In fact, it will now appear that this case
has never been empirically encountered in our data: the average size of limit
orders is always in our sample greater than the average size of market orders.

Remark 7.6 We recall that, for analytical tractability purposes, the cancella-
tion mechanism used in this chapter is that each share of submitted limit orders
has a lifetime following an exponential distribution independent of the other
variables. A more realistic cancellation mechanism would be that each limit
order has an independent exponentially-distributed lifetime, i.e. that an order
standing in the book is cancelled all at once and not share by share. It turns out
this does not qualitatively change our results. We simulate an order book with
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Figure 7.6 Shape of the order book as computed in equation (7.34), i.e. with
share-by-share cancellation (full lines), and numerically simulated with order-by-
order cancellation (dashed lines), with λM = 10, λC = 1, λ̄L(p) =

qα
λC K , α = 40,

K = 8, and q = 0.99 (blue), q = 0.5 (green), q = 0.25 (red), q = 0.10 (cyan),
q = 0.05 (magenta).

this latter cancellation system, and compare the average shape of the simulated
order book with our analytical formulas. Results are shown on figure 7.6 in the
case of a uniform price distribution for the limit orders. Obviously, if q is close
to 1, then both cancellation mechanisms are equivalent and the simulated shape
converges to our analytical results. When q , 1, we cannot straightforwardly
compare the two models (the cancellation rate is proportional to the number of
shares in the book in one case, and to the number of orders in the book in the
other one), but we nevertheless observe that both mechanisms exhibit similar
shapes of the order book. Furthermore, it is interesting to note that, irrespec-
tive of the cancellation mechanism, our observation stating that the submission
of larger limit orders leads to thicker order books around the spread is always
valid. We may finally add that since market orders are unit-sized, q may be
understood as a relative measure of the volume of limit orders compared to the
volume of market orders, and is therefore expected to be closer to 1 than to 0.
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7.6 Conclusion

We have presented in this chapter a simple order book model based on classi-
cal results from queueing theory. We have derived a continuous version of the
model and shown that it provides an analytical formula for the shape of the or-
der book that reproduces results from acknowledged numerical and empirical
studies. The model has then be extended so as to allow for the limit orders to
be submitted with random sizes. The extended model provides some insight
on the influence of the size of limit orders in an order book. This insight is
confirmed by the empirical study on liquid stocks traded on the Paris Stock
Exchange presented in Chapter 3.



8
Advanced modelling of limit order books

8.1 Introduction

This chapter is devoted to the study of more realistic models where the inter-
actions between agents - or, from a statistical point of view, the dependencies
between orders of different types - are incorporated in the models. After re-
viewing in the first section the existing literature on agent-based modelling
of market interactions, we introduce and analyze in the spirit of Chapter 6, a
Hawkes process-based limit order book model.

8.2 Towards non-trivial behaviours: modelling market
interactions

In most statistical models of limit order books, flows of orders are treated as
independent processes. Even if the process is empirically detailed and not triv-
ial (Mike and Farmer (2008)), the standing assumption is that order arrivals are
independent and identically distributed. This very strong (and false) hypothesis
is similar to the “representative agent” hypothesis in Economics: orders being
successively and independently submitted, we may not expect anything but
regular behaviours. Following the work of economists such as Kirman (1992,
1993, 2002), one has to translate the heterogeneous property of the markets
into the agent-based models. Agents are not identical, and not independent.

In this section we present some toy models implementing mechanisms that
aim at bringing heterogeneity: herding behaviour on markets in Cont and Bou-
chaud (2000), trend following behaviour in Lux and Marchesi (2000) or in
Preis et al. (2007), threshold behaviour Cont (2007). Most of the models re-
viewed in this section are not order book models, since a persistent order book
is not kept during the simulations. They are rather price models, where the

95
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price changes are determined by the aggregation of excess supply and demand.
However, they identify essential mechanisms that may explain some empirical
data, and lay the grounds for the designs of better limit order book models.

8.2.1 Herding behaviour

The model presented in Cont and Bouchaud (2000) considers a market with N
agents trading a given stock with price p(t). At each time step, agents choose to
buy or sell one unit of stock, i.e. their demand is φi(t) = ±1, i = 1, . . . ,N with
probability a or are idle with probability 1 − 2a. The price change is assumed
to be linearly linked with the excess demand D(t) =

∑N
i=1 φi(t) with a factor λ

measuring the liquidity of the market :

p(t + 1) = p(t) +
1
λ

N∑
i=1

φi(t). (8.1)

λ can also be interpreted as a market depth, i.e. the excess demand needed to
move the price by one unit. In order to evaluate the distribution of stock returns
from Eq.(8.1), we need to know the joint distribution of the individual demands
(φi(t))1≤i≤N . If the distribution of the demand φi is independent and identically
distributed with finite variance, then the Central Limit Theorem stands and the
distribution of the price variation ∆p(t) = p(t + 1) − p(t) will converge to a
Gaussian distribution as N goes to infinity.

The idea to obtain non-trivial behaviours is to model the diffusion of the
information among traders by randomly linking their demand through clusters.
At each time step, agents i and j can be linked with probability pi j = p = c

N , c
being a parameter measuring the degree of clustering among agents. Therefore,
an agent is linked to an average number of (N−1)p other traders. Once clusters
are determined, the demand are forced to be identical among all members of a
given cluster. Denoting nc(t) the number of cluster at a given time step t, Wk the
size of the k-th cluster, k = 1, . . . , nc(t) and φk = ±1 its investement decision,
the price variation is then straightforwardly written :

∆p(t) =
1
λ

nc(t)∑
k=1

Wkφk. (8.2)

This modelling is a direct application to the field of finance of the random
graph framework as studied in Erdos and Renyi (1960). Kirman (1983) previ-
ously suggested it in economics. Using these previous theoretical works, and
assuming that the size of a cluster Wk and the decision taken by its members
φk(t) are independent, the author are able to show that the distribution of the
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price variation at time t is the sum of nc(t) independent identically distributed
random variables with heavy-tailed distributions :

∆p(t) =
1
λ

nc(t)∑
k=1

Xk, (8.3)

where the density f (x) of Xk = Wkφk is decaying as :

f (x) ∼|x|→∞
A
|x|5/2

e
−(c−1)|x|

W0 . (8.4)

Thus, this simple toy model exhibits fat tails in the distribution of prices vari-
ations, with a decay reasonably close to empirical data. Therefore, Cont and
Bouchaud (2000) show that taking into account a naive mechanism of com-
munication between agents (herding behaviour) is able to drive the model out
of the Gaussian convergence and produce non-trivial shapes of distributions of
price returns.

8.2.2 Fundamentalists and trend followers

Lux and Marchesi (2000) proposed a model very much in line with agent-based
models in behavioural finance, but where trading rules are kept simple enough
so that they can be identified with a presumably realistic behaviour of agents.
This model considers a market with N agents that can be part of two distinct
groups of traders: n f traders are “fundamentalists”, who share an exogenous
idea p f of the value of the current price p; and nc traders are “chartists” (or
trend followers), who make assumptions on the price evolution based on the
observed trend (mobile average). The total number of agents is constant, so
that n f + nc = N at any time. At each time step, the price can be moved up or
down with a fixed jump size of one tick. The probability to go up or down is
directly linked to the excess demand ED through a coefficient β. The demand
of each group of agents is determined as follows :

• Each fundamentalist trades a volume V f proportional, with a coefficient γ,
to the deviation of the current price p from the perceived fundamental value
p f : V f = γ(p f − p).

• Each chartist trades a constant volume Vc. Denoting n+ the number of opti-
mistic (buyer) chartists and n− the number of pessimistic (seller) chartists,
the excess demand by the whole group of chartists is written (n+ − n−)Vc.

Therefore, assuming that there exists some noise traders on the market with
random demand µ, the global excess demand is written :

ED = (n+ − n−)Vc + n fγ(p f − p) + µ. (8.5)
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The probability that the price goes up (resp. down) is then defined to be the
positive (resp. negative) part of βED.

As observed in Wyart and Bouchaud (2007), fundamentalists are expected
to stabilize the market, while chartists should destabilize it. In addition, follow-
ing Cont and Bouchaud (2000), the authors expect non-trivial features of the
price series to results from herding behaviour and transitions between groups
of traders. Referring to Kirman’s work as well, a mimicking behaviour among
chartists is thus proposed. The nc chartists can change their view on the mar-
ket (optimistic, pessimistic), their decision being based on a clustering process
modelled by an opinion index x = n+−n−

nc
representing the weight of the ma-

jority. The probabilities π+ and π− to switch from one group to another are
formally written :

π± = v
nc

N
e±U , U = α1x + α2 p/v, (8.6)

where v is a constant, and α1 and α2 reflect respectively the weight of the ma-
jority’s opinion and the weight of the observed price in the chartists’ decision.
Transitions between fundamentalists and chartists are also allowed, decided by
comparison of expected returns (see Lux and Marchesi (2000) for details).

The authors show that the distribution of returns generated by their model
have excess kurtosis. Using a Hill estimator, they fit a power law to the fat
tails of the distribution and observe exponents grossly ranging from 1.9 to 4.6.
They also check hints for volatility clustering: absolute returns and squared
returns exhibit a slow decay of autocorrelation, while raw returns do not. It
thus appears that such a model can grossly fit some stylized facts. However,
the number of parameters involved, as well as the complicated rules of transi-
tion between agents, make clear identification of sources of phenomenons and
calibration to market data difficult and intractable.

Alfi et al. (2009a,b) provide a somewhat simplifying view on the Lux-Marchesi
model. They clearly identify the fundamentalist behaviour, the chartist be-
haviour, the herding effect and the observation of the price by the agents as
four essential effects of an agent-based financial model. They show that the
number of agents plays a crucial role in a Lux-Marchesi-type model: more
precisely, the stylized facts are reproduced only with a finite number of agents,
not when the number of agents grows asymptotically, in which case the model
stays in a fundamentalist regime. There is a finite-size effect that may prove
important for further studies.

The role of the trend following mechanism in producing non-trivial fea-
tures in price time series is also studied in Preis et al. (2007). The starting
point is an order book model similar to Challet and Stinchcombe (2001) and
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Smith et al. (2003): at each time step, liquidity providers submit limit orders
at rate λ and liquidity takers submit market orders at rate µ. As expected, this
zero-intelligence framework does not produce fat tails in the distribution of
(log-)returns nor an over-diffusive Hurst exponent. Then, a stochastic link be-
tween order placement and market trend is added: it is assumed that liquidity
providers observing a trend in the market will act consequently and submit
limit orders at a wider depth in the order book. Although the assumption behind
such a mechanism may not be empirically confirmed (a questionable symmetry
in order placement is assumed) and should be further discussed, it is interest-
ing enough that it directly provides fat tails in the log-return distributions and
an over-diffusive Hurst exponent H ≈ 0.6 − 0.7 for medium time-scales.

8.2.3 Threshold behaviour

We finally review a model focusing primarily on reproducing the stylized fact
of volatility clustering, while most of the previous models we have reviewed
were mostly focused on fat tails of log returns. Cont (2007) proposes a model
with a rather simple mechanism to create volatility clustering. The idea is that
volatility clustering characterizes several regimes of volatility (quite periods vs
bursts of activity). Instead of implementing an exogenous change of regime,
the author defines the following trading rules.

At each period, an agent i ∈ {1, . . . ,N} can issue a buy or a sell order:
φi(t) = ±1. Information is represented by a series of i.i.d Gaussian random
variables. (εt). This public information εt is a forecast for the value rt+1 of the
return of the stock. Each agent i ∈ {1, . . . ,N} decides whether to follow this
information according to a threshold θi > 0 representing its sensibility to the
public information:

φi(t) =


1 if εi(t) > θi(t)
0 if |εi(t)| < θi(t)
−1 if εi(t) < −θi(t)

(8.7)

Then, once every choice is made, the price evolves according to the excess
demand D(t) =

∑N
i=1 φi(t), in a way similar to Cont and Bouchaud (2000). At

the end of each time step t, threshold are asynchronously updated. Each agent
has a probability s to update its threshold θi(t). In such a case, the new threshold
θi(t + 1) is defined to be the absolute value |rt |of the return just observed. In
short:

θi(t + 1) = 1{ui(t)<s}|rt | + 1{ui(t)>s}θi(t). (8.8)

The author shows that the time series simulated with such a model do exhibit
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some realistic facts on volatility. In particular, long range correlations of abso-
lute returns is observed. The strength of this model is that it directly links the
state of the market with the decision of the trader. Such a feedback mechanism
is essential in order to obtain non trivial characteristics. Of course, the model
presented in Cont (2007) is too simple to be fully calibrated on empirical data,
but its mechanism could be used in a more elaborate agent-based model in
order to reproduce the empirical evidence of volatility clustering.

8.2.4 Enhancing zero-intelligence models

We will show in section 8.3 that the zero-intelligence framework of chapters 6
and 7 can be generalized to the case of non-Poissonnian orders flows. We end
this survey section by mentioning very recent developments built on this trend
of modelling.

Huang et al. (2015) propose a Markovian order book model in which the
intensities of arrival of orders are state-dependent. The order book is repre-
sented as a collection of queues indexed by their distance in ticks to a refer-
ence price. This reference price process is the main difference with the models
described in this book. For each of the queues of the limit order book, market
orders, limit orders and cancellation orders are submitted with intensities that
are function of the number of shares standing in the book at the time of sub-
mission. The authors do not assume any parametric form for these intensities,
but plug empirical estimates in their simulations. They show that such a small
improvement (the dependency of the intensities on the size of the queue) can
lead to a realistic modelling of the stationary state of the order book (distri-
bution of the volume at the best quote). In an extended version of the model,
the empirically estimated intensities also depend on the size of the preceding
queues, according to their classifications as empty, low, normal or high. In this
setting, the authors can simulate quantities of interests, such as the probability
of execution of a limit order. Very recently, in the spirit of what we will present
in the rest of the chapter, Huang and Rosenbaum (2015) show that ergodicity
and diffusive limit of the price process are also obtained in such a setting, with
a reference price and state-dependent order flows1.

Finally, the use of Hawkes processes for modelling limit order books is a
very active and fruitful direction of research, it will be studied in depth in the
next sections of this chapter and in Chapter 9, .

1 this result was not published at the time of writing
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8.3 Limit order book driven by Hawkes processes

Hawkes processes are a class of point processes that offer very natural and
flexible models for processes that mutually excite one another. Since their in-
troduction, they have been applied to a wide range of research areas, from
seismology in the pioneering work Hawkes (1971) to credit risk, financial con-
tagion and more recently, to the modelling of market microstructure. Among
the growing litterature in this latter field, Bacry et al. (2013a, 2012, 2013b)
or Da Fonseca and Zaatour (2014b,a) introduce and study models where the
joint price and order flow dynamics are driven by Hawkes processes. In the
recent Bacry et al. (2014), the authors develop a new method to accurately es-
timate non-parametric slowly decaying Hawkes kernels, that allow to describe
significant inter-order excitation over long time windows. They fit an eight-
dimensional Hawkes model with this type of kernels (four types of orders per
side of the book, namely orders that move the price, then market, limit and
cancellations that do not move the price), and confirm the self-excitation of
the order flows we describe and model in Chapters 4 and 9. Several recent pa-
pers Hardiman et al. (2013); Filimonov and Sornette (2015); Lallouache and
Challet (2015)Gatheral et al. (2015) are concerned with the stability of Hawkes
processes calibrated to price dynamics, whereas Alfonsi and Blanc (2015) ad-
dresses the optimal execution strategies when the market orders are modelled
via Hawkes processes.

Closer in spirit to our approach and motivations, the pioneering work by
Large (2007b) is concerned with the specification, and calibration on real data,
of a Hawkes process-based model of limit order books. Muni Toke (2011);
Muni Toke and Pomponio (2012) are empirical and numerical studies of Hawkes
processes modelling limit order books, and Zheng et al. (2014) is a stylized or-
der book model model driven by Hawkes processes.

As it turns out, the relevance of Hawkes processes for limit order book mod-
elling is amply demonstrated by several empirical properties of the order flow
of market and limit orders at the microscopic level. In particular, Hawkes pro-
cesses exhibit the property of time clustering, which can reproduce the fact
that order arrivals alternate bursting and quiet periods, as illustrated in Chapter
2. Hawkes processes also exhibit the property of mutual excitation, which can
reproduce the fact that order flows exhibit non-negligible cross-dependencies,
as illustrated in Chapter 4.

The rest of this chapter is devoted to the study of Hawkes process-based limit
order book models in a Markovian setting. After describing the mathematical
framework, the emphasis will be set, as in Chapter 6, on the ergodicity of the
limit order book and the diffusive behaviour of the price at large time scales.
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8.3.1 Hawkes processes

We briefly recall in this section several classical results on multivariate Marko-
vian Hawkes processes.

Let N =
(
N1, ...,ND

)
be a D-dimensional point process with intensity vector

λ =
(
λ1, ..., λD

)
.

Definition 8.1 We say that N =
(
N1, . . . ,ND

)
is a multivariate Hawkes pro-

cess with exponential kernel if there exists
(
λi

0

)
16i6D

∈
(
R∗+

)D,
(
αi j

)
16i, j6D

∈(
R∗+

)D2
and

(
βi j

)
16i, j6D

∈
(
R∗+

)D2
such that the intensities satisfy the following

set of relations:

λm(t) = λm
0 +

D∑
j=1

αm j

∫ t

0
e−βm j(t−s)dN j(s) (8.9)

for 1 6 m 6 D.

The particular choice of exponential kernels is motivated by an important
result that we now recall:

Proposition 8.2 Define the processes µi j as

µi j(t) = αi j

∫ t

0
e−βi j(t−s)dN j(s), 1 ≤ i, j ≤ D,

and let µ = {µi j}1≤i, j≤D. Then, the process (N,µ) is Markovian.

Proof Lemma 6 in Massoulié (1998) gives a proof of this result. �

Stationarity
Extending the early stability and stationarity result in Hawkes and Oakes (1974),
Theorem 5 in Massoulié (1998) proves a general stability result for the multi-
variate Hawkes processes just introduced. In fact, one can show the existence
of a Lyapunov function for such a process. The existence of a Lyapunov func-
tion actually implies exponential convergence towards the stationary distribu-
tion, a property already seen and used in Chapter 6 (see Appendix C.1.1 for
details).

We summarize these results in the following proposition:

Proposition 8.3 Let the matrix A be defined by

Ai j =
α ji

β ji
, 1 ≤ i, j ≤ D.
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Assume that A is positive and that its spectral radius ρ (A) satisfies the condi-
tion

ρ (A) < 1. (8.10)

Then, there exists a (unique) multivariate point process N =
(
N1, . . . ,Nm

)
whose intensity is specified as in Definition 8.1. Morevover, this process is
stable, and converges exponentially fast in the total variation norm towards its
unique stationary distribution.

Appendix C, Section C.1.1 provides an explicit construction of Lyapunov
functions of arbitrary high polynomial growth at infinity for Hawkes processes.

8.3.2 Model setup

A limit order book model whose dynamics is governed by Hawkes processes is
now introduced. We shall use the same notations and conventions as in Chapter
6 to represent the limit order book.

The same three types of events can modify the limit order book: arrival of a
new limit order, arrival of a new market order, cancellation of an already exist-
ing limit order. This time, the arrival of market and limit orders are described
by mutually exciting Hawkes processes:

• M±(t): Hawkes processes for buy or sell market orders, with intensities λM+

and λM− ;
• L±i (t): Hawkes processes for limit orders at level i, with intensities λL±

i ,

whereas the arrival of a cancellation order is modelled as in Chapter 6 by a
doubly stochastic Poisson process:

• C±i (t): counting process for cancellations of limit orders at level i, with in-
tensity λC+

i ai and λC−
i |bi|.

8.3.3 The infinitesimal generator

A Markovian (2K+2)-dimensional Hawkes process now models the intensities
of the arrivals of market and limit orders. The full limit order book can be
characterized by the D-dimensional process (a; b;µ) of the available quantities
and the intensities of the Hawkes processes decomposed as in Section 8.3.1,
where D = (2K + 2)2 + 2K is the dimension of the state space.

The infinitesimal generator associated with the process describing the joint
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evolution of the limit order book has the following expression

LF(a; b;µ) = λM+
(
F

(
[ai − (q − A(i − 1))+]+; JM+

(b);µ + ∆M+

(µ)
)
− F

)
+

K∑
i=1

λL+

i

(
F

(
ai + q; JL+

i (b);µ + ∆L+
i (µ)

)
− F

)
+

K∑
i=1

λC+

i ai

(
F

(
ai − q; JC+

i (b);µ
)
− F

)
+ λM−

(
F

(
JM− (a); [bi + (q − B(i − 1))+]−;µ + ∆M− (µ)

)
− F

)
+

K∑
i=1

λL−
i

(
F

(
JL−i (a); bi − q;µ + ∆L−i (µ)

)
− F

)
+

K∑
i=1

λC−
i |bi|

(
F

(
JC−i (a); bi + q;µ

)
− F

)
−

D∑
i, j=1

βi jµ
i j ∂F
∂µi j . (8.11)

In order to ease the already cumbersome notations, we have written F (ai; b;µ)
instead of F (a1, . . . , ai, . . . , aK ; b;µ), and use the same symbol for a process
and the corresponding state variable in the state space. Moreover, the notation
∆(...) (µ) stands for the jump of the intensity vector µ corresponding to a jump
of the process N(...) (see Section C.1.1).

The operator L is a combination of

• standard difference operators corresponding to the arrival or cancellation of
orders at each limit and shift operators expressing the moves in the best
limits, as already seen;

• drift terms coming from the mean-reverting behaviour of the intensities of
the Hawkes processes between jumps.

Note that, similarly to what is done in Chapter 6, the infinitesimal generator
is fully worked out in the case of a discrete state space for the quantities a,b;
some trivial but notationally cumbersome modifications would be necessary in
order to account for the case of general, real-valued quantities ai, bi’s and order
size q.
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8.4 Stability of the order book

In this section, we study the long-time behaviour of the limit order book. A
Lyapunov function is built, ensuring the ergodicity of the limit order book
under the natural assumption (8.10). More precisely, there holds the following
proposition.

Proposition 8.4 Under the standing assumptions, in particular (8.10), the
limit order book process X is ergodic. It converges exponentially fast towards
its unique stationary distribution Π.

Proof Given the existence of the Lyapunov function provided in Lemma 8.5
below, the result is proven using Theorem 7.1 in Meyn and Tweedie (1993),
see Appendix C, Section C.2.1. The only technical difficulty lies in establishing
the fact that compact sets are petite sets, a result proven in Zheng et al. (2014),
Theorem 3.1 and Section 3.3. �

Lemma 8.5 For η > 0 small enough, the function V defined by

V (a; b;µ) =

K∑
i=1

ai +

K∑
i=1

|bi| +
1
η

(2K+2)2∑
i, j=1

δi jµ
i j ≡ V1 +

1
η

V2 (8.12)

where V1 (resp. V2) corresponds to the part that depends only on (a; b) (resp.
µ), is a Lyapunov function satisfying a geometric drift condition

LV 6 −ζV + C, (8.13)

for some ζ > 0 and C ∈ R. The coefficients δi j’s are defined in (C.13) in Section
C.1.1.

Proof First specialize V2 to be identical - up to a change in the indices - to the
function defined by (8.5) in Appendix C.1.1. Regarding the ”small” parameter
η > 0, it will become handy as a penalization parameter, as we shall see below.

Thanks to the linearity of L, there holds

LV = LV1 +
1
η
LV2.
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The first term LV1 is dealt with exactly as in Chapter 6:

LV1 ≤ −(λM+

+ λM− )q +

K∑
i=1

(
λL+

i + λL−
i

)
q −

K∑
i=1

(
λC+

i ai + λC−
i |bi|

)
q

+

K∑
i=1

λL+

i (iS − i)+a∞ +

K∑
i=1

λL+

i (iS − i)+|b∞| (8.14)

≤ −
(
λM+

+ λM−
)

q +
(
ΛL− + ΛL+

)
q − λCqV1(x)

+ K
(
ΛL−a∞ + ΛL+

|b∞|
)
, (8.15)

where

ΛL± :=
K∑

i=1

λL±
i and λC := min

1≤i≤K
{λC±

i } > 0.

ComputingLV2 yields an expression identical to that obtained in Section C.1.1:

L (V2) =
∑
i, j

λ
j
0δi jαi j + (κ − 1)

∑
j,k

εkµ
jk,

so that there holds

LV = LV1 +
1
η
LV2 6 −λ

CqV1 −
γ

η
V2 −G.µ + C,

where γ is as in Equation (C.15), G.µ is a compact notation for the linear
form in the µi j’s obtained in (8.15), and C is some constant. Now, thanks to
the positivity of the coefficients in V2 and of the µi j’s, one can choose η small
enough that there holds

∀µ, |G.µ| 6
γ

2η
V2 (µ) ,

which yields

LV ≡ LV1 +
1
η
LV2 6 −λ

CqV1 −
γ

2η
V2 + C, (8.16)

and finally

LV 6 −ζV + C,

with ζ = Min
(
λCq, γ

2η

)
and C is some constant. �

8.5 Large scale limit of the price process

Using the same approach as in Chapter 6 in this more general context, we study
the long-time behaviour of the price process, taking into account the stochastic
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behaviour of the intensities of the point processes triggering the order book
events. We first recall the expression of the price dynamics in our limit order
book model. Consider for instance the mid-price, solution to the SDE (6.29)
which we recall here

dP(t) =
∆P
2

[(
A−1(q) − iS

)
dM+(t) − (B−1(q) − iS )dM−(t)

−

K∑
i=1

(iS − i)+dL+
i (t) +

K∑
i=1

(iS − i)+dL−i (t)

+
(
A−1(q) − iS

)
dC+

iA
(t) −

(
B−1(q) − iS

)
dC−iB

(t)
]
.

Let us recast this equation - exactly as in 6.40 - under the following form:

Pt =

∫ t

0

∑
i

Fi (X(u)) dN i(u), (8.17)

where the N i are the point processes driving the limit order book, X is the
markovian process describing its state, and P is one of the price processes we
are interested in. In the current context of Hawkes processes, X = (a,b,µ) and
the N i, with state-dependent intensitites νi (X), are the Poisson and Hawkes
processes driving the limit order book. As mentioned earlier, the Fi are bounded
functions, as the price changes are bounded by the total number of limits in the
book, thanks to the non-zero boundary conditions a∞, b∞.

Denote again by Π the stationary distribution of X, as provided by Proposi-
tion 8.4. We can prove the following theorem:

Theorem 8.6 Write as above the price

Pt =

∫ t

0

∑
i

Fi (X(s)) dN i(s)

and its compensator

Qt =

∫ t

0

∑
i

νi (X(s)) Fi (X(s)) ds.

Define

h =
∑

i

νiFi (X)

and let

α =
a.s.
lim

t→+∞

1
t

∫ t

0

∑
i

νi (X(s)) Fi (X(s)) ds =

∫
h (X) Π(dX).



108 Advanced modelling of limit order books

Finally, introduce the solution g to the Poisson equation

Lg = h − α

and the associated martingale

Zt = g (X(t)) − g (X0) −
∫ t

0
Lg (X(s)) ds ≡ g (X(t)) − g (X0) − Qt + αt.

Then, the deterministically centered, rescaled price

P̄n(t) ≡
Pnt − αnt
√

n

converges in distribution to a Wiener process σ̄W. The asymptotic volatility σ̄
satisfies the identity

σ̄2 = lim
t→+∞

1
t

∫ t

0

∑
i

νi (X(s))
((

Fi − ∆i(g)
)

(X(s))
)2

ds (8.18)

≡

∫ ∑
i

νi (X)
((

Fi − ∆i(g)
)

(X)
)2
λiΠ(dX). (8.19)

Proof Using again the martingale method as in the proof of Theorem 6.5 with

Pt = (Pt − Qt)− Zt + g (X(t))− g (X0) +αt ≡ (Mt − Zt) + g (X(t))− g (X0) +αt,

the theorem will be proven if one can show that g ∈ L2 (Π(dX)). The condition

h2 6 V (8.20)

(where V is a Lyapunov function for the process) of Theorem 4.4 in Glynn
and Meyn (1996) is sufficient for g to be in L2 (Π(dX)). The linear Lyapunov
function V introduced in (8.12) does not yield the desired result, because h now
has a linear growth. However, Lemma C.5 in Appendix C provides a Lyapunov
function having a polynomial growth of arbitrarily high order in the intensities
at infinity, thereby ensuring that Condition (8.20) holds. �

8.6 Conclusion

The question of modelling the interactions between agents of different types is
quite fascinating. It has important consequences on many aspects of the under-
standing of limit order books, be it from an empirical, theoretical or practical
point of view. In this chapter we have suggested and reviewed several, and
studied some, avenues for such a refined modelling. It is however clear that
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much more work is still to be done, in view in particular of the fierce com-
petition between agents following different strategies. Such a game-theoretic
approach to limit order book modelling is still in its infancy, and will probably
be the subject of many interesting future studies.





PART THREE

SIMULATION OF LIMIT ORDER BOOKS





9
Numerical simulation of limit order books

9.1 Introduction

This chapter describes useful algorithms and their implementations for the
numerical simulation of limit order books. The basic algorithm simulating a
zero-intelligence limit order book is preseted, and then extended to the case of
a multivariate Hawkes process-driven order book. Numerical results are ana-
lyzed, and compared to empirical data.

9.2 Zero-intelligence limit order book simulator

9.2.1 An algorithm for Poisson order flows

We describe a basic algorithm for the simulation of the limit order book model
of Chapters 6 and 7. We will assume for notational simplicity that the order
book is symmetric, i.e., that the intensities of arrival of orders of various types
are identical on the bid and ask side. We can thus drop the ± signs of our
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notations, and define here with obvious notations:

λL =
(
λL

1 , . . . , λ
L
K

)
,

ΛL =

K∑
i=1

λL
i ,

λC(a) =
(
λC

1 a1, . . . , λ
C
KaK

)
,

ΛC(a) =

K∑
i=1

λC
i ai,

λC(b) =
(
λC

1 |b1|, . . . , λ
C
K |bK |

)
,

ΛC(b) =

K∑
i=1

λC
i |bi|,

Λ(a,b) = 2(λM + ΛL) + ΛC(a) + ΛC(b).

Using these notations, the routine for the simulation of the limit order book
is sketched in Algorithm 1 (see also Gatheral and Oomen (2010) for a similar
description). This algorithm is simply the transcription of the limit order book
modelled in Chapter 6, enhanced as in Chapter 7 to allow random sizes of
submitted orders of all types. This feature will help producing more realistic
simulated data.

9.2.2 Parameter estimation

The parameters of the model are estimated on the dataset presented in Ap-
pendix B.5. In this section we analyze the results computed with the param-
eters estimated for the stock SCHN.PA (Schneider Electric) in March 2011.
These results and figures are given as illustration, but it is important to note
that they are qualitatively similar for all CAC 40 stocks.

Let T be the length of the time window of interest each day. If NM
T is the total

number of trades (buy and sell) during this time window, then the estimate for
the intensity of the market orders is

λ̂M =
NM

T

2T
.

If NL
i,T is the total number of limit orders (buy and sell) submitted i ticks away

from the best opposite quote during the time interval of length T , then the
estimate for the intensity of the limit orders i ticks away from the best opposite
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Algorithm 1 Order book simulation with Poisson order flows.
Require: Model parameters: K (number of visible limits),

λM , {λL
i }i∈{1,...K}, {λ

C
i }i∈{1,...K} (intensities of order flows), a∞, b∞ (size

of hidden limits), random distributions VL, VM , VC (volume of limit,
market and cancel orders).
Simulation Parameters : N (length of simulation in event time), Xinit (ini-
tial state of the limit order book)

1: Initialization : Set t ← 0 (physical time), X(0)← Xinit.
2: for n = 1, . . . ,N do
3: Update the cancellation intensities : ΛC(b) =

∑K
i=1 λ

C
i |bi|, ΛC(a) =∑K

i=1 λ
C
i ai..

4: Time of next event: Draw the waiting time τ from an exponential dis-
tribution with parameter Λ(a,b) = 2(λM + ΛL) + ΛC(a) + ΛC(b).

5: Type of next event: Draw an event type according to the probability
vector

(
λM , λM ,ΛL,ΛL,ΛC(a),ΛC(b)

)
/Λ(a,b). These probabilities cor-

respond respectively to a buy market order, a sell market order, a buy
limit order, a sell limit order, a cancellation of an existing sell order and
a cancellation of an existing buy order.

6: Volume of next event: Depending on the event type, draw the order
volume from one of the random distributionsVL,VM ,VC .

7: Price of next event:
8: if the next event is a limit order then
9: Draw the relative price level according to the probability vector(

λL
1 , . . . , λ

L
K

)
/ΛL.

10: end if
11: if the next event is a cancellation then
12: Draw the relative price level at which to cancel an order from accord-

ing to the probability vector
(
λC

1 a1, . . . , λ
C
KaK

)
/ΛC(a) (ask case) or(

λC
1 |b1|, . . . , λ

C
K |bK |

)
/ΛC(b) (bid case).

13: end if
14: Set t ← t + τ and update the order book according to the new event.
15: Enforce the boundary conditions: ai ← a∞, i ≥ K + 1 and bi ← b∞,

i ≥ K + 1.
16: end for

quote is

λ̂L
i =

NL
i,T

2T
.
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K 30

a∞ 250
b∞ 250

(vM , sM) (4.00, 1.19)
(vL, sL) (4.47, 0.83)
(vC , sC) (4.48, 0.82)

λM± 0.1237

Table 9.1 Model parameters for the stock SCHN.PA (Schneider Electric) in
March 2011 (23 trading days). Figures 9.1 and 9.2 are graphical

representation of these parameters.

As for the cancellation intensities, we need to normalize the count by the (tem-
poral) average number of shares 〈Xi〉 at distance i from the best opposite quote.
If NC

i,T is the total number of cancellation orders (buy and sell) submitted i ticks
away from the best opposite quote during the time interval of length T , then
the estimate for the intensity of the cancellation orders i ticks away from the
best opposite quote is

λ̂C
i =

1
〈Xi〉

NC
i,T

2T

We then average λ̂M , λ̂L
i and λ̂L

i across 23 trading days to get the final estimates.
As for the volumes, we compute the empirical distributions of the volumes for
each type of orders, and we fit by maximum likelihood estimation a log-normal
distribution with parameters (v̂M , ŝM) (market orders), (v̂L, ŝL) (limit orders)
and (v̂C , ŝC) (cancellation orders).

The parameters estimated for SCHN.PA in March 2011 are summarized in
tables 9.1 and 9.2. A graphic representation of these parameters is given in
figures 9.1 and 9.2.

9.2.3 Performances of the simulation

We compute on our simulated data several quantities of interest. Figure 9.3
represents the average shape of the order book. Recall that this shape has
been analytically determined in Chapter 7 in the case of a one-side model.
The agreement between the simulated shape and the empirical one is fairly
good. A cross-sectional view of this quantity for all CAC 40 stocks is provided
in the next subsection (Figure 9.10 Panel (a)).
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Figure 9.1 Model parameters: arrival rates and average depth profile (parameters
as in table 9.2). Error bars indicate variability across different trading days.
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Figure 9.2 Model parameters: volume distribution. Panels (a), (b) and (c) corre-
spond respectively to market, limit and cancellation orders volumes. Dashed lines
are lognormal fits (parameters as in table 9.1).
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i (ticks) 〈Xi〉 (shares) λL±
i 103.λC±

i

1 276 0.2842 0.8636
2 1129 0.5255 0.4635
3 1896 0.2971 0.1487
4 1924 0.2307 0.1096
5 1951 0.0826 0.0402
6 1966 0.0682 0.0341
7 1873 0.0631 0.0311
8 1786 0.0481 0.0237
9 1752 0.0462 0.0233

10 1691 0.0321 0.0178
11 1558 0.0178 0.0127
12 1435 0.0015 0.0012
13 1338 0.0001 0.0001
14 1238 0.0 0.0

15 1122
...

...
16 1036
17 943
18 850
19 796
20 716
21 667
22 621
23 560
24 490
25 443
26 400
27 357
28 317

29 285
...

...
30 249 0.0 0.0

Table 9.2 Model parameters for the stock SCHN.PA (Schneider Electric) in
March 2011 (23 trading days). Figures 9.1 and 9.2 are graphical

representation of these parameters.

We also study some properties of the price process derived from the order
book simulations. The distribution of the spread is given in Figure 9.4. We
observe that the simulated distribution is tighter than the empirical one. This
observation stands for all CAC 40 stocks, as documented Figure 9.10 Panel
(b). It must however be taken with a grain of salt, as the spread distribution is
highly sensitive to many parameters of the model. In Section 9.3, we present
a qualitative study of the spread distribution under various modelling assump-
tions for the arrival of orders.
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Figure 9.3 Average depth profile. Simulation parameters are summarized in tables
9.1 and 9.2.

Figure 9.5 shows the fast decay of the autocorrelation function of the price
increments. Note the high negative autocorrelation of simulated trade prices
relatively to the data. This feature is most likely due to the fact that we have
assumed a symmetric order book and Poissonian arrival of orders: in real mar-
kets, order splitting induces a clustering of market orders of identical signs,
so that the traded prices in a sequence of market orders are closer to one an-
other that in the zero-intelligence case for which the bid-ask bounce effect1 is
important.

Figure 9.6 gives an example of simulated path for the mid-price. Figure 9.7
plots the histogram of the empirical distribution of the price increments over
1000 events. At this (large) scale, the normal distribution is a good match. This
is a well-known observation, called asymptotic normality of price increments.
Figure 9.8 shows the Q-Q plots of the mid-price increments for four different
scales, from 1 second to 5 minutes. The convergence of the distribution of the

1 the bid-ask bounce effect describes the fact that the signs of market orders generally alternate,
thereby creating a large change in traded prices due to the presence of the bid-ask spread
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Figure 9.4 Probability distribution of the spread. Note that the model (dark gray)
predicts a tighter spread than the data.

price increments towards a Gaussian distribution as the time scale of observa-
tion increases is clearly observed.

We now give a few facts on the properties of the variance of the price pro-
cesses of our simulations. The signature plot of a price time series is defined as
the variance of price increments at lag h normalized by the lag h, as a function
of this lag h. In other words, it is the function h 7→ σ2

h where

σ2
h =

V [P(t + h) − P(t)]
h

. (9.1)

This function measures the variance of price increments per time unit. Its main
interest is that it shows the transition from the variance at small time scales
where micro-structure effects dominate, to the long-term variance. Using the
results of Chapter 6, in particular Theorem 6.5, one can show that

lim
h→∞

σ2
h = σ2, for some fixed value σ. (9.2)

Figure 9.9 shows the signature plots computed on our simulations compared to
the empirical ones. Signature plots are computed for both the trade prices and



122 Numerical simulation of limit order books

0 2 4 6 8 10 12 14 16 18 20
−0.5

0

0.5

1

A
u
to
co
rr
el
a
ti
o
n
o
f
p
ri
ce

in
cr
em

en
ts

Lag (trade time)

 

 
Trade price (Model)
Mid−price (Model)
Trade price (Data)

Figure 9.5 Autocorrelation of price increments. This figure shows the fast decay
of the autocorrelation function, and the large negative autocorrelation of trades at
the first lag.

the mid-prices, and in both event and calendar time. Two main observations are
to be made. First, the simulated long-term variance is lower than the variance
computed from the data. This observation remains valid for all CAC 40 stocks
as documented in Figure 9.10 Panel (c). We know that depth (shape) of the or-
der book increases away from the best price towards the center of the book. In
the absence of autocorrelation in trade signs, this would cause prices to wan-
der less often far away from the current best as they hit a higher “resistance”.
We also suspect that actual prices exhibit locally more “drifting phases” than
in our symmetric Markovian simulation where the expected price drift is null
at all times. An interesting analysis of a simple order book model that allows
time-varying arrival rates can be found in Challet and Stinchcombe (2003).

Second, the simulated signature plot is too high at short time scales relative
to the asymptotic variance, especially for traded prices. As seen previously, this
behaviour is well explained by the bid-ask bounce, which is too strong in the
zero-intelligence model as there is no accounting for the clustering of orders of
identical signs (see Subsection 9.2.4 below for a simple quantitative analysis of
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Figure 9.6 Price sample path. At large time scales, the price process is close to a
Wiener process.

this phenomenon). It is however remarkable that the signature plot of empirical
trade prices looks much flatter than the signature plot of simulated trade prices.
Indeed, a flat empirical signature plot at all time scales suggests that the prices
are actually diffusive, which seems to contradict the observation that empirical
order signs exhibit positive long-ranged correlations. This has been observed
and discussed in several empirical studies (Bouchaud et al., 2004; Lillo and
Farmer, 2004; Farmer et al., 2006; Bouchaud et al., 2009). According to these
studies, the paradox is solved by observing that the diffusivity results from two
opposite effects: on the one hand, autocorrelation in trade signs induces per-
sistence in the price processes, while on the other hand, the liquidity stored
in the order book induces mean-reversion. These two effects counterbalance
each other exactly. This subtle equilibrium between liquidity takers and liquid-
ity providers, which guarantees price diffusivity at short lags, is not accounted
for by the simple Poisson order book model that is simulated here, which ex-
plains our observations of anomalous diffusions at short time scales (see also
Smith et al., 2003). Because of the absence of positive autocorrelation in trade
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Figure 9.7 Probability distribution of price increments. Time lag h = 1000 events.

signs in the model, this effect is magnified when one looks at trades. The next
subsection elaborates on this point.

9.2.4 Anomalous diffusion at short time scales

We propose a heuristic argument for the understanding of the discrepancy be-
tween the model and the data signature plots at short time scales. In what fol-
lows, we use the trade time, i.e. the t-th trade occurs at time t. Denote by PTr(t)
the price of the trade at time t, and α(t) its sign:

α(t) =

1 for a buyer initiated trade, i.e. a buy market order,

−1 for a seller initiated trade, i.e. a sell market order.

We assume that the two signs are equally probable (symmetric model). But to
make the argument valid for both the model (for which successive trade signs
are independent) and the data (for which trade signs exhibit long memory) we
do not assume independence of successive trade signs. Let P(t−) and S (t−) be
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Figure 9.8 Q-Q plot of mid-price increments. h is the time lag in seconds. This
figure illustrates the aggregational normality of price increments.

the mid-price and spread just before the t-th trade. Then :

PTr(t) = P(t−) +
1
2
α(t)S (t−). (9.3)

For any process Z we define the increment ∆Z(t) = Z(t+1)−Z(t). With equation
(9.3), the variance of the trade price process can be written:(

σTr
1

)2
= V[∆PTr(t)]

= E
[(

∆PTr(t)
)2
]

= E
[(

∆P(t−)
)2
]

+ E
[
∆P(t−)∆(α(t)S (t−))

]
+

1
4

E
[(

∆(α(t)S (t−))
)2
]
.

The first term in the right-hand side of the above equation is the variance of
mid-price increments, denoted σ2

1 thereafter. The second term represents the
covariance of mid-price increments and the trade sign weighted by the spread.
We may assume that this quantity is negligible. Indeed, this amounts to ne-
glecting the correlation between trade signs and mid-quote movements, which
can be justified by the dominance of cancellations and limit orders in compar-
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Figure 9.9 Signature plot: σ2
h := V [P(t + h) − P(t)]/h. y axis unit is

tick2 per trade for panel (a) and tick2.second−1 for panel (b). We used a 1,000,000
event simulation run for the model signature plots. Data signature plots are com-
puted separately for each trading day [9 : 30–14 : 00] then averaged across 23
days. For calendar time signature plots, prices are sampled every second using the
last tick rule. The inset is a zoom-in.
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ison to market orders in order book data. We can thus focus on the third term
and write:

E
[(

∆(α(t)S (t−))
)2
]

=E
[(
α(t + 1)∆S (t−) + S (t−)∆α(t)

)2
]

=E
[
(∆α(t))2

]
E

[
S (t−)2

]
+ 2E

[
α(t + 1)∆S (t−)S (t−)∆α(t)

]
+ E

[
α(t + 1)2

]
E

[
(∆S (t−))2

]
.

Again, we neglect the cross term in the right-hand side, which amounts this
time to neglect the correlation between trade signs and spread movements. We
are thus left with:

E
[(

∆(α(t)S (t−))
)2
]
≈ E

[
(∆α(t))2

]
E

[
S (t−)2

]
+ E

[
(∆S (t−))2

]
.

Finally, if ρ1(α) is the autocorrelation of trade signs at the first lag, we observe
that :

E
[
(∆α(t))2

]
= E

[
α(t + 1)2

]
+ E

[
α(t)2

]
− 2E [α(t)α(t + 1)]

= 2 (1 − ρ1(α)) ,

and we obtain :(
σTr

1

)2
≈ σ1

2 +
1
2

(1 − ρ1(α)) E
[
S (t−)2

]
+

1
4

E
[
(∆S (t−))2

]
. (9.4)

More generally, a similar result after n trades may be written :(
σTr

n

)2
≈ σn

2 +
1

2n
(1 − ρn(α)) E

[
S (t−)2

]
. (9.5)

Two effects are clear from equation (9.4). First, the trade price variance at
short time scales is larger than the mid-price variance. Second, autocorrela-
tion in trade signs dampens this discrepancy. This explains at least partially
why the trades signature plot obtained from the data is flatter than the model
predictions: ρ1(α)model = 0, while ρ1(α)data ≈ 0.6. Interestingly, although the
arguments that led to (9.4) are rather qualitative, a back of the envelope calcu-
lation with E

[
S 2

]
∈ [1, 9] gives a difference

(
σTr

)2
−σ2 in the range [0.5, 4.5],

which has the same order of magnitude of the values obtained by simulation.
From a modelling perspective, a possible solution to recover the diffusivity,

even at very short time scales, is to incorporate long-ranged correlation in the
order flow. Tóth et al. (2011) have investigated numerically this route using
a “ε-intelligence” order book model. In this model, market orders signs are
long-ranged correlated, that is, in trade time

ρn(α) = E [α(t + n)α(t)] ∝ n−γ, γ ∈]0, 1[. (9.6)
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b1 b2 R2

Log 〈A〉 (5) −0.42 (±0.11) 1.13 (±0.04) 0.99

Log 〈S 〉 0.20 (±0.06) 1.16 (±0.07) 0.97

σ∞ −0.012 (±0.05) 1.35 (±0.11) 0.94

Table 9.3 CAC 40 stocks regression results.

The size of incoming market orders is a fraction f of the volume displayed at
the best opposite quote, with f drawn from the distribution

Pξ( f ) = ξ(1 − f )ξ−1, (9.7)

It is shown in this model that by fine tuning the additional parameters γ and
ξ, one can ensure a diffusive behaviour of the price both at a mesoscopic time
scale (a few trades) and a macroscopic time scale (a few hundred trades)2.

9.2.5 Results for CAC 40 stocks

In order to get a cross-sectional view of the performance of the model on all
CAC 40 stocks, we estimate the parameters separately for each stock and run
a 100, 000 event simulation for each parameter set. We then compare in Figure
9.10 the average depth, average spread and the long-term “volatility” measured
directly from the data, to those obtained from the simulations. Dashed line is
the identity function. It would correspond to a perfect match between model
predictions and the data. Solid line is a linear regression zdata = b1 + b2 zmodel

for each quantity of interest z. Parameters of the regression are given in Table
9.3.

We observe a good agreement between the average depth profiles (Panel
(a)), and the model successfully predicts the relative magnitudes of the long-
term variance σ2

∞ and the average spread 〈S 〉 for different stocks. However,
it tends to systematically underestimate σ2

∞ and 〈S 〉. As explained above, this
may be related to the absence of autocorrelation in order signs in the model and
the presence of more drifting phases in empirical prices than in the simulated
ones.

2 Note that Toth. el al. Tóth et al. (2011) model the “latent order book”, not the actual
observable order book. The former represents the intended volume at each price level p, that
is, the volume that would be revealed should the price come close to p. So that the
interpretation of their parameters, in particular the expected lifetime τlife of an order, does not
strictly match ours.
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Figure 9.10 A cross-sectional comparison of liquidity and price diffusion charac-
teristics between the model and data for CAC 40 stocks (March 2011).
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9.3 Simulation of a limit order book modelled by Hawkes
processes

The basic order book simulator is now enhanced with arrival times of limit and
market orders following mutually exciting Hawkes processes, as in the model
described and mathematically analysed in Chapter 8. We present numerical
procedures for the estimation and simulation of Hawkes processes. We show
in Section ?? that using Hawkes process-driven order flows enables a more
realistic behaviour of the bid-ask spread than Poissonnian order flows.

9.3.1 Simulation of the limit order book in a simple Hawkes model

It is known Large (2007b)Da Fonseca and Zaatour (2014b) that there is a strong
clustering of the arrivals of market and limit orders, and we have also seen in
Chapter 4 that the flow of limit orders strongly interact with the flow of market
order. Such observations naturally advocate for the use of Hawkes processes to
model the intensities of submissions of market and limit orders, as was already
presented and mathematically studied in Chapter 8.

In this section, we analyse a low-dimensional Hawkes process-based limit
order book model. Flows of limit and market orders are represented by two
Hawkes processes NL and NM , with stochastic intensities respectively λL and
λM defined as:

λM(t) = λM
0 +

∫ t

0
αMMe−βMM (t−s)dNM

s ,

λL(t) = λL
0 +

∫ t

0
αLMe−βLM (t−s)dNM

s +

∫ t

0
αLLe−βLL(t−s)dNL

s .

Three mechanisms can be used here. The first two are self-exciting ones, MM
and LL. They are a way to translate into the model the observed clustering
of arrival of market and limit orders and the broad distributions of their dura-
tions. The third mechanism, LM, is the direct translation of the market making
property we have identified in Chapter 4. When a market order is submitted,
the intensity of the limit order process NL increases, enforcing the probability
that the next event will illustrate a market making behaviour. Note that, for the
sake of computational simplicity, we do no implement the reciprocal mutual
excitation ML: although a market taking effect has been identified in Chapter
4, it was not observed with all limit orders, but only with the aggressive ones.
Since we preferred to keep the model low-dimensional, the ML effect is not
implemented here. Some calibration results based on a more complete model
including the market taking effect will be presented in Section 9.4.
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9.3.2 Algorithm for the simulation of a Hawkes process

We now have to modify our routine for the simulation of a limit order book
with Poissonnian order flows (Algorithm 1) and replace the simulation of events
with exponentially distributed inter-event times (lines 4 and 5 of the algorithm)
with the simulation of the Hawkes processes NM and NL.

Below is a generic algorithm that simulates a P-variate Hawkes process with
intensities

λn(t) = λn
0(t) +

P∑
m=1

∫ t

0
αnme−βnm(t−s) dNm(s), n = 1, . . . P

The simulation is based on a thinning method (Lewis and Shedler, 1979). Let
[0,T ] be the time interval on which the process is to be simulated. We define
IK(t) =

∑K
n=1 λ

n(t) the sum of the intensities of the first K components of the
multivariate process. IP(t) =

∑P
n=1 λ

n(t) is thus the total intensity of the multi-
variate process and we set I0 = 0.

The detailed routine is given in Algorithm 2.

Algorithm 2 Generic thinning algorithm for the simulation of a multivariate
Hawkes process.
Require: Deterministic base intensities λn(t) and exponential kernel parame-

ters (αmn) and (βmn), m, n = 1, . . . , P for the P-variate Hawkes process.
1: Initialization : Set i1 ← 1, . . . , iP ← 1 and I∗ ← IP(0) =

∑P
n=1 λ

n
0(0).

2: Time of first event : Draw s exponentially distributed with parameter I∗.
3: while s < T do
4: Draw D uniformly distributed on [0, 1].
5: if D ≤ IP(s)

I∗ then
6: Set tn0

in0 ← s where n0 is such that In0−1(s)
I∗ < D ≤ In0 (s)

I∗ . (New event of
type n0)

7: Set in0 ← in0 + 1.
8: end if
9: Update maximum intensity: Set I∗ ← IP(s). I∗ exhibits a jump of size∑P

n=1 αnn0 if an event of type n0 has just occurred.
10: Time of next event : Draw s exponentially distributed with parameter

I∗.
11: end while
Ensure:

(
{tn

i }i

)
n=1,...,P

is a sample path of a multivariate Hawkes process on
[0,T ].

As an illustration we provide some examples of simulations of bivariate
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Figure 9.11 Simulation of a two-dimensional Hawkes process with parameters
given in equation (9.8).
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Figure 9.12 Simulation of a two-dimensional Hawkes process parameters given
in equation (9.8). (Zoom of figure 9.11).

Hawkes processes using Algorithm 2. Figure 9.11 shows an example of such
a simulation for parameters, and Figure 9.12 zooms in on a small part of this
simulation. Parameters used to compute these graphs are :

λ1
0 = 0.1, α11

1 = 0.2, β11
1 = 1.0, α12

1 = 0.1, β12
1 = 1.0,

λ2
0 = 0.5, α21

1 = 0.5, β21
1 = 1.0, α22

1 = 0.1, β22
1 = 1.0, (9.8)
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9.3.3 Parameter estimation

The Hawkes model described above has many variants : by forcing some α’s
to be zero, we can turn off one or several of these features. We therefore have
several models to test – namely LM, MM, MM+LM, MM+LL, MM+LL+LM
– and try to understand the influence of each effect. As a reference, we will also
simulate the model in which NM and NL are homogeneous Poisson processes.
This variant will be referred to as HP.

Hawkes processes can be estimated by a maximum likelihood method. De-
tails for an efficient computation of the log-likelihood are given in Appendix
C.1.1. We fit both NL and NM processes by computing on our data these max-
imum likelihood estimators of the parameters of the different variants of the
model. As expected, estimated values varies with the market activity on the
day of the sample. However, it appears that estimation of the parameters of
stochastic intensity for the MM and LM effect are quite robust. We find an av-
erage relaxation parameter β̂MM = 6, i.e. roughly 170 milliseconds as a char-
acteristic time for the MM effect, and β̂LM = 1.8, i.e. roughly 550 milliseconds
characteristic time for the LM effect. Estimation of models including the LL
effect are more troublesome on our data. In the simulations that follows, we
assume that the self-exciting parameters are similar (αMM = αLL, βMM = βLL)
and ensure that the number of market orders and limit orders in the different
simulations is roughly equivalent (i.e. approximately 145000 limit orders and
19000 market orders for 24 hours of continuous trading). Table 9.4 summarizes
the numerical values used for simulation. Fitted parameters are in agreement
with an assumption of asymptotic stationarity. We compute long runs of simu-
lations with our enhanced model, simulating each time 24 hours of continuous
trading. With these parameters, the order book is never empty during the sim-
ulations. Note however that there is no mechanism to prevent the limit order
book from becoming empty. If needed, one can enforce the limits a∞ and b∞
for some price far away from the best prices, as in Algorithm 1. Statistics based
on the simulation results are discussed in the section 9.3.4.

9.3.4 Performances of the simulation

In this section, we present the results of the simulation of the Hawkes process-
based model described above. Other than the arrival times of events, there are
some differences with the order book simulation described in Algorithm 1:
first, the volume distributions VM and VL are exponential (instead of Log-
Gaussian). Second, we do not keep track of the intensities λL

i for each price
level i, but use instead one process NL for the submission of limit order. The
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Model µ0 αMM βMM λ0 αLM βLM αLL βLL

HP 0.22 - - 1.69 - - - -

LM 0.22 - - 0.79 5.8 1.8 - -

MM 0.09 1.7 6.0 1.69 - - - -

MM LL 0.09 1.7 6.0 0.60 - - 1.7 6.0

MM LM 0.12 1.7 6.0 0.82 5.8 1.8 - -

MM LL LM 0.12 1.7 5.8 0.02 5.8 1.8 1.7 6.0

Common parameters: mP
1 = 2.7, νP

1 = 2.0, sP
1 = 0.9

V
1 = 275,mV

2 = 380
λC = 1.35, δ = 0.015

Table 9.4 Estimated values of parameters used for simulations.

submission price of an incoming limit orders is then drawn according to a
parametric (Student) distribution centred around the same side best quote and
truncated at the opposite best price. Third, the size of these new limit orders is
randomly drawn according to an exponential distribution with mean mV

L .
These are minor changes implemented in order to study some alternatives to

the choices in section 9.2, but their influence on the results we present here is
clearly moderate, the empahsis being on the arrival times.

With these specifications, we have the following results. Firstly, we can eas-
ily check that introducing self- and mutually exciting processes into the order
book simulator helps producing more realistic arrival times. Figure 9.13 shows
the distributions of the durations of market orders (left) and limit orders (right).
As expected, we check that the Poisson assumption has to be discarded, while
the use of Hawkes processes helps give more weight to very short time inter-
vals. We also verify that models with only self-exciting processes MM and LL
are not able to reproduce the market making feature described in Chapter 4.
Distribution of time intervals between a market order and the next limit order
are plotted on figure 9.14. As expected, no peak for short times is observed if
the LM effect is not in the model. But when the LM effect is included, the sim-
ulated distribution of time intervals between a market order and the following
limit order is very close to the empirical one.

Besides offering a better simulation of the arrival times of orders, we ar-
gue that the LM effect also helps simulating a more realistic behaviour of the
bid-ask spread of the order book. On Figure 9.15, we compare the distribu-
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Figure 9.13 Empirical density function of the distribution of the durations of mar-
ket orders (left) and limit orders (right) for three simulations, namely HP, MM,
LL, compared to empirical measures. In inset, same data using a semi-log scale.
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Figure 9.14 Empirical density function of the distribution of the time intervals
between a market order and the following limit order for three simulations, namely
HP, MM+LL, MM+LL+LM, compared to empirical measures. In inset, same data
using a semi-log scale.

tions of the spread for three models – HP, MM, MM+LM – with respect to
the empirical measures. We first observe that the model with homogeneous
Poisson processes produces a fairly good shape for the spread distribution, but
slightly shifted to the right. Small spread values are largely underestimated.
When adding the MM effect in order to get a better grasp at market orders’ ar-
rival times, it appears that we flatten the spread distribution. One interpretation
could be that when the process NM is excited, markets orders tend to arrive in
cluster and to hit the first limits of the order book, widening the spread and
thus giving more weight to large spread values. But since the number of orders
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Figure 9.15 Empirical density function of the distribution of the bid-ask spread
for three simulations, namely HP, MM, MM+LM, compared to empirical mea-
sures. In inset, same data using a semi-log scale. X-axis is scaled in euro (1 tick is
0.01 euro).

is roughly constant in our simulations, there has to be periods of lesser market
activity where limit orders reduce the spread. Hence a flatter distribution. The
MM+LM model produces a spread distribution much closer to the empirical
shape. It appears from Figure 9.15 that the LM effect reduces the spread: the
market making behaviour helps giving less weight to larger spread values (see
the tail of the distribution) and to sharpen the peak of the distribution for small
spread values.

We show on figure 9.16 that the same effect is observed in an even clearer
way with the MM+LL and MM+LL+LM models. Actually, the spread distri-
bution produced by the MM+LL model is the flattest one. This is in line with
our previous argument. When using two independent self exciting Hawkes pro-
cesses for arrival of orders, periods of high market orders’ intensity gives more
weight to large spread values, while periods of high limit orders’ intensity
gives more weight to small spread values. Adding the cross-term LM to the
processes implements a coupling effect that helps reproducing the empirical
shape of the spread distribution. The MM+LL+LM simulated spread is the
closest to the empirical one.

Finally, it is somewhat remarkable to observe that these variations of the
spread distributions are obtained with little or no change in the distributions of
the variations of the mid-price. As shown on Figure 9.17, the distributions of
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the variations of the mid-price sampled every 30 seconds are nearly identical
for all the simulated models.
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Figure 9.17 Empirical density function of the distribution of the 30-second varia-
tions of the mid-price for five simulations, namely HP, MM, MM+LM, MM+LL,
MM+LL+LM, using a semi-log scale. X-axis is scaled in euro (1 tick is 0.01
euro).
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9.4 Market making and taking viewed from a
Hawkes-process perspective

In this short section, we analyze the calibration results of a more general
Hawkes process-based model for the limit order book. This time, we distin-
guish between limit (L) and market (M) orders that change the price (denoted
A for aggressive) and those that do not change the price (denoted P for pas-
sive); hence we consider four types of orders, denoted by the abbreviations
AM, PM, AL and PL. These four types of events are modelled with a four-
dimensional Hawkes process N(t) = (NAM(t),NPM(t),NAL(t),NPL(t)) with a
constant base intensity and an exponential kernel. In other words, the process
N has the intensity λ(t) = (λAM(t), λPM(t), λAL(t), λPL(t)) satisfying:

λ(t) = λ0 +

∫ t

0
K(t − u)dN(u), (9.9)

where λ0 = (λAM
0 , λPM

0 , λAL
0 , λPL

0 ) is the base intensity and the kernel matrix K
has general term Ki j(u) = αi je−βi ju, i, j ∈ {AM, PM, AL, PL}. As before, the
model is fitted to the data using a maximum-likelihood estimation described in
Appendix C.1.1. In this example, we use 14 days of trading (February 1st to
23rd, 2010) for twelve randomly selected CAC 40 stocks traded on the Paris
Bourse. Since the empirical results in Chapter 4, Section 4.4 section has exhib-
ited, as expected, a certain symmetry between the bid and ask sides, we do not
distinguish the buy and sell sides and merge all events of the same type from
both the bid and ask sides of the book. Following Large (2007a), we visual-
ize the results by plotting circles with center coordinates (αi j, ln(2)β−1

i j ) and a
diameter proportional to the number of exciting events j. Thus, the higher the
circle, the stronger the influence of the corresponding event. Similarly, circles
on the right side of the graph have a longer influence.

Figure 9.18 plots for the twelve stocks the resulting circles for events that
influence the intensity of aggressive limit orders (parameters αAL− j and βAL− j).
The intensity of the arrival process of limit orders submitted inside the spread
is strongly excited by aggressive market orders, with a rather short half-life. We
thus observe here a return of liquidity that tightens the spreads after its widen-
ing by an aggressive market order: this is the market making effect already
described. Another similar effect of resilience in the order book is observed,
a bit less strongly, with passive market orders. The third notable influence is
due to the aggressive limit orders, with a less intense effect but longer half-life,
illustrating the clustering of these aggressive limit orders. The limited effect
of passive limit orders appears in contrast negligible. It is important to remark
that this pattern is a general one: all circles of the same type are grouped to-
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Figure 9.18 Hawkes parameters for aggressive limit orders for various CAC40
stocks. These values are computed using MLE estimation on 14 days of trading
(Feb.1st-Feb.23rd 2010), 10am-12pm.

gether on the same part of the graph, i.e. each of the 12 studied stocks exhibit
roughly the same behavior with respect to clustering and market making.

Regarding the reciprocal excitations on aggressive market orders, results are
presented on figure 9.19. The intensity of the arrival process of market orders
that move the price is strongly excited by passive and aggressive market orders.
This is an illustration of the clustering of trades, and possibly of a rush to de-
creasing liquidity: when the volume available at the best limit decreases due to
several passive market orders, an aggressive market order is likely to quickly
take the remaining liquidity. We also observe a clear influence of aggressive
limit orders on aggressive market orders, which corresponds to a market tak-
ing effect. This is in line with the observations of Section 4.4 based on the use
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Figure 9.19 Hawkes parameters for aggressive market orders for various CAC40
stocks. These values are computed using MLE estimation on 14 days of trading
(Feb.1st-Feb.23rd 2010), 10am-12pm.

of lagged correlation coefficients. It is however interesting to remark that the
strength and length of this effect varies across the stocks studied, i.e. the pat-
terns are less clearly defined for the influence on aggressive market orders than
they were in the previous case for the influence of aggressive limit orders.

9.5 Conclusion

This chapter was mostly motivated by practical considerations: when using
a particular limit order book model, it is important to assess its reliability in
reproducing the behaviour of real markets.
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Starting with the basic zero-intelligence paradigm and progressing towards
more refined models based on Hawkes processes, we have studied limit order
book models that can be used to benchmark market making or statistical arbi-
trage strategies. Note that we do not present results on general state-dependent
intensities in this work, and refer the interested reader to some recent contri-
butions such as Huang et al. (2015).

In a different but related direction, a very general, flexible open-source li-
brary has been developped by A. Kolotaev in the Chair of Quantitative Finance,
and can be found at http://fiquant.mas.ecp.fr. Its purpose is to provide a generic
framework for the study of trading strategies in order-driven markets.
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10
Market imperfection and predictability

10.1 Introduction

This chapter somewhat departs from our initial motivation of studying limit or-
der books per se, and addresses the very practical question of the predictability
of financial markets based on the information content of limit order books.

Forecasting the market has always been one of the ”hottest” topics among
market practitioners, and the temptation to identify hopefully profitable signals
has never been as high as today. Numerous academic studies aim at identifying
some predictive features in the time series of past returns, although many seem
to obtain negative results. For instance, it is a well-known stylized fact that
there is no evidence of linear correlation between successive returns, see e.g.
(Chakraborti et al., 2011a) (Farmer, 2008). Such studies seemingly demon-
strate the lack of predictive character of the series of past returns, as far as the
sign of the next price move is concerned. In that sense, the property generally
referred to as the Efficient Market Hypothesis does not seem to be challenged.

Rather intriguingly, several books – some popular amongst finance practi-
tioners – introduce and explain predictive strategies that seem to always make
money (see e.g. Murphy, n.d.; Vidyamurthy, 2004). But, when backtesting
those strategies on realistic samples, the results are often quite disappointing,
and the strategies no longer profitable. It is likely that the plague of over-fitting,
inherent to many prediction methods, plays a key role in the seemingly good
performances published in those books.

However, there exist several ways to actually make better predictions than
just using the series of past returns. For instance, Abergel and Politi (2013)
exhibit some synthetic baskets that are not traded and therefore, not necessarily
arbitrage-free. Based on these baskets, they provide evidence of short-term
predictability. More specific to the context of order-driven markets, the use of

145



146 Market imperfection and predictability

limit order book data has yielded interesting prediction results (Zheng et al.,
2012; Anane et al., 2015; Anane and Abergel, 2015; Cont et al., 2014).

The study presented in this chapter is performed both from an academic and
a professional perspective. It is based on an extensive use of market data, inclu-
sive of limit order book data, and aims at identifying signals that can be used as
forecasting tools, and studying their performances. Several prediction methods
are introduced and systematically benchmarked. For each prediction method,
the statistical properties of the corresponding signals are briefly investigated
and the performances of some associated investment strategies are presented.

10.2 Objectives, methodology and performances measures

10.2.1 Objectives

We focus on the EUROSTOXX 50 European liquid stocks. One year (2013)
of full daily order book data are used to achieve the study. For a stock with a
mid price S t at time t, the return to be predicted over a period δt is ln

(
S t+δt
S t

)
.

At time t, one can use all the available data for any time s ≤ t to perform the
prediction.

The focus is on predicting the stocks’ returns over a fixed period δt using
some limit order book indicators. Once the returns and the indicators are com-
puted, the data are sampled on a fixed time grid from 10:00 a.m. to 5:00 p.m.
with a resolution δt. Three different resolutions are tested: 1, 5 and 30 minutes.
Below are the definitions of the studied indicators and the rationale behind
using them to predict the returns.

Past return: the past return is defined as ln
(

S t
S t−δt

)
. Two effects justify the use

of the past return indicator to predict the next return: the mean-reversion effect
and the momentum effect. If a stock suddenly shows an abnormal return that
makes the stock price significantly deviate from its historical mean value, then
the mean reversion effect is observed when another large return with opposite
sign occurs rapidly after, driving the stock price back to its usual average range.
On the other hand, if the stock exhibits, in a progressive fashion, a significant
deviation, then the momentum effect occurs when more and more market par-
ticipants become convinced of the relevance of the move and trade in the same
sense, thereby increasing the deviation.

Order book imbalance: a weighted measure of liquidity on the bid (re-
spectively ask) side is defined as Liqbid =

∑5
i=1 wi|bi|PB

i (respectively Liqask =∑5
i=1 wiaiPA

i ), where PB
i (respectively PA

i ) is the price at the limit i on the bid
(respectively ask) side, the ai’s and bi’s are the signed quantities, and wi is
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a positive, decreasing function of i. The maximum number of limits used in
the computation (here, 5) reflects the number of visible limits on the trader’s
screen1. Those indicators measure the volume instantaneously available for
trading on each side of the order book. Finally, the order book imbalance is
defined as ln

(
Liqbid
Liqask

)
. This indicator summarizes the order book static state and

gives an idea about the buy-sell instantaneous equilibrium. When this indica-
tor is significantly higher (respectively lower) than 0, the available quantity
at the bid side is significantly higher (respectively lower) than the one at the
ask side; only few participants are willing to sell (respectively buy) the stock,
which might reflect a market consensus that the stock will move up (respec-
tively down).

Flow quantity: this indicator summarizes the order book dynamic over the
last period δt. Qb (respectively Qs) is denoted as the sum of the bought (respec-
tively sold) quantities, over the last period δt and the flow quantity is defined
as ln

(
Qb
Qs

)
. This indicator is similar to the order flow and shows a high positive

autocorrelation. The rationale behind using the flow quantity is to verify if the
persistence of the flow is informative about the next return.

EMA: for a process (X)ti observed at discrete times (ti), the exponential
moving average EMA(d, X) with delay d is defined as EMA(d, X)t0 = Xt0 and,
for i ≥ 1, EMA(d, X)ti = ωXti + (1−ω)EMA(d, X)ti−1 , where ω = min(1, ti−ti−1

d ).
The EMA is a weighted average of the process with an exponential decay. The
smaller d is, the shorter the EMA memory is.

10.2.2 Methodology

We empirically test the market efficiency by predicting the stocks’ returns over
three different time intervals: 1, 5 and 30 minutes. In Section 10.3, the indica-
tors are either the past returns, the order book imbalance or the flow quantity.
A simple method based on historical conditional probabilities is used to assess,
separately, the informative effect of each indicator. In Section 10.4, the three
indicators and their EMA(X, d) for d ∈

{
2i : i = 0, . . . , 8

}
are combined in order

to perform a better prediction than that based on a single indicator. Different
methods, based on linear regression, are tested. In particular, some statistical
and numerical stability problems of the linear regression are addressed.

The predictions are tested statistically, then used to design a simple trad-
ing strategy. The goal is to verify whether one can find a profitable strategy

1 Note that only non-empty limits are used in this indicator, so that we slightly depart from the
notations introduced in Chapter 6, where the index i measured the distance in ticks from the
best opposite quote
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covering trading costs of 0.5 basis point2. This trading cost is realistic and cor-
responds to many funds, brokers, and banks trading costs. The possibility of
determining, if it exists, a strategy that stays profitable after paying the costs,
provides an empirical counter-example to market efficiency. Notice that, in all
the sections, the learning samples are sliding windows containing sufficient
number of days, and the testing samples are the next days. The models param-
eters are fitted in-sample on a learning sample, and the strategies are tested
out-of-sample on a testing sample. The sliding training windows prevents the
methodology from any over-fitting, since performances are only computed out
of sample.

10.2.3 Performance measures

In most studies addressing market efficiency, results are summarized in a linear
correlation coefficient. However, such a measure is not sufficient to conclude
about returns predictability or market efficiency: any interpretation of the re-
sults should depend on the predicted signal and a corresponding trading strat-
egy. From now on, we shall adopt the very empirical, but quite realistic, view
that returns are considered predictable - and thus, the market is considered
inefficient - if one can run a profitable strategy covering the trading costs.

10.3 Conditional probability matrices

Let Y be the variable we want to predict, and X the explanatory variable (or
indicator). The conditional probability matrices provide empirical estimates of
the conditional probability distribution of Y given X. To apply this method, the
data need to be discretized in a small number of classes. Let

{
CX

i : i = 1, . . . , S X

}
be the partition of the state space of X in S X classes, and

{
CY

j : j = 1, . . . , S Y

}
the partition of the state space of Y in S Y classes. For a given learning period
[0,T ] containing N observations, let tn, n = 1, . . . ,N be the time of the n-th
observation, and (Xtn ,Ytn ) be the n-th observed value of (X,Y). The matrix MT

of occurrences of events up to time T has coefficients MT (i, j), 1 ≤ i ≤ S X ,
1 ≤ j ≤ S Y , defined as:

MT (i, j) = card
(
{n : n ≤ N, Xtn ∈ CX

i ,Ytn ∈ CY
j )}

)
.

Then, a prediction of the ”next” return YT conditional to the observations XT

at time T can be computed using the matrix MT .

2 Recall that a basis point is a equal to 10−4 times the current asset price
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Y < 0 Y > 0
X < 0 19,950 21,597
X > 0 21,597 20,448

Table 10.1 Historical occurrences matrix for Deutsche Telekom over 2013

For example, to check if the past returns X can help predicting the future re-
turns Y , the returns are classified into two classes and the empirical occurrences
matrix is computed. Table 10.1 shows the results for the 1-minute returns of
Deutsche Telekom over the year 2013. The historical probability to observe
a negative return is P(X < 0) = 49.70% and to observe a positive return is
P(X > 0) = 50.30%. Therefore, a trader always buying the stock would have a
success rate of 50.30%. Also note that P(Y < 0|X < 0) = 48.02%, P(Y > 0|X <

0) = 51.98%, P(Y < 0|X > 0) = 51.37%, P(Y > 0|X > 0) = 48.63%. Thus,
a trader playing the mean-reversion (buy when the past return is negative and
sell when the past return is positive), would have a success rate of 51.67%. The
same approach, when trading the strategy over 500 stocks, gives a success rate
of 54.38% for the buy strategy and of 72.91% for the mean reversion strategy.
This simple test shows that the smallest statistical bias can be profitable and
useful for designing a trading strategy. However the previous strategy is not
realistic: the conditional probabilities are computed in-sample and the full data
set of Deutsche Telekom was used for the computation. In reality, predictions
have to be computed using only the past data. It is, thus, important to have sta-
tionary probabilities. Table 10.2 shows that the monthly observed frequencies
are quite stable, and thus can be used to estimate out-of-sample probabilities.
Each month, one can use the observed frequencies of the previous month as an
estimator of current month probabilities. In the following paragraphs, frequen-
cies matrices are computed on sliding windows for the different indicators.
Several classification and prediction methods are presented.

10.3.1 Binary case

In the binary case, explanatory variables X are classified in S X = 2 classes,
relatively to their historical mean X : CX

1 =] − ∞, X], CX
2 =]X,+∞[. Using the

frequency (occurrences) matrix, a predictor Ŷ of the variable Y is computed as:

Ŷ =

E
[
Y |X ∈ CX

1

]
if XT ∈ CX

1

E
[
Y |X ∈ CX

2

]
if XT ∈ CX

2

. (10.1)

In what follows, we present the results for the prediction of the log-returns
Y using for the explanatory variable X one of the quantities defined in Section
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10.2 : the past returns, the order book imbalance, or the flow quantity. The
quality of the prediction is evaluated using four different criteria :

• AUC (Area under the curve) combines the true positive rate and the false
positive rate to give an idea about the classification quality;

• Accuracy is defined as the ratio of the correct predictions (Y and Ŷ have the
same sign);

• Gain is computed on a simple strategy to measure the prediction perfor-
mance. Predictions are used to run a strategy that buys when the predicted
return is positive and sells when it is negative. At each time, for each stock
the strategy’s position is in {−100, 000, 0 ,+100, 000};

• Profitability is defined as the gain divided by the traded notional of the
strategy presented above. This measure is useful to estimate the gain with
different transaction costs.

Figure 10.1 summarizes the results obtained when predicting the 1-minute
returns using the three indicators. For each predictor, the AUC and the accuracy
are computed over all the stocks. Results are computed over more than 100,000
observations and the amplitude of the 95% confidence interval is around 0.6%.
For the three indicators, the accuracy and the AUC are significantly higher than
the 50% random guessing threshold. The graph also shows that the order book
imbalance gives the best results, and that the past returns is the least successful
predictor. Detailed results per stock are given in Appendix D.

In Figure 10.2, the performances of the trading strategies based on the pre-
diction of the 1-minute returns are presented. The strategies are profitable and
the results confirm the predictability of the returns (see the details in Appendix
D).

In Figure 10.3, the cumulative gains of the strategies based on the three indi-
cators over the whole year 2013 are represented. When trading without costs,
predicting the 1-minute return using the past return and betting 100,000 euros
at each time, would make a 5-million Euro profit. Even better, predicting using
the order book imbalance would make more than 20 million Euros profit. The
results confirm the predictability of the returns, but not the inefficiency of the
market. In fact, Figure 10.4 shows that, when adding the 0.5 bp trading costs,
only the strategy based on the order book imbalance remains (marginally) pos-
itive. Thus, no conclusion, about the market efficiency, can be made (see more
details in Appendix D).

Figure 10.5 represents the cumulative gain and the profitability for the 5-
minute and the 30-minute strategies (with the trading costs). The strategies are
not profitable. Moreover, the predictive power decreases as the time horizon
increases. The results of the binary method show that the returns are signifi-
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Figure 10.1 The quality of the binary prediction: The AUC and the Accuracy are
higher than 50%. The three predictors are better than random guessing and are
significantly informative.

Figure 10.2 The quality of the binary prediction: For the 3 predictors, the den-
sities of the gain and the profitability are positively biased, confirming the pre-
dictability of the returns.

cantly predictable. Nevertheless, the strategies based on those predictions are
not sufficiently profitable to cover the trading costs. In order to enhance the
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Figure 10.3 The quality of the binary prediction: The graphs confirm that the 3
indicators are informative and that the order book imbalance indicator is the most
profitable.

Figure 10.4 The quality of the binary prediction: When adding the 0.5 bp trading
costs, the strategies are only slightly profitable.

predictions, the same idea is applied to the four-class case. Moreover, a new
strategy based on a minimum threshold of the expected return is tested.
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Figure 10.5 The quality of the binary prediction: The strategies are not profitable.
Moreover, the performances decreases significantly compared to the 1-minute
horizon.

10.3.2 Four-class case

We now investigate the case where the explanatory variable X is classified into
four classes; “very low values” CX

1 , “low values” CX
2 , “high values” CX

3 and
“very high values” CX

4 . As in the binary case, at each time tn, Y is predicted as
Ŷ = E(Y |X ∈ CX

i ), where CX
i is the class of the current observation Xtn . The

expectation is estimated from the historical frequencies matrix.
In this four-class case however, a new trading strategy is tested. The strategy
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is to buy (respectively sell) 100,000 Euros when Ŷ is positive (respectively
negative) and |Ŷ | > θ, where θ is a minimum threshold (we will use θ = 1 basis
point in what follows). Notice that the case θ = 0 corresponds to the strategy
tested in the binary case.

The rationale for choosing θ > 0 is clearly to avoid trading the stock when
the signal is noisy. In particular, when analysing the expectations of Y relative
to the different classes of X, it is always observed that the absolute value of
the expectation is high when X is in one of its extreme classes (CX

1 or CX
4 ). On

the other hand, when X is in one of the intermediary classes (CX
2 or CX

3 ) the
expectation of Y is close to 0 reflecting a noisy signal.

For each indicator X, the classes are defined as CX
1 =]−∞, Xa[, CX

2 =]Xa, Xb[,
CX

3 =]Xb, Xc[ and CX
4 =]Xc,+∞[. To compute Xa, Xb and Xc, the 3 following

classifications were tested:

• Quartile classification: the quartile Q1, Q2 and Q3 are computed in-sample
for each day, then averaged over the days. Xa, Xb and Xc corresponds, re-
spectively, to Q1, Q2 and Q3 ;

• K-means classification: the K-means algorithm (Hastie et al., 2011), ap-
plied to the in-sample data with k = 4, gives the centres G1,G2,G3 and G4

of the optimal (in the sense of the minimum within-cluster sum of squares)
clusters. Xa, Xb and Xc are given respectively by G1+G2

2 , G2+G3
2 and G3+G4

2 ;
• Mean-variance classification: the average X and the standard deviation
σ(X) are computed in the learning period. Then, Xa, Xb and Xc correspond,
respectively, to X − σ(X), X and X + σ(X).

Only the results based on the mean-variance classification are presented here,
since the results computed using the two other classifications are equivalent
and the differences do not affect the conclusions.

Figure 10.6 compares the profitabilities of the binary and the 4-class meth-
ods. For the 1-minute prediction, the results of the 4-class method are signifi-
cantly better. For the longer horizons, the results of both methods are equiva-
lent. Notice also that, using the best indicator, in the 4-class case, one obtains a
significant profit after paying the trading costs. Some more detailed results are
given in Appendix D.

The interesting result of this first section is that even when using the simplest
statistical learning method, the used indicators are informative and provide a
better prediction than random guessing. However, in most cases, the obtained
performances are too low to conclude about the market inefficiency. In order to
enhance the performances, the three indicators and their exponential moving
averages are combined in the next section.
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Figure 10.6 The quality of the 4-class prediction: For the 1-minute prediction,
the results of the 4-class method are significantly better than the results of the
binary one. For longer horizons, both strategies are not profitable when adding
the trading costs.

10.4 Linear regression

In this section, X denotes a 30-column matrix containing the 3 indicators and
their EMA(d) for d ∈

{
2i : i = 0, . . . , 8

}
, and Y denotes the target vector to

be predicted. The general approach is to calibrate, on the learning sample, a
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function f such that f (X) is “the closest possible” to Y , and hope that, after
the learning period, the relation between X and Y is still well described by f .
Hence f (X) would be a good estimator of Y . In the linear case, f is supposed
to be a linear function and the model errors are supposed to be independent
and identically distributed (Seber and Lee, 2003). Actually, the standard text-
book model posits a relationship of the form Y = Xβ + ε where ε is Gaussian
with mean 0 and variance σ2. For numerical reasons, the computations in what
follows will be done with z-scored (i.e. scaled and centered) data Xi−Xi

σ(Xi)
instead

of Xi.

10.4.1 Ordinary least squares (OLS)

The OLS method consists in estimating the unknown parameter β by minimiz-
ing a cost function Jβ equal to the sum of squares of the residuals between the
observed variable Y and the linear approximation Xβ. With the usual notation
‖ · ‖2 for the l2-norm, we have Jβ = ‖Y − Xβ‖22, and the estimator β̂ is thus
defined as

β̂ = arg min
β

(
‖Y − Xβ‖22

)
.

This criterion is reasonable if at each time i the row Xi of the matrix X and the
observation Yi of the vector Y represent independent random sample from their
populations. The cost function Jβ depends quadratically on β, and the critical
point equation yields the unique solution

β̂ = (tXX)−1tXY,

provided that tXX is invertible. The expectation, variance and mean squared
error of this estimator can be straightforwardly computed:

E
[̂
β|X

]
= β,

Var
[̂
β|X

]
= σ2(tXX)−1,

MSE
[̂
β
]

= E
[
‖̂β − β‖22|X

]
= σ2

∑
i

λ−1
i ,

where the λi’s are the eigenvalues of tXX. Notice that the OLS estimator is
unbiased, but can exhibit an arbitrary high MSE when the matrix tXX has small
eigenvalues.

In the out-of-sample period, Ŷ = Xβ̂ is used to predict the target. We resume
our case study where the trading strategy is to buy (respectively sell) 100,000
Euros when Ŷ > 0 (respectively Ŷ < 0). The binary case based on the order
book imbalance indicator is taken as a benchmark to measure the quality of
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Figure 10.7 The quality of the OLS prediction: The results of the OLS method
are not better than those of the binary one.

the predictions, since it performed best in the previous section. The linear re-
gression is computed using 30 indicators, including the order book imbalance,
thus one may intuitively expect that it will perform at least as well as the binary
case. Figure 10.7 compares the profitabilities of the two strategies. The detailed
statistics per stock are given in Appendix D. Similarly to the binary method,
the performance of the OLS method decreases as the horizon increases. But
the surprising result is that, when combining all the 30 indicators, the results
are not better than just applying the binary method to the order book imbalance
indicator. This leads to questioning the quality of the regression.

Figure 10.8 gives some example of the OLS regression coefficients. It is
clear that the coefficients are not stable over the time. For example, for some
period, the regression coefficient of the order book imbalance indicator is neg-
ative, which does not make any financial sense. It is also observed that, for
highly correlated indicators, the regression coefficients might be quite differ-
ent. This result also does not make sense, since one would expect to have close
coefficients for similar indicators. From a statistical view, this is explained by
the high MSE caused by the high colinearity between the variables. In the
following paragraphs, this numerical aspect is addressed, and some popular
solutions to the OLS estimation problems are tested.

10.4.2 Ridge regression

When solving a linear system AX = B, A being invertible, if a small change in
the coefficient matrix (A) or a small change in the right hand side (B) causes a
large change in the solution vector (X), the system is said to be ill-conditioned.
An example of an ill-conditioned system is given below:
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Figure 10.8 The quality of the OLS prediction: The graph on the left shows the
instability of the regression coefficient of the order book imbalance indicator over
the year 2013 for the stock Deutsche Telekom. The graph on the right shows, for
a random day, a very different coefficients for similar indicators; the order book
imbalance and its exponential moving averages.

[
1.000 2.000
3.000 5.999

]
×

[
x
y

]
=

[
4.000
11.999

]
=⇒

[
x
y

]
=

[
2.000
1.000

]
.

When making a small change in the matrix A:[
1.001 2.000
3.000 5.999

]
×

[
x
y

]
=

[
4.000
11.999

]
=⇒

[
x
y

]
=

[
−0.400
2.200

]
.

When making a small change in the vector B:[
1.000 2.000
3.000 5.999

]
×

[
x
y

]
=

[
4.001
11.999

]
=⇒

[
x
y

]
=

[
−3.999
4.000

]
.

Clearly, it is mandatory to take into consideration such effects before achieving
any computation when dealing with experimental data. Various measures of the
ill-conditioning of a matrix have been proposed (Riley, 1955), the most popular
one probably being (Kincaid, 2008) the condition number K(A) = ‖A‖2‖A−1‖2,
where ‖ · ‖2 with a matrix argument denotes the induced matrix norm corre-
sponding to the l2 vector norm : ‖A‖2 = maxX,0

‖AX‖2
‖X‖2

. The larger K(A), the
more ill-conditioned A is. The condition number K(A) gives a measure of the
sensitivity of the solution X relative to a perturbation of the matrix A or the
vector B. More precisely, it is proved that:
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Figure 10.9 The quality of the OLS prediction: The graph shows that the matrix
inverted when computing the OLS coefficient is ill-conditioned.

• if AX = B and A(X + δX) = B + δB then ‖δX‖2
‖X‖2
≤ K(A) ‖δB‖2

‖B‖2
;

• if AX = B and (A + δA)(X + δX) = B then ‖δX‖2
‖X+δX‖2

≤ K(A) ‖δA‖2
‖A‖2

.

Note that K(A) can be computed as the ratio of the maximum singular value of
A over the minimum singular value. Going back to our introductory example
above, we have K(A) = 49988. The small perturbations can thus be amplified
by a factor of almost 50000, causing the instability we have observed.

Figure 10.9 represents the singular values of tXX used to compute the re-
gression of the right graph of Figure 10.8. The graph shows rapidly decreasing
singular values. In particular, the condition number is higher than 80000!

This finding explains the instability observed on the previous section. Not
only is the performance of the OLS estimator not satisfactory, but the numer-
ical problems caused by the ill-conditioning of the matrix makes the result
numerically unreliable. One popular solution to enhance the stability of the es-
timation of the regression coefficients is the Ridge method. This method was
introduced independently by A. Tikhonov, in the context of solving ill-posed
problems, around the middle of the 20th century, and by A.E. Hoerl in the
context of linear regression. The Ridge regression consists of adding a regular-
ization term to the original OLS problem:

β̂Γ = arg min
β

(
‖Y − Xβ‖22 + ‖Γβ‖22

)
.

The new term gives preference to a particular solution with desirable proper-
ties. Γ is called the Tikhonov matrix and is usually chosen as a multiple of the
identity matrix: λRI, where λR ≥ 0. The new estimator of the linear regression
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coefficients is called the Ridge estimator, denoted by β̂R and defined as follows:

β̂R = arg min
β

(
‖Y − Xβ‖22 + λR‖β‖

2
2

)
.

Similarly to the OLS case, straightforward computations show that

β̂R = (tXX + λRI)−1tXY.

Setting Z =
(
I + λR(tXX)−1

)−1
gives β̂R = Zβ̂, and we can write after some

computations :

E
[̂
βR|X

]
= Zβ,

Var
[̂
βR|X

]
= σ2Z

(
tXX

)−1 tZ,

MSE
(̂
βR

)
= E

[
‖(Zβ̂ − β)‖22|X

]
= σ2

∑
i

λi

(λi + λR)2 + λ2
R

tβ(tXX + λRI)−2β.

The first element of the MSE corresponds exactly to the trace of the covariance
matrix of β̂R, i.e., the total variance of the parameters estimations. The second
element is the squared distance from β̂R to β and corresponds to the square of
the bias introduced when adding the ridge penalty. Note that, when increasing
the λR, the bias increases and the variance decreases. On the other hand, when
decreasing the λR, the bias decreases and the variance increases, both converg-
ing to their OLS values. To enhance the stability of the linear regression, one
should compute a λR, such that MSE

(̂
βR

)
≤MSE

(̂
β
)
. As proved in Hoerl and

Kennard (1970), this is always possible:

Theorem 10.1 (Hoerl) There always exist λR ≥ 0 such that MSE
(̂
βR

)
≤

MSE
(̂
β
)
.

From a statistical view, adding the Ridge penalty aims at reducing the MSE
of the estimator, and is particularly necessary when the covariance matrix is ill-
conditioned. From a numerical view, the new matrix to be inverted is tXX +λRI
with as eigenvalues (λi + λR)i. The new condition number satisfies K(tXX +

λRI) = λmax+λR
λmin+λR

≤
λmax
λmin

= K(tXX). Hence, the ridge regularization enhances
the conditioning of the problem and improves the numerical reliability of the
result.

From the previous, it can be seen that increasing the λR leads to numerical
stability and reduces the variance of the estimator, however it increases the
bias of the estimator. One has to chose the λR as a trade-off between those
two effects. Next, two estimators of λR are tested: the Hoerl-Kennard-Baldwin
(HKB) estimator Hoerl et al. (1975) and the Lawless-Wang (LW) estimator
Lawless and Wang (1976).
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Figure 10.10 The quality of the Ridge HKB prediction: The graphs show that the
results of the Ridge HKB method are not significantly different from those of the
OLS method (Figure 10.8). In this case, the λR is close to 0 and the effect of the
regularization is limited.

In order to compare the stability of the Ridge and the OLS coefficients,
Figure 10.10 and 10.11 represent the same test of Figure 10.8, applied, respec-
tively, to the Ridge HKB and the Ridge LW methods. In the 1-minute predic-
tion case, the graphs show that the Ridge LW method gives the most consistent
coefficients. In particular, the coefficient of the order book imbalance is always
positive (as expected from a financial point of view) and the coefficients of
similar indicators have the same signs.

Finally, Figure 10.12 summarizes the profitabilities of the corresponding
strategies of the two methods. Appendix D contains more detailed results per
stock.

From the results of this section, it can be concluded that adding a regular-
ization term to the regression enhances the predictions. The next section deals
with an other method of regularization based on dimension reduction.

10.4.3 Least Absolute Shrinkage and Selection Operator (LASSO)

In this paragraph, a simpler, yet very efficient transformation of the original
indicators’ space, the LASSO regression, is presented. The LASSO method
(Tibshirani, 1996) enhances the conditioning of the covariance matrix by re-
ducing the number of the used indicators. Mathematically, the LASSO regres-
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Figure 10.11 The quality of the Ridge LW prediction: The graph on the left shows
the stability of the regression coefficient of the order book imbalance over the
year 2013 for Deutsh Telecom. The coefficient is positive during all the period,
in line with the financial view. The graph on the right shows, for a random day, a
positive coefficients for the order book imbalance and its short term EMAs. The
coefficients decreases with the time; ie the state of the order book “long time ago”
has a smaller effect than its current state. More over, for longer than a 10-second
horizon, the coefficients become negative confirming the mean-reversion effect.

sion aims to produce a sparse set of regression coefficients – i.e. with some
coefficients exactly equal to 0. This is possible thanks to the l1-penalization.

More precisely, the LASSO regression consists in estimating the linear re-
gression coefficient as:

β̂L = arg min
β

(
‖Y − Xβ‖22 + λL‖β‖1

)
,

where ‖ · ‖1 denotes the l1-norm. Writing |βi| = βi+ − βi− and βi = βi+ + βi−,
with βi+ ≥ 0 and βi− ≤ 0, a classic quadratic problem with a linear constraints
is obtained and can be solved by a classic solver. We do not have any simple
estimator for the parameter λL. We will therefore in this study use a cross-
validation method (Hastie et al., 2011) to select the best value of λL out of
the set

{
T10−k : k ∈ {2, 3, 4, 5, 6}

}
, where T denotes the number of the observa-

tions.
Figure 10.13 compares, graphically, the Ridge and the LASSO regulariza-

tion, Figure 10.13 addresses the instability problems observed in figure 10.8
and Figure 10.15 summarizes the results of the strategies corresponding to
the LASSO method. The detailed results per stock are given in Appendix D.
The next paragraph introduces the natural combination of the Ridge and the
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Figure 10.12 The quality of the Ridge prediction: For the 1-minute and the
5-minute horizons the LW method performs significantly better than the OLS
method. However, for the 30-minute horizon, the HKB method gives the best
results. Notice that for the 1-minute case, the LW method improves the perfor-
mances by 58% compared to the OLS, confirming that stabilizing the regres-
sion coefficients (Figure 10.11 compared to Figure 10.8), leads to a better trading
strategies.

Figure 10.13 The quality of the LASSO prediction: The estimation graphs for
the Ridge (on the left) and the LASSO regression (on the right). Notice that the
l1−norm leads to 0 coefficients on the less important axis.

LASSO regression and presents this chapter’s conclusions concerning the mar-
ket inefficiency.
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Figure 10.14 The quality of the LASSO prediction: The graphs show that the
LASSO regression gives a regression coefficients in line with the financial view
(similarly to Figure 10.11). Moreover, the coefficients are sparse and simple for
the interpretation.

Figure 10.15 The quality of the LASSO prediction: Similar as the Ridge regres-
sion, the LASSO regression gives a better profitability than the OLS one. Notice
that for the 1-minute case, the LASSO method improves the performances by
165% compared to the OLS. Eventhough the LASSO metho is using less regres-
sors than the OLS method, (and thus less signal), the out of sample results are
significantly better in the LASSO case. This result confirms the importance of
the signal by noise ratio and highlights the importance of the regularization when
adressing an ill-conditioned problem.
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Figure 10.16 The quality of the EN prediction: The graphs show that the EN
regression gives a regression coefficients in line with the financial view (similarly
to Figure 10.11 and Figure 10.14).

10.4.4 ELASTIC NET (EN)

The EN regression aims to combine the regularization effect of the Ridge
method and the selection effect of the LASSO one. The idea is to estimate
the regression coefficients as:

β̂EN = arg min
β

(
‖Y − Xβ‖22 + λEN1‖β‖1 + λEN2‖β‖

2
2

)
We will not detail here the details of the estimation of β̂EN , which can be
found in Zou and Hastie (2005). In this study, the numerical estimation is com-
puted in two steps. In the first step λEN1 and λEN2 are selected via the cross-
validation method used in the previous section, and the problem is solved as
in the LASSO case. In the second step, the final coefficients are obtained by a
Ridge regression (λEN1 = 0) over the indicators which had a non-zero coeffi-
cient in the first step. The two-step method avoids useless l1-penalty effects on
the selected coefficients.

Figure 10.16 shows that the coefficients obtained by the EN method are in
line with the financial view and combine both regularization effects observed
when using the Ridge and the LASSO methods. Finally, the trading strategy
presented in the previous sections (trading only if Ŷ ≥ |θ| ) is applied to the
different regression methods. Figure 10.17 summarizes the obtained results.
Results for the three time horizons confirm that the predictions of all the reg-
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Figure 10.17 The quality of the EN prediction: The EN method gives the best
results compared to the other regressions.

ularized method (Ridge, LASSO, EN) are better than the OLS ones. As de-
tailed in the previous paragraphs, this is always the case when the indicators
are highly correlated. Moreover, the graphs show that the EN method gives
the best results compared to the other regressions. The 1-minute horizon re-
sults underline that, when an indicator has an obvious correlation with the tar-
get, using a simple method based exhaustively on this indicator, performs as
least as well as more sophisticated methods including more indicators. Finally,
the performance of the EN method for the 1-minute horizon suggest that the
market is inefficient for such horizon. The conclusion is less obvious for the
5-minute horizon. On the other hand, the 30-minute horizon results show that
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none of the tested methods could find any proof of the market inefficiency for
such horizon.

Interpreting these results, one could say that the market is inefficient in the
short term, and that this inefficiency progressively disappears as new informa-
tion becomes more widely spread.

10.5 Conclusion

This chapter is a large-scale, empirical study, over the EUROSTOXX 50 uni-
verse, testing the predictability of returns. The first part of the study shows that
the future returns are not independent of the past dynamic and state of the order
book. In particular, the order book imbalance indicator is informative and pro-
vides a reliable prediction of the returns. The second part of the study shows
that combining different order book indicators using adequate regressions lead
to trading strategies with good performances even when paying the trading
costs. In particular, our results demonstrate that the market is inefficient in the
short term and that a period of a few minutes is necessary for prices to adjust
to the new information present in the limit order book.



Appendix A
A catalogue of order types on financial markets

We list below some examples of orders that exist in different exchanges, along
with short descriptions:

• Market order: a market order is an order to buy or sell an asset at the bid or
offer price currently available in the marketplace.

• Limit order: a limit order is an order to buy or sell a contract at a specified
price or better.

• Good till date order (GTD): an order that remains in the marketplace until it
is executed or until the market closes on the date specified.

• Fill or kill order (FOK): an order that must be executed as a complete order
immediately, otherwise it is cancelled.

• Market on close order (MOC): a market order submitted to be executed as
close to the closing price as possible.

• Market on open order (MOO): a market order to be executed when the mar-
ket opens.

• Limit on close order (LOC): a limit order to be executed as a market order at
the closing price if the closing price is equal to or better than the submitted
limit price.

• Limit on open order (LOO): a limit order to be executed as a market order
when the the market opens if the opening price is equal to or better than the
limit price.

• Stop order: an order converted to a market buy or sell order once a specified
stop price is attained or penetrated.

• Pegged to market order: an order that is pegged to buy on the best offer and
sell on the best bid.

• Market to limit order: an order that is sent in as a market order to be executed
at the current best price. If the entire order is not immediately executed at
the market price, the remainder of the order is resubmitted as a limit order
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with the limit price set to the price at which the original order was executed
as a market order.

• Discretionary order: an order that allows the broker to delay the execution
at her discretion to try and get a better price.

• Iceberg order: an order whose (generally large) large volume is only par-
tially disclosed. Iceberg orders belong to the category of “hidden orders”,
whereby investors wishing to hide large-size orders, can do so by applying
the “hidden” attribute to a large volume order and hide the submitted quan-
tity from the market.

• Block order: a limit order with a minimum size of 50 contracts.
• Volume-weighted average price order (VWAP): bid or ask orders to be exe-

cuted at the volume weighted average price traded in the market of reference
for a given security, during a future period of time.



Appendix B
Limit order book data

An experimental approach to the study of limit order books lies in the avail-
ability of data. Most of the results presented in this book - in any case, those
we have produced ourselves - use the Thomson Reuters Tick History (TRTH)
database. All exchange-traded assets worldwide are present in the TRTH database,
where they are identified by their Reuters Identification Code (RIC). Similar to
most historical databases directly provided by the exchanges, the TRTH data
come into the form of two separate files, a trade file recording all transactions,
and an event file recording every change in the limit order book. Some very
specific information, such as traders’ identities, cannot be publicly disclosed
for obvious confidentiality reasons, but in theory, one could reconstruct the
sequence of order arrivals of all types using this trade and event files.

After explaining the algorithm used for the processing of limit order book
data, we describe the specific data sets that have been used at various places
in this book. That way, our results can be reproduced, extended, and possibly
challenged... based on the very same data sets we have used.

B.1 Limit order book data processing

Because one cannot distinguish market orders from cancellations just by ob-
serving changes in the limit order book (the ”event” file), and since the times-
tamps of the ”trade” and ”event” files are asynchronous, we use a matching
procedure to reconstruct the order book events.

In a nutshell, we proceed as follows for each stock and each trading day:

(i) Parse the ”event” file to compute order book state variations:

• If the variation is positive (volume at one or more price levels has in-
creased), then label the event as a limit order.
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Timestamp Side Level Price Quantity

33480.158 B 1 121.1 480
33480.476 B 2 121.05 1636
33481.517 B 5 120.9 1318
33483.218 B 1 121.1 420
33484.254 B 1 121.1 556
33486.832 A 1 121.15 187
33489.014 B 2 121.05 1397
33490.473 B 1 121.1 342
33490.473 B 1 121.1 304
33490.473 B 1 121.1 256
33490.473 A 1 121.15 237

Table B.1 Tick by tick data file sample. Note that the field “Level” does not
necessarily correspond to the distance in ticks from the best opposite quote as

there might be gaps in the book. Lines corresponding to the trades in table
B.2 are highlighted in italics.

• If the variation is negative (volume at one or more price levels has de-
creased), then label the event as a “likely market order”.

• If no variation—this happens when there is just a renumbering in the field
“Level” that does not affect the state of the book—do not count an event.

(ii) Parse the ”trade” file and for each trade:

(a) Compare the trade price and volume to likely market orders whose times-
tamps are in [tTr − ∆t, tTr + ∆t], where tTr is the trade timestamp and ∆t
is a predefined, market-dependent time window. For instance, we set
∆t = 3 s for CAC 40 stocks over the year 2011, based on the empirical
fact that the median delay in reporting trades is −900 ms: half of the
trades are reported in the ”trade” file 900 milliseconds or less before the
corresponding change appears in the ”event” file.

(b) Match the trade to the first likely market order with the same price and
volume and label the corresponding event as a market order—making
sure the change in order book state happens at the best price limits.

(c) Remaining negative variations are labeled as cancellations.

Doing so, we have an average matching rate of around 85% for CAC 40 stocks.
As a byproduct, one gets the sign of each matched trade, that is, whether it is
buyer- or seller-initiated.

Tables B.1 and B.2 below provide an example of the data files and of the
matching algorithm
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Timestamp Last Last quantity

33483.097 121.1 60
33490.380 121.1 214
33490.380 121.1 38
33490.380 121.1 48

Table B.2 Trades data file sample.

Remark B.1 As a comment, we note that, depending on the markets and
periods, this matching rate can deteriorate or improve. The possibility of using
hidden orders is definitely one of the main reasons why the matching rate is
not closer to 100%; the increase in trading frequency for the most liquid assets
such as equity index futures is another, since the occurrence of trades with the
same time stamps increases, while the time resolution of the TRTH database is
still the millisecond.

B.2 Chapter 2

In Chapter 2, we have produced our own empirical plots based on TRTH
database for the Paris stock exchange. We select four stocks: France Telecom
(FTE.PA) , BNP Paribas (BNPP.PA), Societe Générale (SOGN.PA) and Re-
nault (RENA.PA). For any given stocks, the data displays time-stamps, traded
quantities, traded prices, the first five best-bid limits and the first five best-ask
limits. Except when mentioned otherwise, all statistics are computed using all
trading days from Oct, 1st 2007 to May, 30th 2008, i.e. 168 trading days. On
a given day, orders submitted between 9:05am and 5:20pm are taken into ac-
count, i.e. first and last minutes of each trading days are removed.

B.3 Chapter 3

In Chapter 3, we use TRTH database for fourteen stocks traded on the Paris
stock exchange, from January 4th, 2010 to February 22nd, 2010. The four-
teen stocks under investigation are: Air Liquide (AIRP.PA, chemicals), Alstom
(ALSO.PA, transport and energy), Axa (AXAF.PA, insurance), BNP Paribas
(BNPP.PA, banking), Bouygues (BOUY.PA, construction, telecom and media),
Carrefour (CARR.PA, retail distribution), Danone (DANO.PA, milk and cereal
products), Lagardére (LAGA.PA, media), Michelin (MICP.PA, tires manufac-
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turing), Peugeot (PEUP.PA, vehicles manufacturing), Renault (RENA.PA, ve-
hicles manufacturing), Sanofi (SASY.PA, healthcare), Vinci (SGEF.PA, con-
struction and engineering), Ubisoft (UBIP.PA, video games). All these stocks
except Ubisoft were included in the CAC 40 French index in January and
February 2010, i.e. they are among the largest market capitalizations and most
liquid stocks on the Paris stock exchange.

B.4 Chapter 4

B.4.1 Distribution of durations

In section 4.3, we use TRTH database for several assets of various types:

• BNP Paribas (RIC: BNPP.PA): 7th component of the CAC40 during the
studied period

• Peugeot (RIC: PEUP.PA): 38th component of the CAC40 during the studied
period

• Lagardère SCA (RIC: LAGA.PA): 33th component of the CAC40 during
the studied period

• Dec.2009 futures on the 3-month Euribor (RIC: FEIZ9)

• Dec.2009 futures on the Footsie index (RIC: FFIZ9)

For each trading day between September 10th, 2009 and September 30th, 2009
(i.e. 15 days of trading), we use 4 hours of data, from 9:30 am to 1:30 pm. This
time frame is convenient for european equity markets because it avoids the
opening of American markets and the consequent increase of activity.

In table B.3, we give for each studied order book the number of market and
limit orders detected on our 15 4-hour samples. On the studied period, market
activity ranges from 2.7 trades per minute on the least liquid stock (LAGA.PA)
to 14.2 trades per minute on the most traded asset (Footsie futures).

B.4.2 Lagged correlation matrix

In section 4.4, the data set comprises the 30 constituents of the DAX index
traded on the Frankfurt Stock Exchange, and results are computed using four
months of tick-by-tick data, from February to June 2014.
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Code Number of limit orders Number of market orders

BNPP.PA 321,412 48,171

PEUP.PA 228,422 23,888

LAGA.PA 196,539 9,834

FEIZ9 110,300 10,401

FFIZ9 799,858 51,020

Table B.3 Number of limit and markets orders recorded on 15 samples of
four hours (Sep 10th to Sep 30th, 2009 ; 9:30am to 1:30pm) for 5 different

assets (stocks, index futures, bond futures)

B.5 Chapter 9

The dataset used for the simulations presented in Chapter 9 consists of TRTH
database for the CAC 40 index constituents in March 2011 (23 trading days),
namely, tick-by-tick order book data up to 10 price levels, and trades. In order
to avoid the diurnal seasonality in trading activity (and the impact of the US
market open on European stocks), we restrict our attention to the time window
[9 : 30–14 : 00] Paris time.



Appendix C
Some useful mathematical notions

C.1 Point processes

Point processes are a class of stochastic processes that appear in a natural fash-
ion when a phenomenon is best described by events occuring at points in time
separated by intervals of inactivity. A reference book on the subject is (?). In
this brief appendix, we recall some standard notions and notations for point
processes.

Definition C.1 (Point process) A point process is an increasing sequence
(Tn)n∈N of positive random variables defined on a measurable space (Ω,F ,P).

We will restrict our attention to processes that are nonexplosive, that is, for
which limn→∞ Tn = ∞. To each realization (Tn) corresponds a counting func-
tion (N(t))t∈R+ defined by

N(t) = n if t ∈ [Tn,Tn+1[, n ≥ 0. (C.1)

(N(t)) is a right continuous step function with jumps of size 1 and carries the
same information as the sequence (Tn), so that (N(t)) is also called a point
process.

Definition C.2 (Multivariate point process) A multivariate point process (or
marked point process) is a point process (Tn) for which a random variable Xn is
associated to each Tn. The variables Xn take their values in a measurable space
(E,E).

We will restrict our attention to the case where E = {1, . . . ,M}, m ∈ N∗. For
each m ∈ {1, . . . ,M}, we can define the counting processes

Nm(t) =
∑
n≥1

I(Tn ≤ t)I(Xn = i). (C.2)
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We also call the process

N(t) = (N1(t), . . . ,NM(t))

a multivariate point process.

Definition C.3 (Intensity of a point process) A point process (N(t))t∈R+ can be
completely characterized by its (conditional) intensity function, λ(t), defined
as

λ(t) = lim
u→0

P [N(t + u) − N(u) = 1|Ft]
u

, (C.3)

where Ft is the history of the process up to time t, that is, the specification of
all points in [0, t]. Intuitively

P [N(t + u) − N(u) = 1|Ft] = λ(t) u + o(u), (C.4)

P [N(t + u) − N(u) = 0|Ft] = 1 − λ(t)u + o(u), (C.5)

P [N(t + u) − N(u) > 1|Ft] = o(u). (C.6)

This is naturally extended to the multivariate case by setting for each m ∈
{1, . . . ,M}

λm(t) = lim
u→0

P [Nm(t + u) − Nm(u) = 1|Ft]
u

. (C.7)

Definition C.4 A point process is stationary when for every r ∈ N∗ and all
bounded Borel subsets A1, . . . , Ar of the real line, the joint distribution of

{N(A1 + t), . . . ,N(Ar + t)}

does not depend on t.

C.1.1 Hawkes processes

The main definitions and fundamental properties of Hawkes processes have
been given in Chapter 8 Section C.1.1. Here, we make precise some more spe-
cific points: the construction of a Lyapunov function for Markovian Hawkes
processes, and the calibration of Hawkes processes based on maximum likeli-
hood estimations.

Lyapunov functions for Hawkes processes
For the sake of completeness, an explicit construction of a Lyapunov function
for a multi-dimensional Hawkes processes N = (N i) with intensities

λi(t) = λi
0 +

∑
j

∫ t

0
αi je−βi j(t−s)dN j(s)
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is provided here.
Denote as in Proposition 8.2

µi j(t) =

∫ t

0
αi je−βi j(t−s)dN j(s),

so that there holds

λi(t) = λi
0 +

∑
j

µi j(t). (C.8)

We assume the following

∀i, j, αi j > 0, βi j > 0, (C.9)

as well as the spectral condition (8.10)

ρ (A) < 1. (C.10)

The infinitesimal generator associated to the Markovian process (µi j), 1 6
i, j 6 D, is the operator

LH F(µ) =
∑

j

λ j(F(µ + ∆ j(µ)) − F(µ)) −
∑
i, j

βi jµ
i j ∂F
∂µi j ,

where µ is the vector with components µi j and the λ j are as in (C.8). The
notation ∆ j(µ) characterizes the jumps in those of the entries in µ that are
affected by a jump of the process N j. For a fixed index j, it is given by the
vector with entries αi j at the relevant spots, and zero entries elsewhere.

A Lyapunov function for the associated semi-group is sought under the form

V(µ) =
∑
i, j

δi jµ
i j (C.11)

(since the intensities are always positive, a linear function will be coercive).
Assuming (C.11), there holds

LHV =
∑

j

λ j(
∑

i

δi jαi j) −
∑
i, j

βi jµ
i jδi j

or

LHV =
∑
i, j

(λ j
0 +

∑
k

µ jk)δi jαi j − βi jµ
i jδi j. (C.12)

At this stage, it is convenient to introduce ε the maximal eigenvector of the
matrix A (introduced in Proposition 8.3) with entries

Ai j =
α ji

β ji
.

Denote by κ the associated maximal eigenvalue. By Assumption (8.10), one
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has that 0 < κ < 1 and furthermore, by Perron-Frobenius theorem, there holds:
∀i, εi > 0.

Assuming that

δi j ≡
εi

βi j
, (C.13)

the expression for V becomes

V(µ) =
∑
i, j

εi
µi j

βi j
. (C.14)

Plugging (C.14) in (C.12) yields

LHV =
∑
i, j

λ
j
0δi jαi j +

∑
i, j,k

µ jkεi
αi j

βi j
−

∑
j,k

β jkµ
jkδ jk

=
∑
i, j

λ
j
0δi jαi j + (κ − 1)

∑
j,k

εkµ
jk,

using the identity
∑

j A jiεi = κε j. A comparison with (C.14) easily yields the
upper bound

LHV 6 −γV + C, (C.15)

with γ = (1−K)βmin, βmin ≡ In fi, j(βi j) > 0 by assumption, and C =
∑

i, j λ
j
0δi jαi j ≡

κε.λ0.
The following result generalizes the form of Lyapunov functions beyond

Equation (C.11)1:

Lemma C.5 Under the standing assumptions (8.10) and (C.9), one can con-
struct a Lyapunov function of arbitrary high polynomial growth at infinity.

Proof Let n ∈ N∗, and V be the function defined in (C.14). Raising V to the
power n yields

LH (Vn) (µ) =
∑

j

λ j(Vn(µ + ∆ j(µ)) − Vn(µ)) − nVn−1(
∑
i, j

βi jµ
i j ∂V
∂µi j ). (C.16)

Upon factoring Vn(µ + ∆ j(µ)) − Vn(µ):

Vn(µ + ∆ j(µ)) − Vn(µ) = (V(µ + ∆ j(µ)) − V(µ))(
n−1∑
k=0

Vn−1−k(µ + ∆ j(µ))Vk(µ)),

the linearity of V yields the following expression

Vn(µ + ∆ j(µ)) − Vn(µ) = nVn−1(µ)(V(µ + ∆ j(µ)) − V(µ)) +M j (V) (µ),

1 See also the construction of an exponentially growing Lyapunov function in Zheng et al.
(2014) or Clinet (2015)
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where M jV(µ) can be bounded by a polynomial function of order n − 1 at
infinity in µ. Therefore, one can rewrite (C.16) as follows

LH (Vn) (µ) = (nVn−1LH (V))(µ) +M (V) (µ), (C.17)

whereM (V) (µ) is a polynomial of order n − 1 in µ. Combining (C.14) with
(C.17) shows that Vn is also a Lyapunov function for the Hawkes process. �

Maximum-likelihood estimation
We provide some elements for the calibration on market data of Hawkes pro-
cesses with exponential kernels. Let us consider a sample realization on [0,T ]
of a D-dimensional (generalized) Hawkes process, for which the m-th coordi-
nate Nm admits an intensity of the form:

λm(t) = λm
0 (t) +

D∑
n=1

∫ t

0

P∑
j=1

αmn, je−βmn, j(t−s)dNn(s), (C.18)

where λm
0 : R+ → R+ is a deterministic (not necessarily constant) function, the

number P of exponential kernels is a fixed integer, and for all m, n = 1, . . . ,D,
and j = 1, . . . , P, αmn, j and βmn, j are positive constants. We will develop the
estimation procedure for this process, although in the simpler version of this
model used throughout the book, we have set P = 1 and λm

0 (t) = λm
0 a positive

constant, so that the general defining equation in C.18 reduces to the usual
expression:

λm(t) = λm
0 +

D∑
n=1

∫ t

0
αmne−βmn(t−s)dNn(s). (C.19)

(when P = 1, αmn,1, βmn,1 are identical to the αmn, βmn previously introduced).
Let {Ti,Zi}i=1,...,N be the ordered pool of all N observed events of the sample,
where Zi ∈ {1, . . . ,D} denotes the type of the observed event at time Ti.

Let {T m
i }i=1,...,Nm be the extracted ordered sequence of the Nm observed events

of type m. The log-likelihood lnL of the multidimensional Hawkes process
can be computed as the sum of the likelihood of each coordinate, and is thus
written:

lnL({N(t)}t≤T ) =

D∑
m=1

lnLm({Nm(t)}t≤T ), (C.20)

where each term is defined by:

lnLm({Nm(t)}t≤T ) =

∫ T

0
(1 − λm(s)) ds +

∫ T

0
ln λm(s)dNm(s). (C.21)
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This partial log-likelihood can be computed as:

lnLm({Nm(t)}t≤T ) = T − Λm(0,T ) (C.22)

+
∑

i:Ti≤T

1{Zi=m} ln

λm
0 (Ti) +

D∑
n=1

P∑
j=1

∑
T n

k<Ti

αmn, je−βmn, j(Ti−T n
k )

 ,
where Λm(0,T ) =

∫ T

0
λm(s)ds is the integrated intensity. Following Ozaki

(1979), we compute this in a recursive way by observing that, thanks to the
exponential form of the kernel:

Rmn
j (l) =

∑
T n

k<T m
l

e−βmn, j(T m
l −T n

k )

=


e−βmn, j(T m

l −T m
l−1)Rmn

j (l − 1) +
∑

T m
l−1≤T n

k<T m
l

e−βmn, j(T m
l −T n

k ) if m , n,

e−βmn, j(T m
l −T m

l−1)
(
1 + Rmn

j (l − 1)
)

if m = n.
(C.23)

The final expression of the partial log-likelihood may thus be written:

lnLm({Nm(t)}t≤T ) = T −
∫ T

0
λm

0 (s)ds −
∑

i:Ti≤T

M∑
n=1

P∑
j=1

αmn, j

βmn, j

(
1 − e−βmn, j(T−Ti)

)
+

∑
l:T m

l ≤T

ln

λm
0 (T m

l ) +

M∑
n=1

P∑
j=1

αmn, jRmn
j (l)

 , (C.24)

where Rmn
j (l) is defined with equation (C.23) and Rmn

j (0) = 0.

Testing the calibration
A general result on point processes theory states that a given non-Poisson pro-
cess can be transformed into a homogeneous Poisson process by a stochastic
time change. A standard monovariate version of this result and its proof can
be found in (Brémaud, 1981b, Chapter II, Theorem T16). Bowsher (2007) has
shown that this can be generalized in a multidimensional setting, which pro-
vides specification tests for multidimensional Hawkes models. We reproduce
here its result, with slightly modified notations to accommodate our notations.

Theorem C.6 ((Bowsher, 2007, Theorem 4.1)) Let N be a D-variate point
process on R∗+ with natural filtration {F N

t }t∈R+
, and D ≥ 1. Also let {Ft}t∈R+

be
a history of N (that is, F N

t ⊆ Ft,∀t ≥ 0), and suppose, for each m, that Nm has
the Ft-intensity λm where λm satisfies

∫ ∞
0 λm(s)ds = ∞ almost surely. Define

for each m and all t ≥ 0 the Ft-stopping time τm(t) as the (unique) solution to∫ τm(t)

0
λm(u)du = t. (C.25)
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Then the D point processes {Ñm}m=1,...,D defined by Ñm(t) = Nm(τm(t)), ∀t ≥ 0,
are independent Poisson processes with unit intensity. Furthermore, the dura-
tions of each Poisson process Ñm are given by

Λm(T m
i−1,T

m
i ) =

∫ T m
i

T m
i−1

λm(s)ds, ∀i ≥ 2. (C.26)

Let us compute the integrated intensity of the m-th coordinate of a multi-
dimensional Hawkes process between two consecutive events T m

i−1 and T m
i of

type m:

Λm(T m
i−1,T

m
i ) =

∫ T m
i

T m
i−1

λm(s)ds

=

∫ T m
i

T m
i−1

λm
0 (s)ds +

D∑
n=1

P∑
j=1

∑
T n

k<T m
i−1

αmn, j

βmn, j

[
e−βmn, j(T m

i−1−T n
k ) − e−βmn, j(T m

i −T n
k )
]

+

D∑
n=1

P∑
j=1

∑
T m

i−1≤T n
k<T m

i

αmn, j

βmn, j

[
1 − e−βmn, j(T m

i −T n
k )
]
. (C.27)

As in the log-likelihood computation, following Ozaki (1979), we observe that:

Amn
j (i − 1) =

∑
T n

k<T m
i−1

e−βmn, j(T m
i−1−T n

k ) (C.28)

= e−βmn, j(T m
i−1−T m

i−2)Amn
j (i − 2) +

∑
T m

i−2≤T n
k<T m

i−1

e−βmn, j(T m
i−1−T n

k ),

so that the integrated density can be written for all i ≥ 2 :

Λm(T m
i−1,T

m
i ) =

∫ T m
i

T m
i−1

λm
0 (s)ds +

D∑
n=1

P∑
j=1

αmn, j

βmn, j

[
Amn

j (i − 1)
(
1 − e−βmn, j(T m

i −T m
i−1)

)
+

∑
T m

i−1≤T n
k<T m

i

(
1 − e−β

mn
j (T m

i −T n
k )
) ]
, (C.29)

where Amn
j is defined as in equation (C.28) with for all j = 1, . . . , P, Amn

j (0) = 0.
Hence, simply following the method in Bowsher (2007), we can easily de-

fine tests to check the goodness-of-fit of a Hawkes model to some empirical
data. Since the integrated intensity Λm(T m

i−1,T
m
i ) is a time interval of a ho-

mogeneous Poisson Process, we can test for each m = 1, . . . ,D: (i) whether
the variables

(
Λm(T m

i−1,T
m
i )

)
i≥2

are exponentially distributed ; (ii) whether the

variables
(
(Λm(T m

i−1,T
m
i )

)
i≥2

are independent.
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C.2 Ergodic theory for Markov processes

The ergodicity of a Markov process is a fundamental notion related to the pos-
sible identification of averages over time or space. Loosely speaking, ergod-
icity characterizes those processes whose sample paths visit the state space in
a uniform (with respect to some measure) manner. Conditions for ergodicity
and convergence towards an invariant measure are provided by the theory of
stochastic stability, for which we refer to Meyn and Tweedie (2009) and simply
recall some important and useful results.

C.2.1 Stochastic stability

Let (Qt)t≥0 be the transition probability function of a Markov process at time t,
that is

Qt(x, E) := P [X(t) ∈ E|X(0) = x] , t ∈ R+, x ∈ S, E ⊂ S, (C.30)

where S is the state space of the process. An aperiodic, irreducible Markov
process is ergodic if an invariant probability measure π exists and

lim
t→∞
||Qt(x, .) − π(.)|| = 0,∀x ∈ S, (C.31)

where ||.|| designates for a signed measure ν the total variation norm defined as

||ν|| := sup
f :| f |<1

|ν( f )| = sup
E∈B(S)

ν(E) − inf
E∈B(S)

ν(E). (C.32)

In (C.32), B(S) is the Borel σ-field generated by S, and for a measurable
function f on S, ν( f ) :=

∫
S

f dν.
V-uniform ergodicity. A Markov process is said V-uniformly ergodic if there

exists a coercive function V > 1, an invariant distribution π, and constants r,
0 < r < 1, and R < ∞ such that

||Qt(x, .) − π(.)|| ≤ RrtV(x), x ∈ S, t ∈ R+. (C.33)

V−uniform ergodicity is studied via the infinitesimal generator of the Markov
process. Indeed, it is shown in Meyn and Tweedie (2009, 1993) that it is equiv-
alent to the existence of a coercive function V satisfying the Lyapunov-type
condition

LV(x) ≤ −βV(x) + γ1C, (Geometric drift condition) (C.34)

for some positive constants β and γ, and where C is a petite set. (Theorems
6.1 and 7.1 in Meyn and Tweedie (1993).) Condition (C.34) says that the larger
V(X(t)), the stronger X is pulled back towards the center of the state space S.
We refer to Meyn and Tweedie (2009) for further details.
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Due to the topology of the state space, a Lyapunov function is often obtained
under the form

LV(x) ≤ −βV(x) + γ1K, (Geometric drift condition), (C.35)

where K is a compact set rather than a petite set. Hence, it is important to have
criteria showing that compact sets are indeed petite sets. Such criteria are pro-
vided in Chapter 6 of Meyn and Tweedie (2009), and can be obtained directly
in specific examples. For instance, the case of countable state space is well-
known and covers the zero-intelligence model in Chapter 6; as for Hawkes
processes, such a result is proven in Zheng et al. (2014), and the proof given
there easily extends to the case of a Hawkes process-driven limit order book.

C.2.2 The Ergodic Theorem and Martingale Convergence
Theorem

The Ergodic Theorem for Markov processes states the following:

Theorem C.7 (Meyn and Tweedie (2009)Maruyama and Tanaka (1959)Cat-
tiaux et al. (2012)) Let X be an ergodic Markov process. Denote by Π its
unique invariant probability measure, and let H be in L1(Π(dX)). Then, there
holds:

a.s.
lim

t→+∞

1
t

∫ t

0
G(X(t))dt =

∫
G(x)Π(dx).

The Martingale Convergence Theorem states a general invariance principle
for conveniently rescaled martingales under minimal assumptions of conver-
gence for the quadratic variation and jump sizes. We quote below the version
that is used in this book.

Theorem C.8 (Theorem 7.1.4 in Ethier and Kurtz (2005), Theorem 2.1 in
Whitt (2007)) For n > 1, let Mn ≡

(
Mn,1, ...,Mn,k

)
be a local martingale

in the Skorohod space Dk with respect to a filtration (Fn,t : t > 0), satisfying
Mn(0) = 0. Let C ≡

(
Ci j

)
be a covariance matrix, i.e. a nonnegative-definite

symmetric matrix of real numbers.
Assume the following: Mn is locally square-integrable. The expected value

of the maximum jump in the predictable quadratic variation
〈
Mn,i,Mn, j

〉
and of

the maximum squared jump of Mn are asymptotically negligible. Furthermore〈
Mn,i,Mn, j

〉
(t)⇒ ci j(t) inR as n→ ∞ (C.36)

for each t > 0 and for each pair i, j.
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Conclusion:

Mn ⇒M in Dk as n→ ∞, (C.37)

where M is a k-dimensional Wiener process with mean vector E (M(t)) = 0
and covariance matrix E

(
M(t)M(t)tr) = Ct.



Appendix D
Comparison of various prediction methods

This appendix presents the numerical results for the various prediction meth-
ods presented and back-tested in CHapter 10.

D.1 Results for the binary classification

186
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Order book imbalance Flow quantity Past return

Stock AUC Accuracy AUC Accuracy AUC Accuracy

INTERBREW 0.54 0.54 0.53 0.53 0.51 0.51
AIR LIQUIDE 0.56 0.56 0.53 0.53 0.51 0.51
ALLIANZ 0.61 0.61 0.51 0.51 0.53 0.53
ASML Holding NV 0.56 0.56 0.53 0.53 0.51 0.51
BASF AG 0.54 0.54 0.52 0.52 0.50 0.50
BAYER AG 0.54 0.54 0.53 0.53 0.51 0.51
BBVARGENTARIA 0.54 0.54 0.53 0.53 0.51 0.51
BAY MOT WERKE 0.54 0.54 0.53 0.53 0.51 0.51
DANONE 0.56 0.56 0.53 0.53 0.51 0.51
BNP PARIBAS 0.53 0.53 0.52 0.52 0.51 0.51
CARREFOUR 0.55 0.55 0.53 0.53 0.51 0.51
CRH PLC IRLANDE 0.62 0.62 0.58 0.58 0.53 0.53
AXA 0.55 0.55 0.51 0.51 0.52 0.52
DAIMLER CHRYSLER 0.54 0.54 0.53 0.53 0.51 0.51
DEUTSCHE BANK AG 0.53 0.53 0.52 0.52 0.51 0.51
VINCI 0.54 0.54 0.53 0.53 0.51 0.51
DEUTSCHE TELEKOM 0.56 0.56 0.52 0.52 0.51 0.51
ESSILOR INTERNATIONAL 0.56 0.56 0.54 0.54 0.50 0.50
ENEL 0.63 0.63 0.51 0.51 0.55 0.55
ENI 0.64 0.64 0.51 0.51 0.56 0.56
E.ON AG 0.58 0.58 0.51 0.51 0.51 0.51
TOTAL 0.54 0.54 0.52 0.52 0.51 0.51
GENERALI ASSIC 0.62 0.62 0.50 0.50 0.54 0.54
SOCIETE GENERALE 0.52 0.52 0.51 0.51 0.51 0.51
GDF SUEZ 0.56 0.56 0.52 0.52 0.50 0.50
IBERDROLA I 0.56 0.56 0.54 0.54 0.51 0.51
ING 0.53 0.53 0.53 0.53 0.51 0.51
INTESABCI 0.60 0.60 0.51 0.51 0.53 0.53
INDITEX 0.59 0.59 0.55 0.55 0.50 0.50
LVMH 0.59 0.59 0.52 0.52 0.52 0.52
MUNICH RE 0.58 0.58 0.52 0.52 0.51 0.51
LOREAL 0.60 0.60 0.53 0.53 0.52 0.52
PHILIPS ELECTR. 0.56 0.56 0.55 0.55 0.50 0.50
REPSOL 0.57 0.57 0.54 0.54 0.51 0.51
RWE ST 0.54 0.54 0.53 0.53 0.51 0.51
BANCO SAN CENTRAL HISPANO 0.54 0.54 0.53 0.53 0.51 0.51
SANOFI 0.54 0.54 0.53 0.53 0.50 0.50
SAP AG 0.54 0.54 0.52 0.52 0.51 0.51
SAINT GOBAIN 0.54 0.54 0.53 0.53 0.51 0.51
SIEMENS AG 0.54 0.54 0.53 0.53 0.51 0.51
SCHNEIDER ELECTRIC SA 0.54 0.54 0.52 0.52 0.51 0.51
TELEFONICA 0.59 0.59 0.53 0.53 0.51 0.51
UNICREDIT SPA 0.57 0.57 0.50 0.50 0.52 0.52
UNILEVER CERT 0.56 0.56 0.52 0.52 0.51 0.51
VIVENDI UNIVERSAL 0.57 0.57 0.53 0.53 0.51 0.51
VOLKSWAGEN 0.57 0.57 0.52 0.52 0.51 0.51

Table D.1 The quality of the binary prediction: 1-minute prediction AUC and
accuracy per stock
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D.2 Results for the four-class classification
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Notice that the nans on the tables of the Appendix 2 correspond to the cases
where |Ŷ | is always lower than θ thus no positions are taken.

D.3 Performances of the OLS method

D.4 Performances of the ridge method
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D.5 Performances of the LASSO method
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Order book imbalance Flow quantity Past return

Stock Gain σ(Gain) Gain σ(Gain) Gain σ(Gain)

INTERBREW 1388 1201 1107 1308 174 1264
AIR LIQUIDE 1603 1112 996 1005 169 936
ALLIANZ 2775 1219 221 1107 638 1175
ASML Holding NV 1969 1278 1244 1316 190 1419
BASF AG 1156 1102 921 1311 2 1185
BAYER AG 1269 1055 1142 1251 289 1296
BBVARGENTARIA 1954 1537 1866 1700 595 1934
BAY MOT WERKE 1330 1219 1240 1325 347 1394
DANONE 1591 993 958 1143 231 1196
BNP PARIBAS 1120 1608 831 1620 526 1911
CARREFOUR 1878 1572 1461 1601 600 1665
CRH PLC IRLANDE 4144 1881 2853 1691 1496 1542
AXA 2003 1373 674 1428 582 1603
DAIMLER CHRYSLER 1380 1275 1130 1228 208 1390
DEUTSCHE BANK AG 1251 1372 905 1405 310 1672
VINCI 1410 1113 1252 1211 376 1113
DEUTSCHE TELEKOM 1586 1416 848 1196 308 1298
ESSILOR INTERNATIONAL 1762 1315 1523 1295 12 1281
ENEL 3723 1655 295 1384 1219 1307
ENI 2996 1185 321 1161 1109 1201
E.ON AG 2245 1193 481 1722 323 1445
TOTAL 1256 956 831 977 326 950
GENERALI ASSIC 3977 1764 177 1324 1210 1577
SOCIETE GENERALE 1195 1763 853 1896 643 2060
GDF SUEZ 2031 1227 934 1389 156 1355
IBERDROLA I 2220 1433 1626 1514 566 1403
ING 1511 1564 1493 1491 217 1720
INTESABCI 4019 1911 153 1787 1048 1954
INDITEX 2481 1452 1742 1525 145 1344
LVMH 2445 1220 533 1148 613 1267
MUNICH RE 1895 1107 791 1485 194 1006
LOREAL 2367 1109 894 1242 438 1220
PHILIPS ELECTR. 1978 1173 1670 1565 182 1251
REPSOL 2694 1451 1700 1607 292 1558
RWE ST 1323 1348 1475 1880 307 1747
BANCO SAN CENTRAL HISPANO 1717 1535 1393 1577 383 1684
SANOFI 1368 1040 1118 1123 107 1190
SAP AG 1225 1022 939 1071 117 1084
SAINT GOBAIN 1612 1359 1209 1449 455 1607
SIEMENS AG 1108 983 967 1196 164 1124
SCHNEIDER ELECTRIC SA 1419 1294 1014 1275 379 1436
TELEFONICA 2694 1267 1156 1341 290 1194
UNICREDIT SPA 3039 2025 382 1850 683 2002
UNILEVER CERT 1402 766 551 860 222 949
VIVENDI UNIVERSAL 2142 1223 1114 1391 244 1326
VOLKSWAGEN 2044 1440 1165 1397 225 1359

Table D.2 The quality of the binary prediction: The daily gain average and
standard deviation for the 1-minute prediction (without trading costs)
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Order book imbalance Flow quantity Past return

Stock Gain σ(Gain) Gain σ(Gain) Gain σ(Gain)

INTERBREW -191 1189 -788 1325 -1222 1531
AIR LIQUIDE 81 1112 -980 1057 -1211 1164
ALLIANZ 1141 1063 -1199 1309 -952 1162
ASML Holding NV 370 1179 -697 1335 -1301 1574
BASF AG -422 1064 -955 1338 -1298 1558
BAYER AG -363 1002 -734 1249 -1122 1503
BBVARGENTARIA 303 1477 -58 1681 -910 2027
BAY MOT WERKE -260 1176 -530 1263 -1256 1510
DANONE -40 963 -906 1164 -1246 1369
BNP PARIBAS -402 1596 -1022 1618 -1115 1998
CARREFOUR 251 1486 -492 1606 -975 1690
CRH PLC IRLANDE 2971 1714 934 1612 -27 1549
AXA 313 1299 -1064 1488 -1152 1560
DAIMLER CHRYSLER -231 1243 -748 1235 -1206 1529
DEUTSCHE BANK AG -394 1368 -959 1423 -1277 1819
VINCI -170 1072 -656 1224 -1093 1324
DEUTSCHE TELEKOM 50 1407 -949 1225 -1128 1516
ESSILOR INTERNATIONAL 185 1265 -389 1296 -1104 1575
ENEL 2151 1456 -1069 1610 -329 1198
ENI 1513 971 -1136 1375 -281 1046
E.ON AG 583 1096 -1108 1887 -1047 1592
TOTAL -362 934 -1058 1024 -1278 1206
GENERALI ASSIC 2369 1565 -1403 1539 -484 1490
SOCIETE GENERALE -405 1718 -846 1901 -968 2002
GDF SUEZ 402 1140 -951 1438 -1249 1513
IBERDROLA I 762 1332 -312 1503 -1094 1475
ING -186 1519 -450 1470 -1186 1890
INTESABCI 2333 1715 -1081 1822 -517 1820
INDITEX 1110 1375 -195 1535 -1155 1457
LVMH 831 1119 -1183 1296 -928 1235
MUNICH RE 366 1011 -1019 1490 -1260 1177
LOREAL 816 985 -797 1274 -982 1236
PHILIPS ELECTR. 377 1113 -272 1575 -1255 1490
REPSOL 1233 1308 -184 1585 -1188 1713
RWE ST -182 1251 -399 1864 -1122 1960
BANCO SAN CENTRAL HISPANO 205 1431 -492 1566 -1064 1822
SANOFI -279 998 -720 1127 -1382 1454
SAP AG -340 1000 -944 1093 -1428 1277
SAINT GOBAIN -48 1326 -694 1463 -1060 1655
SIEMENS AG -472 966 -898 1209 -1353 1363
SCHNEIDER ELECTRIC SA -162 1263 -872 1296 -1339 1493
TELEFONICA 1124 1130 -686 1342 -1044 1257
UNICREDIT SPA 1434 1940 -896 1953 -738 2067
UNILEVER CERT -253 730 -1246 938 -1344 1142
VIVENDI UNIVERSAL 547 1113 -804 1386 -1186 1452
VOLKSWAGEN 446 1373 -785 1408 -979 1584

Table D.3 The quality of the binary prediction: The daily gain average and
standard deviation for the 1-minute prediction (with trading costs)
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Order book imbalance Flow quantity Past return

Stock AUC Accuracy AUC Accuracy AUC Accuracy

INTERBREW 0.58 0.59 0.50 0.42 0.50 0.50
AIR LIQUIDE 0.71 0.72 nan nan 0.50 0.58
ALLIANZ 0.69 0.69 0.50 0.54 0.61 0.61
ASML Holding NV 0.60 0.60 0.50 0.54 0.48 0.48
BASF AG 0.60 0.60 nan nan 0.49 0.50
BAYER AG 0.53 0.55 0.50 0.59 0.50 0.56
BBVARGENTARIA 0.57 0.57 0.55 0.55 0.55 0.56
BAY MOT WERKE 0.57 0.58 0.55 0.55 0.54 0.55
DANONE 0.60 0.60 nan nan 0.58 0.58
BNP PARIBAS 0.58 0.59 0.50 0.50 0.52 0.53
CARREFOUR 0.59 0.60 0.50 0.56 0.56 0.56
CRH PLC IRLANDE 0.70 0.70 0.64 0.64 0.55 0.56
AXA 0.58 0.60 nan nan 0.56 0.56
DAIMLER CHRYSLER 0.57 0.57 0.50 0.51 0.54 0.54
DEUTSCHE BANK AG 0.55 0.55 0.54 0.56 0.52 0.52
VINCI 0.60 0.60 0.55 0.56 0.56 0.56
DEUTSCHE TELEKOM 0.71 0.72 nan nan 0.51 0.51
ESSILOR INTERNATIONAL 0.60 0.60 0.50 0.55 0.52 0.56
ENEL 0.73 0.73 nan nan 0.57 0.60
ENI 0.76 0.76 nan nan 0.61 0.61
E.ON AG 0.64 0.64 nan nan 0.53 0.53
TOTAL 0.54 0.59 nan nan 0.50 0.46
GENERALI ASSIC 0.68 0.68 nan nan 0.60 0.60
SOCIETE GENERALE 0.55 0.56 0.50 0.54 0.52 0.54
GDF SUEZ 0.62 0.62 nan nan 0.53 0.53
IBERDROLA I 0.63 0.63 0.56 0.56 0.57 0.57
ING 0.55 0.55 0.54 0.55 0.52 0.55
INTESABCI 0.67 0.67 nan nan 0.58 0.58
INDITEX 0.68 0.68 0.58 0.58 0.55 0.55
LVMH 0.65 0.66 nan nan 0.58 0.58
MUNICH RE 0.66 0.66 0.55 0.55 0.54 0.54
LOREAL 0.67 0.67 nan nan 0.58 0.58
PHILIPS ELECTR. 0.61 0.62 0.50 0.51 0.52 0.54
REPSOL 0.63 0.63 0.53 0.58 0.57 0.57
RWE ST 0.58 0.58 0.53 0.55 0.52 0.52
BANCO SAN CENTRAL HISPANO 0.57 0.56 0.52 0.51 0.58 0.58
SANOFI 0.60 0.60 nan nan 0.50 0.60
SAP AG 0.52 0.61 0.50 0.56 0.52 0.54
SAINT GOBAIN 0.56 0.58 0.54 0.58 0.54 0.55
SIEMENS AG 0.56 0.61 0.55 0.56 0.59 0.59
SCHNEIDER ELECTRIC SA 0.57 0.58 nan nan 0.56 0.57
TELEFONICA 0.68 0.68 0.53 0.57 0.56 0.56
UNICREDIT SPA 0.64 0.65 0.50 0.54 0.57 0.57
UNILEVER CERT 0.50 0.63 nan nan nan nan
VIVENDI UNIVERSAL 0.63 0.63 nan nan 0.51 0.52
VOLKSWAGEN 0.62 0.62 0.49 0.49 0.52 0.53

Table D.4 The quality of the 4-class prediction: 1-minute prediction AUC and
accuracy per stock
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Order book imbalance Flow quantity Past return

Stock Gain σ(Gain) Gain σ(Gain) Gain σ(Gain)

INTERBREW 137 388 -6 98 4 131
AIR LIQUIDE 306 577 0 0 3 42
ALLIANZ 1363 779 4 47 68 276
ASML Holding NV 440 651 5 63 -2 132
BASF AG 87 287 0 0 -2 48
BAYER AG 21 128 14 137 14 99
BBVARGENTARIA 390 665 273 669 208 582
BAY MOT WERKE 107 281 47 276 52 238
DANONE 168 366 0 0 4 47
BNP PARIBAS 171 428 3 66 44 453
CARREFOUR 486 715 11 139 136 469
CRH PLC IRLANDE 2534 1240 1364 1077 202 560
AXA 594 786 0 0 55 320
DAIMLER CHRYSLER 93 289 2 24 16 191
DEUTSCHE BANK AG 34 224 38 212 12 291
VINCI 154 451 13 111 27 147
DEUTSCHE TELEKOM 488 827 0 0 3 66
ESSILOR INTERNATIONAL 351 596 17 164 10 106
ENEL 2219 1056 0 0 193 503
ENI 2000 773 0 0 110 300
E.ON AG 651 680 0 0 10 168
TOTAL 10 93 0 0 1 38
GENERALI ASSIC 2520 1420 0 0 249 756
SOCIETE GENERALE 184 503 2 25 56 410
GDF SUEZ 504 692 0 0 21 171
IBERDROLA I 738 951 155 512 115 409
ING 109 373 59 296 7 138
INTESABCI 2512 1248 0 0 185 731
INDITEX 1039 914 151 587 44 223
LVMH 930 847 0 0 64 277
MUNICH RE 370 533 26 145 3 50
LOREAL 800 674 0 0 22 112
PHILIPS ELECTR. 440 613 6 94 11 116
REPSOL 1234 1013 142 445 110 555
RWE ST 192 556 85 380 29 364
BANCO SAN CENTRAL HISPANO 228 501 4 158 168 635
SANOFI 26 127 0 0 6 90
SAP AG 50 196 24 187 6 200
SAINT GOBAIN 210 519 30 186 88 362
SIEMENS AG 26 139 31 198 28 162
SCHNEIDER ELECTRIC SA 123 434 0 0 37 214
TELEFONICA 1402 825 36 232 34 205
UNICREDIT SPA 1316 1393 17 197 247 835
UNILEVER CERT 16 104 0 0 0 0
VIVENDI UNIVERSAL 583 826 0 0 5 141
VOLKSWAGEN 530 745 -0 78 1 215

Table D.5 The quality of the 4-class prediction: The daily gain average and
standard deviation for the 1-minute prediction (without trading costs)
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Order book imbalance Flow quantity Past return

Stock Gain σ(Gain) Gain σ(Gain) Gain σ(Gain)

INTERBREW 22 263 -9 150 -38 183
AIR LIQUIDE 128 329 0 0 1 31
ALLIANZ 586 559 -1 16 8 194
ASML Holding NV 125 408 -0 32 -25 168
BASF AG 15 189 0 0 -7 51
BAYER AG -14 105 1 86 -2 77
BBVARGENTARIA 107 507 31 465 16 474
BAY MOT WERKE -1 193 1 199 -12 184
DANONE 21 210 0 0 -4 42
BNP PARIBAS 34 271 -12 126 -65 481
CARREFOUR 116 506 -8 131 18 362
CRH PLC IRLANDE 1848 1102 518 844 18 442
AXA 174 550 0 0 -23 274
DAIMLER CHRYSLER -7 245 -1 14 -32 199
DEUTSCHE BANK AG -23 204 8 122 -33 311
VINCI 38 281 -3 73 -5 111
DEUTSCHE TELEKOM 241 526 0 0 -10 79
ESSILOR INTERNATIONAL 88 388 -14 157 -4 91
ENEL 1338 881 0 0 -18 443
ENI 1082 613 0 0 -25 211
E.ON AG 185 475 0 0 -22 173
TOTAL -5 72 0 0 -3 49
GENERALI ASSIC 1518 1179 0 0 58 636
SOCIETE GENERALE 2 412 -2 24 -41 394
GDF SUEZ 142 464 0 0 -8 126
IBERDROLA I 340 722 28 331 18 292
ING -13 329 6 209 -12 147
INTESABCI 1514 1096 0 0 -20 658
INDITEX 547 702 3 400 -10 198
LVMH 372 581 0 0 -11 169
MUNICH RE 111 322 -3 62 -6 46
LOREAL 285 443 0 0 -5 85
PHILIPS ELECTR. 113 417 -6 96 -8 105
REPSOL 611 809 40 254 27 437
RWE ST 38 450 -2 299 -42 372
BANCO SAN CENTRAL HISPANO 20 392 -31 203 49 463
SANOFI 1 69 0 0 -0 79
SAP AG 2 120 -4 137 -30 207
SAINT GOBAIN 25 403 -1 114 -7 289
SIEMENS AG 2 74 -2 89 -3 141
SCHNEIDER ELECTRIC SA 16 317 0 0 -14 195
TELEFONICA 656 663 6 139 -7 183
UNICREDIT SPA 693 1159 -5 173 19 628
UNILEVER CERT 1 56 0 0 0 0
VIVENDI UNIVERSAL 214 617 0 0 -27 175
VOLKSWAGEN 171 545 -7 115 -45 246

Table D.6 The quality of the 4-class prediction: The daily gain average and
standard deviation for the 1-minute prediction (with trading costs)
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Order book imbalance Flow quantity Past return

Stock Gain σ(Gain) Gain σ(Gain) Gain σ(Gain)

INTERBREW -11 887 -6 845 -41 823
AIR LIQUIDE -57 669 -17 633 -21 624
ALLIANZ -14 762 69 689 -41 729
ASML Holding NV -87 862 43 1075 -29 897
BASF AG -20 807 -3 781 -67 722
BAYER AG 38 759 -93 774 -46 765
BBVARGENTARIA -16 1263 -63 1138 16 1084
BAY MOT WERKE -25 783 -23 923 -13 901
DANONE -61 744 19 726 -18 745
BNP PARIBAS -28 998 -2 1179 -9 1151
CARREFOUR 4 1108 -135 1082 -52 972
CRH PLC IRLANDE 75 962 -105 1161 -6 1117
AXA 12 1054 6 1055 49 1111
DAIMLER CHRYSLER 75 872 -51 825 9 961
DEUTSCHE BANK AG 54 1054 -89 1152 -35 996
VINCI 110 761 80 742 100 743
DEUTSCHE TELEKOM 27 722 81 700 -14 718
ESSILOR INTERNATIONAL 29 830 43 827 41 872
ENEL 27 991 -40 971 55 959
ENI 7 628 -18 651 -16 645
E.ON AG -70 911 -4 963 65 826
TOTAL 49 660 108 689 73 669
GENERALI ASSIC 18 1011 2 1094 11 1085
SOCIETE GENERALE 53 1413 67 1253 -5 1335
GDF SUEZ 59 906 -24 847 25 823
IBERDROLA I 3 1017 -73 960 51 949
ING -21 1138 105 1205 -80 1142
INTESABCI -128 1359 -54 1329 85 1288
INDITEX -8 894 -161 912 17 860
LVMH -36 831 15 725 -26 675
MUNICH RE 29 641 -25 688 -7 727
LOREAL -19 671 31 755 15 727
PHILIPS ELECTR. -24 844 24 789 -29 841
REPSOL -87 878 -5 920 3 925
RWE ST 32 1132 61 1217 46 1140
BANCO SAN CENTRAL HISPANO 2 1150 -60 1072 48 1090
SANOFI -29 810 25 856 7 794
SAP AG 4 683 -52 709 -15 682
SAINT GOBAIN -66 996 22 994 -51 945
SIEMENS AG 127 771 -35 802 -59 725
SCHNEIDER ELECTRIC SA -31 896 -79 837 8 838
TELEFONICA -12 759 42 918 111 912
UNICREDIT SPA 130 1529 58 1498 81 1357
UNILEVER CERT 5 543 31 546 -26 508
VIVENDI UNIVERSAL 21 874 -15 899 6 859
VOLKSWAGEN 71 929 120 994 75 1055

Table D.7 The quality of the 4-class prediction: The daily gain average and
standard deviation for the 30-minute prediction (without trading costs)
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Order book imbalance Flow quantity Past return

Stock Gain σ(Gain) Gain σ(Gain) Gain σ(Gain)

INTERBREW -55 887 -51 845 -84 824
AIR LIQUIDE -96 672 -61 635 -62 625
ALLIANZ -57 764 23 687 -80 731
ASML Holding NV -132 863 -6 1072 -73 896
BASF AG -61 809 -47 780 -108 724
BAYER AG -7 758 -136 777 -84 767
BBVARGENTARIA -58 1265 -108 1137 -25 1082
BAY MOT WERKE -65 784 -69 923 -53 902
DANONE -101 743 -25 726 -60 742
BNP PARIBAS -71 997 -46 1180 -51 1149
CARREFOUR -39 1110 -182 1085 -94 972
CRH PLC IRLANDE 31 960 -152 1163 -48 1116
AXA -31 1052 -37 1054 4 1109
DAIMLER CHRYSLER 36 874 -93 825 -31 961
DEUTSCHE BANK AG 9 1053 -138 1151 -77 997
VINCI 72 763 40 742 65 743
DEUTSCHE TELEKOM -12 722 36 702 -53 720
ESSILOR INTERNATIONAL -9 830 -1 828 -2 869
ENEL -17 993 -81 974 17 959
ENI -36 627 -58 652 -57 642
E.ON AG -106 911 -45 965 22 824
TOTAL 10 661 66 690 34 666
GENERALI ASSIC -26 1011 -44 1096 -32 1087
SOCIETE GENERALE 10 1415 19 1252 -51 1336
GDF SUEZ 14 905 -70 847 -16 818
IBERDROLA I -40 1016 -117 962 5 947
ING -63 1137 58 1207 -122 1144
INTESABCI -172 1359 -97 1327 47 1290
INDITEX -48 896 -204 913 -22 859
LVMH -82 830 -30 725 -68 675
MUNICH RE -13 641 -66 691 -49 728
LOREAL -57 674 -9 754 -22 728
PHILIPS ELECTR. -65 845 -23 788 -71 839
REPSOL -128 877 -52 920 -41 920
RWE ST -7 1130 15 1218 5 1140
BANCO SAN CENTRAL HISPANO -37 1149 -103 1073 6 1089
SANOFI -67 810 -21 856 -34 797
SAP AG -37 683 -100 709 -60 680
SAINT GOBAIN -105 997 -23 995 -93 946
SIEMENS AG 84 772 -77 805 -98 725
SCHNEIDER ELECTRIC SA -73 896 -123 836 -34 838
TELEFONICA -49 760 -4 919 68 913
UNICREDIT SPA 84 1529 15 1499 40 1359
UNILEVER CERT -39 543 -14 545 -67 509
VIVENDI UNIVERSAL -24 874 -61 900 -37 856
VOLKSWAGEN 33 929 76 995 38 1058

Table D.8 The quality of the binary prediction: The daily gain average and
standard deviation for the 30-minute prediction (with 0.5 bp trading costs)
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1-min horizon 5-min horizon 30-min horizon

Stock AUC Accuracy AUC Accuracy AUC Accuracy

INTERBREW 0.54 0.54 0.50 0.50 0.50 0.50
AIR LIQUIDE 0.57 0.57 0.52 0.52 0.49 0.49
ALLIANZ 0.61 0.61 0.53 0.53 0.50 0.50
ASML Holding NV 0.55 0.55 0.51 0.51 0.51 0.51
BASF AG 0.54 0.54 0.52 0.52 0.50 0.50
BAYER AG 0.54 0.54 0.51 0.51 0.51 0.51
BBVARGENTARIA 0.54 0.54 0.51 0.51 0.49 0.49
BAY MOT WERKE 0.55 0.55 0.51 0.51 0.49 0.49
DANONE 0.56 0.56 0.51 0.51 0.49 0.49
BNP PARIBAS 0.53 0.53 0.51 0.51 0.50 0.50
CARREFOUR 0.55 0.55 0.51 0.51 0.52 0.52
CRH PLC IRLANDE 0.62 0.62 0.56 0.56 0.52 0.52
AXA 0.55 0.55 0.51 0.51 0.50 0.50
DAIMLER CHRYSLER 0.54 0.54 0.51 0.51 0.50 0.50
DEUTSCHE BANK AG 0.53 0.53 0.51 0.51 0.51 0.51
VINCI 0.55 0.55 0.52 0.52 0.51 0.51
DEUTSCHE TELEKOM 0.56 0.56 0.52 0.52 0.50 0.51
ESSILOR INTERNATIONAL 0.56 0.56 0.51 0.51 0.51 0.51
ENEL 0.62 0.62 0.53 0.53 0.48 0.48
ENI 0.64 0.64 0.54 0.54 0.50 0.50
E.ON AG 0.57 0.57 0.52 0.52 0.48 0.48
TOTAL 0.54 0.54 0.51 0.51 0.50 0.50
GENERALI ASSIC 0.61 0.61 0.54 0.54 0.50 0.50
SOCIETE GENERALE 0.53 0.53 0.50 0.50 0.52 0.52
GDF SUEZ 0.56 0.56 0.51 0.51 0.50 0.50
IBERDROLA I 0.57 0.57 0.52 0.52 0.51 0.51
ING 0.53 0.53 0.51 0.51 0.49 0.49
INTESABCI 0.59 0.59 0.51 0.51 0.50 0.50
INDITEX 0.59 0.59 0.53 0.53 0.52 0.52
LVMH 0.59 0.59 0.52 0.52 0.52 0.52
MUNICH RE 0.58 0.58 0.53 0.53 0.50 0.50
LOREAL 0.60 0.60 0.52 0.52 0.51 0.51
PHILIPS ELECTR. 0.56 0.56 0.51 0.51 0.50 0.50
REPSOL 0.57 0.57 0.52 0.52 0.51 0.51
RWE ST 0.54 0.54 0.51 0.51 0.49 0.49
BANCO SAN CENTRAL HISPANO 0.54 0.54 0.51 0.51 0.49 0.49
SANOFI 0.54 0.54 0.51 0.51 0.49 0.49
SAP AG 0.54 0.54 0.51 0.51 0.51 0.51
SAINT GOBAIN 0.54 0.54 0.51 0.51 0.52 0.52
SIEMENS AG 0.54 0.54 0.51 0.51 0.50 0.50
SCHNEIDER ELECTRIC SA 0.54 0.54 0.52 0.52 0.51 0.51
TELEFONICA 0.59 0.59 0.52 0.52 0.50 0.50
UNICREDIT SPA 0.56 0.56 0.51 0.51 0.49 0.49
UNILEVER CERT 0.56 0.56 0.51 0.51 0.50 0.50
VIVENDI UNIVERSAL 0.57 0.57 0.51 0.51 0.51 0.51
VOLKSWAGEN 0.56 0.56 0.52 0.52 0.51 0.51

Table D.9 The quality of the OLS prediction: The AUC and the accuracy per
stock for the different horizons
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1-min horizon 5-min horizon 30-min horizon

Stock AUC Accuracy AUC Accuracy AUC Accuracy

INTERBREW 0.54 0.54 0.50 0.50 0.50 0.50
AIR LIQUIDE 0.57 0.57 0.52 0.52 0.50 0.50
ALLIANZ 0.61 0.61 0.53 0.53 0.49 0.49
ASML Holding NV 0.55 0.55 0.51 0.51 0.51 0.51
BASF AG 0.54 0.54 0.52 0.52 0.50 0.50
BAYER AG 0.54 0.54 0.51 0.51 0.50 0.50
BBVARGENTARIA 0.54 0.54 0.51 0.51 0.50 0.50
BAY MOT WERKE 0.55 0.55 0.51 0.51 0.50 0.50
DANONE 0.56 0.56 0.51 0.51 0.50 0.50
BNP PARIBAS 0.53 0.53 0.51 0.51 0.50 0.50
CARREFOUR 0.55 0.55 0.51 0.51 0.52 0.52
CRH PLC IRLANDE 0.62 0.62 0.56 0.56 0.52 0.52
AXA 0.56 0.55 0.51 0.51 0.50 0.50
DAIMLER CHRYSLER 0.54 0.54 0.51 0.51 0.50 0.50
DEUTSCHE BANK AG 0.53 0.53 0.51 0.51 0.51 0.51
VINCI 0.55 0.55 0.51 0.52 0.51 0.51
DEUTSCHE TELEKOM 0.56 0.56 0.52 0.52 0.51 0.52
ESSILOR INTERNATIONAL 0.56 0.56 0.51 0.51 0.51 0.51
ENEL 0.62 0.62 0.53 0.53 0.48 0.48
ENI 0.65 0.65 0.54 0.54 0.50 0.50
E.ON AG 0.57 0.57 0.52 0.52 0.48 0.48
TOTAL 0.54 0.54 0.51 0.51 0.50 0.50
GENERALI ASSIC 0.62 0.62 0.54 0.54 0.51 0.51
SOCIETE GENERALE 0.53 0.53 0.50 0.50 0.53 0.52
GDF SUEZ 0.57 0.57 0.52 0.52 0.50 0.50
IBERDROLA I 0.57 0.57 0.53 0.53 0.52 0.52
ING 0.53 0.53 0.51 0.50 0.50 0.50
INTESABCI 0.60 0.60 0.52 0.52 0.50 0.50
INDITEX 0.59 0.59 0.53 0.53 0.52 0.52
LVMH 0.59 0.59 0.52 0.52 0.50 0.50
MUNICH RE 0.59 0.59 0.53 0.53 0.50 0.50
LOREAL 0.60 0.60 0.52 0.52 0.51 0.51
PHILIPS ELECTR. 0.56 0.56 0.51 0.51 0.49 0.49
REPSOL 0.58 0.58 0.52 0.52 0.52 0.52
RWE ST 0.54 0.54 0.51 0.51 0.50 0.50
BANCO SAN CENTRAL HISPANO 0.54 0.54 0.51 0.51 0.50 0.50
SANOFI 0.54 0.54 0.51 0.51 0.51 0.51
SAP AG 0.55 0.55 0.51 0.51 0.51 0.51
SAINT GOBAIN 0.54 0.54 0.51 0.51 0.52 0.52
SIEMENS AG 0.54 0.54 0.51 0.51 0.51 0.51
SCHNEIDER ELECTRIC SA 0.55 0.55 0.52 0.52 0.50 0.50
TELEFONICA 0.59 0.59 0.52 0.52 0.51 0.51
UNICREDIT SPA 0.57 0.57 0.51 0.51 0.49 0.49
UNILEVER CERT 0.56 0.56 0.51 0.51 0.49 0.49
VIVENDI UNIVERSAL 0.57 0.57 0.51 0.51 0.51 0.51
VOLKSWAGEN 0.57 0.57 0.52 0.52 0.51 0.51

Table D.10 The quality of the Ridge HKB prediction: The AUC and the
accuracy per stock for the different horizons
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1-min horizon 5-min horizon 30-min horizon

Stock AUC Accuracy AUC Accuracy AUC Accuracy

INTERBREW 0.55 0.55 0.52 0.52 0.50 0.50
AIR LIQUIDE 0.57 0.57 0.53 0.53 0.49 0.49
ALLIANZ 0.61 0.61 0.54 0.54 0.50 0.50
ASML Holding NV 0.56 0.56 0.52 0.52 0.52 0.52
BASF AG 0.54 0.54 0.52 0.52 0.50 0.50
BAYER AG 0.55 0.55 0.51 0.51 0.50 0.50
BBVARGENTARIA 0.54 0.54 0.51 0.51 0.50 0.50
BAY MOT WERKE 0.55 0.55 0.51 0.51 0.50 0.50
DANONE 0.56 0.56 0.51 0.51 0.49 0.49
BNP PARIBAS 0.54 0.54 0.52 0.52 0.50 0.50
CARREFOUR 0.55 0.55 0.51 0.51 0.51 0.51
CRH PLC IRLANDE 0.62 0.62 0.57 0.57 0.51 0.51
AXA 0.56 0.56 0.51 0.51 0.51 0.51
DAIMLER CHRYSLER 0.54 0.54 0.52 0.52 0.51 0.51
DEUTSCHE BANK AG 0.53 0.53 0.51 0.51 0.52 0.52
VINCI 0.56 0.56 0.52 0.53 0.51 0.52
DEUTSCHE TELEKOM 0.57 0.57 0.52 0.52 0.52 0.52
ESSILOR INTERNATIONAL 0.56 0.56 0.51 0.51 0.50 0.50
ENEL 0.63 0.63 0.54 0.54 0.50 0.50
ENI 0.65 0.65 0.55 0.55 0.50 0.50
E.ON AG 0.58 0.58 0.52 0.52 0.50 0.51
TOTAL 0.54 0.54 0.52 0.52 0.51 0.51
GENERALI ASSIC 0.62 0.62 0.55 0.55 0.49 0.49
SOCIETE GENERALE 0.53 0.53 0.50 0.50 0.52 0.52
GDF SUEZ 0.57 0.57 0.52 0.52 0.50 0.50
IBERDROLA I 0.57 0.57 0.53 0.53 0.52 0.52
ING 0.53 0.53 0.51 0.51 0.50 0.50
INTESABCI 0.60 0.60 0.53 0.53 0.48 0.48
INDITEX 0.60 0.60 0.54 0.54 0.51 0.51
LVMH 0.59 0.59 0.52 0.52 0.50 0.50
MUNICH RE 0.59 0.59 0.54 0.54 0.50 0.50
LOREAL 0.60 0.60 0.53 0.53 0.51 0.51
PHILIPS ELECTR. 0.57 0.57 0.52 0.52 0.50 0.50
REPSOL 0.58 0.58 0.53 0.53 0.51 0.51
RWE ST 0.55 0.55 0.51 0.51 0.49 0.49
BANCO SAN CENTRAL HISPANO 0.54 0.54 0.52 0.52 0.51 0.51
SANOFI 0.55 0.55 0.51 0.51 0.50 0.50
SAP AG 0.55 0.55 0.51 0.51 0.51 0.51
SAINT GOBAIN 0.55 0.55 0.51 0.51 0.52 0.52
SIEMENS AG 0.55 0.55 0.52 0.52 0.51 0.52
SCHNEIDER ELECTRIC SA 0.55 0.55 0.52 0.52 0.50 0.50
TELEFONICA 0.60 0.60 0.53 0.53 0.51 0.51
UNICREDIT SPA 0.57 0.57 0.52 0.52 0.49 0.49
UNILEVER CERT 0.57 0.57 0.51 0.51 0.51 0.51
VIVENDI UNIVERSAL 0.58 0.58 0.52 0.52 0.51 0.51
VOLKSWAGEN 0.57 0.57 0.52 0.52 0.50 0.50

Table D.11 The quality of the Ridge LW prediction: The AUC and the
accuracy per stock for the different horizons
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1-min horizon 5-min horizon 30-min horizon

Stock AUC Accuracy AUC Accuracy AUC Accuracy

INTERBREW 0.54 0.54 0.51 0.51 0.50 0.50
AIR LIQUIDE 0.58 0.58 0.52 0.52 0.49 0.49
ALLIANZ 0.61 0.61 0.54 0.54 0.52 0.52
ASML Holding NV 0.56 0.56 0.52 0.52 0.51 0.51
BASF AG 0.53 0.53 0.51 0.51 0.51 0.51
BAYER AG 0.54 0.54 0.51 0.51 0.50 0.50
BBVARGENTARIA 0.54 0.54 0.51 0.51 0.49 0.49
BAY MOT WERKE 0.55 0.55 0.51 0.51 0.49 0.49
DANONE 0.56 0.56 0.51 0.51 0.50 0.50
BNP PARIBAS 0.54 0.54 0.51 0.51 0.49 0.49
CARREFOUR 0.55 0.55 0.51 0.51 0.50 0.50
CRH PLC IRLANDE 0.62 0.62 0.56 0.56 0.52 0.52
AXA 0.55 0.55 0.51 0.51 0.49 0.49
DAIMLER CHRYSLER 0.53 0.53 0.52 0.52 0.50 0.50
DEUTSCHE BANK AG 0.53 0.53 0.51 0.51 0.51 0.51
VINCI 0.55 0.55 0.52 0.53 0.52 0.52
DEUTSCHE TELEKOM 0.58 0.58 0.52 0.52 0.52 0.52
ESSILOR INTERNATIONAL 0.56 0.56 0.51 0.51 0.50 0.50
ENEL 0.62 0.62 0.53 0.53 0.50 0.50
ENI 0.64 0.64 0.55 0.55 0.49 0.49
E.ON AG 0.57 0.57 0.52 0.52 0.49 0.50
TOTAL 0.54 0.54 0.52 0.52 0.51 0.51
GENERALI ASSIC 0.62 0.62 0.54 0.54 0.51 0.51
SOCIETE GENERALE 0.53 0.53 0.50 0.50 0.52 0.52
GDF SUEZ 0.56 0.56 0.52 0.52 0.51 0.51
IBERDROLA I 0.56 0.56 0.53 0.53 0.53 0.53
ING 0.52 0.52 0.51 0.51 0.50 0.50
INTESABCI 0.60 0.60 0.53 0.53 0.50 0.50
INDITEX 0.59 0.59 0.53 0.53 0.52 0.52
LVMH 0.59 0.59 0.52 0.52 0.51 0.51
MUNICH RE 0.58 0.58 0.54 0.54 0.50 0.50
LOREAL 0.60 0.60 0.53 0.53 0.50 0.50
PHILIPS ELECTR. 0.56 0.56 0.52 0.52 0.50 0.50
REPSOL 0.57 0.57 0.52 0.52 0.51 0.51
RWE ST 0.54 0.54 0.51 0.51 0.50 0.50
BANCO SAN CENTRAL HISPANO 0.54 0.54 0.52 0.52 0.50 0.50
SANOFI 0.54 0.54 0.51 0.51 0.50 0.50
SAP AG 0.53 0.53 0.52 0.52 0.50 0.50
SAINT GOBAIN 0.54 0.54 0.51 0.51 0.52 0.52
SIEMENS AG 0.54 0.54 0.51 0.51 0.50 0.50
SCHNEIDER ELECTRIC SA 0.54 0.54 0.51 0.51 0.49 0.49
TELEFONICA 0.59 0.59 0.53 0.53 0.51 0.51
UNICREDIT SPA 0.57 0.57 0.52 0.52 0.48 0.48
UNILEVER CERT 0.57 0.57 0.51 0.51 0.51 0.51
VIVENDI UNIVERSAL 0.57 0.57 0.52 0.52 0.52 0.52
VOLKSWAGEN 0.56 0.56 0.52 0.52 0.49 0.49

Table D.12 The quality of the LASSO prediction: The AUC and the accuracy
per stock for the different horizons
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Brémaud, P. 1981a. Point Processes and Queues: Martingale Dynamics. Springer.
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Tóth, B., Lempérière, Y., Deremble, C., de Lataillade, J., Kockelkoren, J., and
Bouchaud, J.-P. 2011. Anomalous price impact and the critical nature of liquidity
in financial markets. Physical Review X, 1.

Vidyamurthy, G. 2004. Pairs Trading: Quantitative Methods and Analysis.
Whitt, W. 2002. Stochastic-process limits. Springer Series in Operations Research.

New York: Springer-Verlag. An introduction to stochastic-process limits and their
application to queues.

Whitt, W. 2007. Proofs of the martingale FCLT. Probability surveys, 4, 268–302.
Wyart, M., and Bouchaud, J.-P. 2007. Self-referential behaviour, overreaction and con-

ventions in financial markets. Journal of Economic Behavior & Organization,
63(1), 1–24.

Zheng, B., Moulines, E., and Abergel, F. 2012. Price Jump Prediction in Limit Order
Book. Journal of Mathematical Finance, 3(2), 242–255.

Zheng, B., Roueff, F., and Abergel, F. 2014. Modelling Bid and Ask Prices Using
Constrained Hawkes Processes: Ergodicity and Scaling Limit. SIAM Journal on
Financial Mathematics, 5(1), 99–136.



Bibliography 209

Zou, H., and Hastie, T. 2005. Regularization and Variable Selection via the Elastic Net.
Journal of the Royal Statistical Society, 67(2), 301–320.




