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Abstract

We revisit the apparent historical success of technical trading rules

on daily prices of the DJIA index from 1897 to 2011, and use the False

Discovery Rate as a new approach to data snooping. The advantage of

the FDR over existing methods is that it selects more outperforming rules

which allows diversifying against model uncertainty. Persistence tests show

that, even with the more powerful FDR technique, an investor would never

have been able to select ex ante the future best-performing rules. Moreover,

even in-sample, the performance is completely offset by the introduction of

low transaction costs. Overall, our results seriously call into question the

economic value of technical trading rules that has been reported for early

periods.
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1. Introduction

Whether technical trading rules can consistently generate profits, as opposed

to just being lucky every now and then, is the subject of an ongoing debate.

Practitioners have devoted significant resources to technical trading, which uses

past price and volume data to infer future prices. A substantial segment of the

investment industry employs indicators which include moving averages, support

and resistance levels, and other filter rules. Technical indicators are as ubiquitous

on professional information systems as on popular finance websites and online

retail brokers. In spite of its popularity among practitioners, academics have

long been skeptical about the merits of technical analysis. They argue that it is

inconsistent with the theory of market efficiency, which states that all available

information must be reflected in security prices. In hopes of resolving this conflict,

researchers have undertaken numerous empirical studies of technical trading rules.

Some have found results in favor of the ability of trading rules to deliver superior

returns, e.g., Neftci (1991), Brock, Lakonishok, and LeBaron (1992) (BLL), Neely,

Weller, and Dittmar (1997), Sullivan, Timmermann, and White (1999) (STW),

Lo, Mamaysky, and Wang (2000), Kavajecz and Odders-White (2004). Other

studies conclude that trading rules cannot be used to predict future prices. For

example, Fama and Blume (1966), Bessembinder and Chan (1998), Allen and

Karjalainen (1999), and Ready (2002) show that transaction costs outweigh the

predictive power of trading rules. In addition to the impact of transaction costs,

researchers have warned against the danger of data snooping which raises the

possibility that the reported results are spurious. Menkhoff and Taylor (2007)

provide an extensive review of the literature on the use of technical analysis in

foreign exchange markets.

In this paper, we revisit the apparent historical success of trading rules during

early time periods documented in previous studies, including studies reaching an

overall negative conclusion such as Ready (2002). In particular we examine the

performance of the 7, 846 trading rules of STW on daily prices of the Dow Jones

Industrial Average (DJIA) index between January 1897 and July 2011. The first
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contribution is to apply the False Discovery Rate (FDR) methodology developed

by Barras, Scaillet, and Wermers (2010) in the context of mutual funds selection,

as a new approach to select outperforming rules while accounting for data snoop-

ing. We show that the FDR approach has numerous advantages compared with

existing methods. The second contribution is to perform a rigorous analysis of

the economic value of the trading rules. We focus on two issues that have been

only partly addressed in the literature, i.e., the impact of transaction costs and

the question whether investors could have reasonably selected the future outper-

forming rules without the benefit of foresight. Equipped with the more powerful

FDR approach to detect rules with true predictive ability and accounting for

transaction costs ex ante, we perform persistence tests in which we measure the

out-of-sample performance of the selected rules. We are the first to carry out such

a comprehensive persistence analysis of trading rules. Only by combining all these

relevant factors can the economic value of the strategies be truly assessed.

To illustrate the problem of data snooping, imagine you put enough monkeys

on typewriters and that one of the monkeys writes the Iliad in ancient Greek.

Because of the sheer size of the sample, you are likely to find a lucky monkey

once in a while. Would you bet any money that he is going to write the Odyssey

next? The same principle applies to trading rules. By looking long enough

and hard enough on a given set of data, an investor will always find a trading

rule parameterization that works, even if it does not genuinely possess predictive

power. For a discussion of the dangers of data snooping, see Lo and MacKinlay

(1990), White (2000), and the references therein. Diebold (2006) also warns

against the danger of in-sample overfitting. Kosowski, Naik, and Teo (2007)

study the impact on detecting hedge fund performance.

In this paper we propose a new methodology to select superior trading rules

while accounting for data snooping based on the FDR. More precisely, we employ

the FDR+ and the FDR−, developed by Barras, Scaillet, and Wermers (2010).

The FDR+/− gives the proportion of false discoveries—rules with no genuine per-

formance, separately among the rules selected as delivering statistically significant

positive and negative performance. As we show in a Monte Carlo experiment, the
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FDR approach has advantages compared to statistical methods used in previous

studies, e.g., the bootstrap reality check (BRC) of White (2000) employed by

STW, and its stepwise extension by Romano and Wolf (2005) (RW). The BRC

only indicates whether the rule that performs best in the sample indeed beats the

benchmark, after accounting for data snooping. It provides no information on the

other strategies. In practice, investors prefer not to base their investment deci-

sion on a single strategy. Though potentially able to detect further outperforming

rules, the RW method relies on the conservative familywise error rate (FWER),

which results in a lack of power; see Romano, Shaikh, and Wolf (2008b) for a

discussion. One further problem with methods derived from the BRC such as the

RW method, is that they do not select further strategies once they find a rule

whose performance is due to luck, even if there remain an important number of

true outperforming rules in the population. The FDR approach, on the other

hand, by tolerating a certain (small) proportion of false discoveries, does not

suffer from the problem. We run a Monte Carlo study calibrated to the setting

of our empirical work and taking into account the cross-sectional dependence of

trading strategies. The Monte Carlo simulations illustrate that situations where

a rule with no genuine predictive power achieves one of the highest performance

are common in practice. They also show that the FDR approach greatly improves

the chances of detecting all true outperforming rules, and behaves well even if

the rules are not independent. Using the FDR method, an investor can construct

a portfolio of rules on which to base his investment decision, and hence diversify

against model risk.

With the help of our new more powerful rules selection approach, we investi-

gate whether the trading rules can really make money. BLL document examples

of historical performance and consider them as proof of the usefulness of the

trading rules. STW argue that the findings of BLL are not spurious as the best

rule passes the BRC data snooping test. However, although it can be the case

that we are able to find rules that perform well historically, there is no indication

that it is possible to select these rules ex ante. Another important issue not ad-

dressed ex ante in BLL and STW is the impact of transaction costs. The rules
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selected before transaction costs produce very frequent trading signals, and their

predictive power is likely to be offset by transaction costs. Previous studies do

not treat transaction costs as endogenous to the selection process. Hence, the rel-

evant question is: Could investors reasonably have anticipated which rules would

generate performance outweighing transaction costs? To answer this question, we

perform persistence tests, adding a transaction cost each time a buy or sell signal

is generated. Specifically, we measure the out-of-sample performance of a portfo-

lio of rules selected using our new FDR approach and updated every month using

data from the previous month. Rebalancing the portfolio monthly has the fur-

ther advantage of being closer to what is done in practice than previous studies.

Indeed, investors never get the chance to trade over multiple-year periods before

being evaluated, and they update their trading rules regularly in an attempt to

adapt to the changing economic environment. The persistence analysis is a ma-

jor contribution of the present paper. STW qualify as out-of-sample the results

for the period after the original BLL study but, in fact, they always measure

performance in-sample. Persistence analysis has been applied to mutual funds,

e.g., Carhart (1997). To our knowledge, however, this is the first time this type

of persistence tests are performed on technical trading rules1. Our tests show

that, even with our new FDR rule detection approach, the reason for choosing

the rules with future superior performance is only clear to researchers examin-

ing the price data ex post. Contrary to the mutual fund literature, we conclude

that there is no hot hands phenomenon. In addition, even the in-sample his-

torical performance is canceled already with the inclusion of low (conservative)

transaction costs. Again, it is only by considering all the relevant aspects—

performance persistence, transaction costs, and data snooping—together, that

we can correctly assess the economic value of the strategies. Our study confirms

1Jacquier and Yao (2002) implement another approach to persistence analysis also inspired

by the mutual fund literature. They follow Brown and Goetzmann (1995), and estimate the

probability that a trading rule beats the benchmark over consecutive periods. Their study is

limited to the ten moving average rules of BLL and finds that the performance is not persistent

at horizons shorter than five years.
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the results of Ready (2002) and Allen and Karjalainen (1999), who also deal with

data snooping and rule selection, though in a very different fashion based on a

genetic algorithm.

Our analysis indicates that the past period of predictability reported by nu-

merous studies is not really a puzzle. The BLL results should be viewed as a sta-

tistical anomaly, discovered ex post by extensive data snooping. In any case, they

should not be viewed as an episode of market inefficiency, as the hypothetical pre-

dictability could not have been exploited. Although we provide evidence against

the usefulness of the simple trading rules of STW to deliver superior returns when

applied in a blue-chip investment environment (DJIA index), our results say lit-

tle about the existence of profitable trading strategies in other markets or using

different trade frequencies. The growing number of institutions getting involved

in high-frequency trading hints that profitable algorithmic strategies can indeed

be found. Our results do, however, indicate that investors should be wary of the

common technical indicators present on any investment website or professional

information system, and advertised as obvious money making tools.

Section 2 reviews existing methods to account for data snooping and presents

the FDR based approach. Section 3 describes the universe of 7,846 technical

trading rules, the performance measurement, and the data. Section 4 illustrates

the advantage of the FDR approach by applying it in the same framework as

STW. Section 5 presents the persistence analysis, while simultaneously accounting

for transaction costs. It also investigates the impact of short sale constraints.

Section 6 gathers concluding remarks. Appendices contain technical details on

the implementation of the FDR approach, and results of Monte Carlo experiments

showing the advantages of the FDR method. We also review the literature on

gauging total transaction costs and their evolution over time, and provide up-

to-date data for current market conditions. An appendix with supplementary

empirical and simulation results as well as files with the data set and programs

used in the paper are posted on the JFE web page.
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2. Data snooping measures

2.1. Existing data snooping methods

Data snooping is widely recognized to be a significant issue in the finance litera-

ture. Standard methods such as the Bonferroni correction—where individual tests

are performed at the α/l level of significance to guarantee that the significance

level of the simultaneous test of all l strategies does not exceed α—are too conser-

vative. A first solution exploiting the dependence structure of the individual test

statistics is provided by the bootstrap reality check (BRC) of White (2000). The

BRC provides a procedure to test whether the best rule in the sample has genuine

predictive power after accounting for the effects of data snooping. Formally, the

BRC tests the null hypothesis that the performance of the best technical trading

rule is no better than the performance of the benchmark: H0 : maxk=1,...,l ϕk ≤ 0,

where ϕk is the performance measure of the k-th rule and is equal to zero when

rule k does not generate abnormal performance. The BRC is the data snooping

measure used in the study of STW. However, it is not able to identify further

strategies that generate true performance. In practice investors prefer to get a

confirmation from multiple strategies. A first attempt to tackle this issue is the

stepwise multiple testing method of Romano and Wolf (2005). The RW algo-

rithm uses a modified BRC as a first step, and can potentially detect further

outperforming strategies in subsequent steps. The RW method controls for the

familywise error rate (FWER), which is defined as the probability of erroneously

selecting one or more trading rules as significant, when in reality they are simply

lucky. The FWER is a conservative criterion, resulting in a low power to detect

superior performance, especially when the universe of rules is large. Our Monte

Carlo study shown in Appendix G illustrates the weakness of the RW method

(and of the BRC) in terms of power. Hansen (2005) offers some improvements

over the BRC. Being less sensitive to the influence of poor and irrelevant strate-

gies, his method is more powerful. However, like the BRC, Hansen’s method only

addresses the question whether the strategy that appears best in the observed
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data really beats the benchmark. Hsu and Kuan (2005) utilize the test of Hansen

to reexamine the profitability of technical analysis and conclude that there are no

profitable trading rules in mature markets (i.e., DJIA and S&P 500). Hsu, Hsu,

and Kuan (2010) introduce a stepwise extension of the method of Hansen. Using

their new test, they find that technical rules have predictive power on growth and

emerging markets indices, at least until corresponding ETFs are introduced.

2.2. False Discovery Rate

We now present our new approach based on the false discovery rate (FDR) to se-

lect trading rules while accounting for data snooping. The FDR+/− methodology

we use has been developed by Barras, Scaillet, and Wermers (2010) in the context

of mutual funds selection. However, the present paper is the first to propose the

FDR as a tool to account for data snooping.

In practice, investors do not consider the signal of one trading rule at a time,

but typically combine the signals of multiple strategies. A nontrivial fraction of

strategies might possess genuine predictive power, and the goal is to identify a

large number of them to diversify against model risk. Benjamini and Hochberg

(1995) argue that in such a case the control of the FWER is not necessary. Guard-

ing against any single erroneous detection is much too strict and leads to many

missed findings. To identify as many outperforming rules as possible without in-

cluding too many false positives, Benjamini and Hochberg (1995) propose a more

tolerant error measure, the FDR. The basic idea is rather simple. By allowing

a certain (small) proportion of false discoveries, the FDR significantly improves

the power of detecting the outperforming rules.

The original FDR paper of Benjamini and Hochberg (1995) assumes that the

multiple hypotheses (e.g., trading rules) are independent. Some strategies in

our sample are only minor variations of themselves, e.g., moving averages with

only slightly different parameters, and are therefore highly correlated. Efforts

have been made to generalize the FDR methodology under dependence. For

example, Benjamini and Yekutieli (2001) show that we can work under certain
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dependence condition, such as positive regression dependency. This covers mul-

tivariate normal test statistics with positive correlation and multivariate student

test statistics. Storey (2003), Storey and Tibshirani (2003), and Storey, Taylor,

and Siegmund (2004) show that when the number of tests l is large2 the FDR

approach holds under “weak dependence” of the p-values (or test statistics). Far-

comeni (2007) and Wu (2008) give several examples illustrating that the notion

of weak dependence is general enough to cover many problems of practical inter-

est. Weak dependence can loosely be described as any form of dependence whose

effect becomes negligible as the number of tests increases to infinity. The more

local the dependence, i.e., the faster dependencies disappear for distant p-values,

the more likely it is to satisfy the weak dependence criterion. Specifically in our

empirical study, the trading rules behave dependently in small groups, with each

group being essentially independent of the others. For example, a 2-day moving

average rule with a 0.01 band is highly correlated to a 2-day moving average rule

with a 0.015 band. However, the performance of a 200-day moving average rule is

going to be very different, let alone a filter or a support and resistance rule. Such

form of dependence is called block dependence and satisfies the weak dependence

conditions. Fig. 2 and 3 in Section 4 illustrate the presence of blocks of similar

strategies, with each block behaving differently. Hence, we can safely apply the

methods we use to estimate the various parameters of the FDR procedure. In

addition, the Monte Carlo simulations that we run in Appendix G confirm the

good behavior of our FDR method under cross-sectional dependences.

Elaborating on the FDR, Barras, Scaillet, and Wermers (2010) introduce the

FDR+/−, which allows to estimate separately the proportion of false discoveries

among technical rules that perform better or worse than the benchmark. We call

a trading rule significantly positive if its abnormal performance is both significant

2In the multiple testing literature, it is natural to think about large l asymptotics, i.e., to

have an increasing number of tests; see, e.g., Finner and Roters (2002). When the number

l of tests cannot be taken large, Romano, Shaikh, and Wolf (2008a) show that resampling

procedures incorporating information about the dependence structure are better able to detect

false null hypotheses.
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(i.e., H0k : ϕk = 0 is rejected in favor of the alternative HAk : ϕk > 0 or ϕk < 0,

where ϕk is a performance measure for rule k) and positive. Let R+ denote the

number of trading rules selected as significantly positive. F+ of them do not truly

generate abnormal performance, but have been selected erroneously. The FDR

among the rules yielding positive returns, denoted by FDR+, is defined as the

expected value of the proportion of erroneous selections among the rules selected

as outperforming. The FDR+ can be estimated as F̂DR
+

= F̂+/R̂+, where

F̂+ and R̂+ are estimators of F+ and R+. Similarly, an estimator of the FDR

among the rules yielding negative returns, denoted by FDR−, can be written

as F̂DR
−

= F̂−/R̂−. An FDR+ of 10% means that among the rules selected

as outperforming, on average 10% do no generate genuite positive performance.

An FDR+ of 100% shows that no rule is able to deliver positive returns and

that the apparent performance is purely due to luck, i.e., data snooping. An

FDR+ of 0% indicates that all selected strategies do genuinely generate positive

performance. The FDR approach allows also to estimate the proportions π+
A and

π−A of respectively positive and negative trading rules in the population.

In our application, the FDR offers a sensible balance between true positives

and erroneous elections. It is much less conservative than the FWER and leads

to a significant increase in power. The FDR approach has received much recent

attention in the statistics literature; see Abramovich, Benjamini, Donoho, and

Johnstone (2006) for applications of the FDR and for an extensive discussion

of the advantages of using the FDR over the FWER in the field of multiple

testing. Romano, Shaikh, and Wolf (2008b) review a number of recent proposals

to account for multiple tests, and discuss how these procedures apply to the

problem of model selection. In addition to its less conservative nature, the FDR

approach is able to detect the outperforming rules, even if the performance of the

best rule in the sample is due to luck, contrary to the RW method and the BRC.

In Appendix G, we design a Monte Carlo experiment replicating the environ-

ment of our empirical study, in particular the serial and cross-sectional dependen-

cies3. We show that the proportions of outperforming and underperforming rules

3Barras, Scaillet, and Wermers (2010) run an extensive Monte Carlo study that illustrates
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are estimated very accurately by the FDR method for correlated test statistics

when l is large. This confirms the behavior predicted by asymptotic theory when

l goes to infinity. More importantly, the FDR approach allows to detect almost all

outperforming rules, while keeping the amount of false discoveries at the desired

level. The simulations highlight the lack of power of the RW method and the

advantage of the new FDR approach. They illustrate that one reason explaining

the low power of the RW method is its algorithm stops once it encounters a lucky

rule. They also show that a situation where a rule with no genuine predictive

power achieves one of the highest performance by luck is not uncommon. At

worst, the RW method (and the BRC) selects no single rule if the performance of

the best rule in the sample is due to luck. This comes from the stepwise nature

of the algorithm controlling the conservative FWER criterion.

Another virtue of the FDR approach is its simplicity. Once the p-values

corresponding to the individual tests have been calculated, the estimation of the

FDR+/− is straightforward. The FDR approach only requires p-values from a

two-sided test. For each rule k, 1 ≤ k ≤ l, we test the null hypothesis H0k of no

abnormal performance, versus the alternative HAk of the presence of abnormal

performance, positive or negative: H0k : ϕk = 0, HAk : ϕk > 0 or ϕk < 0. The

single parameter to be estimated is the proportion π0 of rules in the population

satisfying the null hypothesis ϕ = 0. We obtain the individual p-values using

the same resampling technique as STW. All relevant estimation procedures to

get F̂DR
+

, F̂DR
−

, π̂+
A , π̂−A , as well as the stationary bootstrap used to obtain

the individual p-values are detailed in the appendices. We also describe how

to determine the standard deviation of the estimators for π0, π
+
A and π−A under

dependent p-values. These new results extend the asymptotic properties provided

by Barras, Scaillet, and Wermers (2010) for independent p-values when l goes to

infinity.

the good statistical properties of the FDR method in a mutual fund performance measurement

setting. Their design covers dependent test statistics, where dependencies come from both the

factor structure explaining mutual fund returns and some residual cross-sectional correlations

in the error terms.
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2.3. FDR portfolio in practice

Our criteria to construct a portfolio of trading rules is to set F̂DR
+

equal to

10%4. We use the algorithm described in the appendix to pick the corresponding

trading rules. We denote the resulting portfolio the 10%–FDR+ portfolio. 90%

of the rules included in the portfolio posess genuine predictive power. After

pooling the signals of the selected rules with equal weight, we invest a proportion

of the wealth corresponding to the neutral signals in the risk free rate, and go

long or short the market with the remaining money. For example, imagine the

10%–FDR+ portfolio contains 60 rules, of which 40 generate a buy signal, 10

generate a neutral signal, and 10 generate a sell signal. After pooling, we obtain

30 buy signals and 20 neutral signals. Hence, we invest 60% of the wealth in the

index and the remaining 40% in a savings account. Our portfolio approach is

equivalent to averaging the forecasts of the selected rules with equal weights and

no prior. Setting more weight on the better rules has an effect very similar to

reducing the FDR target level to keep fewer rules. Such a forecast combinations

approach which diversifies against model uncertainty is discussed in Elliott and

Timmermann (2008).

In theory, we could construct a universe containing all the possible combina-

tions of trading rules and use the BRC to select the best candidate. However,

this approach is not feasible in practice as there are 27846−1 possible rules combi-

nations, a number with more than 2, 000 digits. Our FDR portfolio methodology

allows us to circumvent this computational hurdle.

4Just as when choosing the significance level of a statistical test, the choice of the FDR

level defines the balance between wrongly including underpeforming trading rules, and leaving

out truly outperforming ones. Our experiments with real data and in our Monte Carlo study

indicate that a target of 10% achieves a good tradeoff. Results are qualitatively stable for values

ranging from 5% to 20%. Another approach useful when we do not know which FDR level to

choose, is to first fix the rejection region, before computing the corresponding proportion of

false discoveries. For example, we select strategies generating positive performance and having

a p-value inferior to the threshold γ = 0.01 in a first step. Then, we compute the resulting

F̂DR
+

.
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3. Trading rules, data, and performance mea-

surement

3.1. Universe of trading rules and data

When applied to a series of past prices, a trading rule indicates whether a long

position (buy), a neutral position (out of the market), or a short position (sell)

should be taken in the next time period. To examine whether the apparent suc-

cess reported in BLL and STW is spurious, i.e., the result of extensive tweaking

of the parameters of popular rules, we need to specify a universe of trading rules

from which investors could have drawn their strategies. To allow for comparison,

we stick to the universe of STW, which consists of l = 7, 846 rules divided into the

following five categories. The technical indicators corresponding to these strate-

gies are very common in practice; they are available on professional information

systems and advertised on popular finance websites.

Filter rules: An investor following a filter rule buys and sells a stock if its

price movement reverses direction by a sufficiently high amount. Moves less than

a certain percentage in either direction are ignored. The filter rule is supposed to

permit investors to participate in a security’s major price trends without being

misled by small fluctuations.

Moving averages: Investors frequently use moving averages to discover trends

in stock prices. For example, in an uptrend, long commitments are retained as

long as the price remains above the moving average.

Support and resistance rules: Support and resistance is the concept in tech-

nical trading that the movement of the price of a security will tend to stop and

reverse at certain predetermined price levels. The idea is that the price is more

likely to bounce off a support level rather than break through it. However, once

the price has passed this level, it is likely to continue dropping until it finds
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another support level. A resistance level is the opposite of a support level.

Channel breakouts: A price channel is a pair of parallel trend lines that form

a trending chart pattern for a security. When the price passes through a trend

line, the trend is broken and the breakout generates a buy or sell signal.

On-balance volume averages (OBV): The total volume for a given day

is assigned a positive or negative value depending on the close being higher or

lower than the previous day, and added to the OBV of the previous day. The

OBV is generally used to confirm price moves. The intuition is that volume is

higher on days where the price move is in the dominant direction. Therefore,

technical traders consider greater volume on rising prices bullish. Conversely,

greater volume on falling prices is considered bearish.

We refer to STW for the exact parameterizations of the above trading rules.

Apart from the support and resistance rules which can be considered as contrarian

strategies, the other categories of rules are momentum/trend-following strategies.

As in STW, we apply the nearly eight thousand trading rules to daily closing

prices on the Dow Jones Industrial Average (DJIA) index. STW consider the

sample from January 1897 to December 1996 divided into five subperiods. We

add one period for the new data between January 1997 and July 2011. STW also

run the strategies on the 100-year period from the inception of the DJIA index.

Results for this latter sample should be viewed with caution, as market conditions

have evolved dramatically in the last 100 years. Furthermore, managers never get

to trade for 100 years before their performance is evaluated. It can be argued that

in the early periods, it was impossible to trade stock indices frequently without

incurring significant transaction costs. With the introduction of exchange-traded

funds, e.g., the Diamonds Trust which tracks the DJIA, and index futures, it is

realistic to assume that investors apply technical rules directly to a stock market

index.
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3.2. Performance measurement

Each rule k, 1 ≤ k ≤ l, generates an investment signal sk,t−1 for each prediction

period t, L ≤ t ≤ T . sk,t−1 equals 1 for a long position, 0 for a neutral position,

and −1 for a short position5. For each rule, we compute a test statistic ϕk, which

measures the performance of the rule relative to a benchmark. The statistic is

defined in such a way that ϕk = 0 under the null hypothesis that rule k does

not generate abnormal performance relative to the benchmark. Following STW,

our benchmark is being out of the market and earning the risk-free rate, which

corresponds to testing whether the trading rules are able to generate absolute

returns. Alternatively, we could compare the performance of the trading rules to

a buy-and-hold strategy that is fully invested in the index over the entire sample.

A further possibility is to compare the returns of the trading rules to an average

of the average returns on the index and on bonds over the period, weighted by

the fraction of days the strategy is invested in respectively the index and bonds.

This allows to test if the trading rule chooses relatively better days to be invested

in the index; see Ready (2002).

In their study, STW use two simple performance criteria: the mean return and

the Sharpe ratio. We focus our analysis on the Sharpe ratio, which measures the

average excess return per unit of total risk. We compute the return in excess of the

risk-free rate. This implies that trading rules earn the risk-free rate on days where

a neutral signal is generated. We use the same risk-free rate as STW, i.e., the daily

Federal funds rate after July 19546. Let yt be the (arithmetic) period t return

on the price series on which the strategies are applied. As in STW we denote by

f ek,t = 1{sk,t−1 6=0} (sk,t−1yt − rf,t) the period t excess return of rule k, where rf,t is

the risk-free rate, and 1{sk,t−1 6=0} = 1 if a buy or sell signal is generated, and 0 if the

5An alternative which leads to the same conclusions on the performance of trading rules is to

translate a buy signal into borrowing money at the risk-free rate and doubling the investment

in the stock index, a neutral signal into simply holding the index, and a sell signal into exiting

the market.
6We are grateful to A. Timmermann for providing us the DJIA index and risk-free rate series

for early periods.
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signal is neutral. The mean excess return can be written as f̄ ek =
1

N

T∑
t=L

f ek,t+1, and

the standard deviation as σek =

√√√√ 1

N − 1

T∑
t=L

(
f ek,t+1 − f̄ ek

)2
, where N = T −L+ 1

is the number of prediction periods. Then, the test statistic for the Sharpe ratio

is simply ϕk = SRk =
f̄ ek
σek

. Results for the mean return, which measures the

absolute performance, are qualitatively similar, and we do not report them here.

They are available in the supplementary appendix.

As in the available literature, the Sharpe ratios we use for appraising the

performance of the trading rules are unconditional, i.e., they involve unconditional

risk estimates. The trading rules generate a signal to be either in the market—

with market volatility, or out of the market—with volatility close to zero. The

unconditional Sharpe ratio favors rules which are more often out of the market as

their denominator is automatically deflated. Taking into account such volatility

patterns would likely alter the classification of trading rules. To our knowledge,

this issue is not addressed in the literature. Tackling this issue is not trivial,

as the expected value of the conditional Sharpe ratios is not equivalent to the

unconditional Sharpe ratio because of Jensen’s inequality. This point is less of an

issue when assessing the performance of a portfolio of trading rules which results

in being at least partially invested in the index most of the times, as it is the case

in our study.

Although it has become a standard in the literature and in the industry,

measuring performance with the Sharpe ratio has many drawbacks. The Sharpe

ratio does not take into account higher moments and recent studies have shown

that incorporating skewness and kurtosis into the portfolio decision causes major

changes in the optimal portfolio; see Jondeau and Rockinger (2006) and the

references therein. One possible performance measure that allows to take into

account more elaborate utility functions is the certainty equivalent of wealth

(CE). The certainty equivalent is that amount of wealth such that the investor

is indifferent between receiving it for sure at the horizon, and having his current

wealth today and the opportunity to invest it up to the horizon; see Brennan,
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Schwartz, and Lagnado (1997) and Blanchet-Scalliet, Diop, Gibson, Talay, and

Tanré (2007). The downside with such an approach is that it requires making an

assumption on the stochastic process underlying the index.

4. Long-term in-sample performance

[Table 1]

For each of the sample periods, the columns on the right-hand side of Ta-

ble 1 display the in-sample performance of the best rule in the sample and the

corresponding BRC p-value, as reported in STW. The columns on the left-hand

side present the performance and size of the portfolio obtained using the RW

method to control the FWER at the 5% level. Based on such in-sample evidence

discovered ex post, BLL and STW conclude that technical rules can be used to

generate profits. These results have no economic value and are merely a test

of predictability. They do not take into account transaction costs, and a high

historical performance is no indication that an investor could have selected the

future best-performing rules in advance. Moreover, in practice, investor perfor-

mance is evaluated over much shorter periods. Investors update their strategies

more frequently, in an attempt to adapt to the changing economic environment.

The long-run averages presented in STW tend to mask substantial variability in

the rules performance within each period.

For the same sample periods, Fig. 1 shows the proportions of outperforming

(π+
A), null (π0), and underperforming (π−A) strategies, estimated using the FDR

approach. Results in Fig. 1 are subject to the same critics as those in Table 1.

However, they illustrate the advantage of our new methodology. For example in

Subperiod 2 (1915–1938), the BRC p-value indicates that the performance of the

best rule in the sample is not significant after accounting for data snooping. As

a consequence, the RW portfolio is empty. However, the FDR analysis reveals

that more than 20% of the rules actually deliver true performance. This example

highlights a major problem of the RW method, which is not able to select further
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rules with genuine performance as soon as it encounters a rule whose performance

is due to luck. As illustrated in our Monte Carlo experiments (Appendix G), the

event that a rule without true predictive power delivers one of the highest returns

by luck is not unlikely.

[Figure 1]

Fig. 1 indicates that until the 1960s an important proportion of the rules

exhibited a significant predictive power. As we show below, however, predictive

power does not imply profitability. An important proportion of the rules that

perform best before transaction costs use very short windows of data, generate

very frequent trading signals, and, hence, are likely to generate substantial trans-

action costs. As already reported in e.g. STW or Ready (2002), the rules did

quite poorly in more recent periods7. This trend is confirmed by the new data

now available for subperiod 6 (1997–2011). As discussed in Ready (2002), one

explanation for this drop in performance is that the positive returns of the earlier

periods is a statistical anomaly, discovered ex post by extensive data snooping.

Another explanation is that an episode of relative market inefficiency did really

exist, but the predictability was only discovered during more recent periods and

became possible to exploit only with lower transaction costs and increased liq-

uidity. Another possible factor is that investors have become more sophisticated

and have traded away these opportunities. Friedman (1996) shows that aggregate

institutional ownership increases from less than 10% in 1950 to over 50% in 1994.

Gompers and Metrick (2001) find that “large” institutional investors nearly dou-

ble their share of the stock market from 1980 to 1996. Of course, their increased

number does not mean that institutional investors are more sophisticated.

We tackle the issue of ex ante rules selection in the next section. Before

that, we show that the in-sample predictability could not have been turned into

7The presence of true underperforming rules before transaction costs, e.g., subperiods 4

(1962–1986), 5 (1987–1996) and 6 (1997–2011), looks counterintuitive at first sight. The reader

might wish to reverse the corresponding signals of when to go in/out of the market. However,

most of the systematically negative performance stems from subtracting the risk-free rate from

alternating returns of very small magnitude.
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profits as the generated returns are not sufficient to outweigh transaction costs.

Table 2 reports the minimum transactions costs such that our FDR method

does not detect outperforming rules any more. In the first three subperiods

(1897–1962), proportional one-way transaction costs as low as 16, 35 and 70

basis points are sufficient to bring π̂+
A to zero. Transaction costs are difficult to

measure precisely and have declined over time. Nevertheless, studies presented

in Appendix H indicate that one-way transaction costs below 50 basis points

can be considered as conservative starting in the early 1990s, and that the costs

were significantly higher before the sharp decline triggered by the deregulation of

commissions in 19758. The rules selected before transaction costs produce many

trading signals, and their performance is canceled once we take into account the

costs. In the three most recent sample periods (1962–2011), we do not detect

any positive performance (π̂+
A = 0) already under zero transaction costs. The

effective transaction costs depend on a number of factors including the type of

trading strategy. For example, a short-term contrarian trading rule will, almost

by definition, have a lower price impact than a trend-following strategy. Among

the five categories in the STW universe, only the support and resistance rules

are contrarian strategies. The other types correspond to momentum or trend-

following strategies. As a robustness check, we have performed our computations

with transaction costs 20% lower for support and resistance rules. The impact

on the above results is marginal.

[Table 2]

Table 3 illustrates that once we include transaction costs, the successful rules

trade on longer-term price movements. Even if transaction costs have been de-

clining over time, for the sake of comparison we use the same low (i.e., conser-

vative) value of 12.5 basis points across all sample periods. For example during

sample period 3 (1939–1962), if we omit transaction costs, the best rule in the

8Ready (2002) uses one-way transaction costs of 13bps for the period from 1962 to 1999.

Allen and Karjalainen (1999) consider three different one-way transaction costs: 10bps, 25bps,

and 50bps, for the period from 1928 to 1995.
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sample uses a window of only two days of data. When transaction costs are taken

into account, the best rule needs 250 days, or 12 months of data.

[Table 3]

The detailed analysis of the impact of transaction costs which we continue

in the next section is an important contribution of the present paper. Although

previous studies including BLL and STW call for careful consideration of transac-

tion costs, none provides a satisfactory analysis while simultaneously accounting

for data snooping. STW partly address the issue by using price data on the S&P

500 index futures. When trading futures contracts, transaction costs are easy to

control, and it is not difficult to take a short position (see Appendix H). However,

futures contracts started trading only in 1984, thus limiting the interest of this

approach in our 100-year sample. Some studies, e.g., STW and Bessembinder and

Chan (1998), compute a break-even transaction cost, which corresponds to the

level of transaction costs that exactly offsets the profits from using a given tech-

nical trading rule. We also examine break-even costs for each strategy, to see if

there is any variation over time or across types of strategies. We do not report the

detailed results but Fig. 2 and 3 provide an example of the differences across the

various blocks of trading rules, and between period 3 (1939–1962) and period 4

(1962–1986). In period 3, 75% of the rules deliver positive in-sample performance

before costs, and transaction costs below 25 basis points are sufficient to prevent

the vast majority from breaking even. In period 4 the proportion of rules with

positive in-sample performance before costs drops to 44%, and most of these rules

require costs below 10 basis points to break even. Individual break-even transac-

tion costs are informative. However it is difficult to use break-even costs in a rules

selection process because they are computed ex post, once the trading rules have

already been selected. It does not make sense to first select a portfolio of trading

rules using the RW method or our FDR approach and then compute the portfolio

break-even costs. Trading rules that survive the inclusion of transaction costs are

often not among those that perform best before costs. Transaction costs must be

treated as endogenous and not exogenous to the selection process. The results of
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Table 2 and of the following section do not suffer from this exogeneity problem.

They are obtained by treating transaction costs as endogenous to the selection

process, i.e., by increasing transaction costs until the FDR approach is not able to

detect any positive performance. They can be viewed as break-even transaction

costs computed ex ante. Our approach of computing ex ante break-even costs

removes the need to set a level of costs in advance that would be dependent on

many factors, such as the volume (see Appendix H for a discussion of the price

impact as a function of the traded volume).

[Figure 2]

[Figure 3]

5. Persistence analysis

[Table 4]

The question addressed in this section is simple but essential to evaluate the

economic value of the trading rules: could investors reasonably have anticipated

which rules would generate superior returns after transaction costs? It is impor-

tant to ask what information could have been used to select the outperforming

rules. If the answer is that the prediction could have been made based on an

analysis of investment flows, fiscal policy or market psychology, then price data

alone is not sufficient to reject the assertion. Considering that the trading rules

we investigate are purely based on the price action, however, it makes sense to

test if the future outperforming rules could have been selected using only past

price data. We do so by performing a persistence analysis of the trading rules.

Every month, we construct a portfolio of rules using price data of the previous

month. We then measure the out-of-sample performance of the selected rules over

the following month. It is important to note that to rebalance the portfolio, we

use only information that would have been readily available to an investor. Such

a persistence analysis of the performance of a large number of trading rules has
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never been carried out in the literature. STW qualify as out-of-sample the results

for the period after the sample of the original BLL study. However, and despite

the term, STW always measure the performance in-sample. In our persistence

test, rules are selected ex ante and evaluated genuinely out-of-sample. Rebalanc-

ing the portfolio monthly as opposed to evaluating the rules over multiple-year

periods as is done in all previous studies also allows to select different rules de-

pending on the changing economic environment. Compared with existing studies,

such setting is much closer to what is done in practice, where investors are eval-

uated over relatively short time horizons. The one-month period is chosen to

correspond to the typical length of a trend in financial markets; see Jegadeesh

(1990) and Huang, Liu, Rhee, and Zhang (2010) who document a reversal in

stock returns after one month. Results are similar when the rules are updated

every six months and are reported in the supplementary appendix.

Table 4 reports results of the persistence analysis under zero transaction costs,

for the same sample periods as previously. It shows the out-of-sample performance

for the different rules selection criteria we use, i.e., the 10%-FDR+ portfolio, the

RW portfolio, the 50 best-performing rules, and the best rule in the sample.

It also displays the median size and the in-sample performance of the monthly

rebalanced portfolios. As explained in Section 2.3, we pool the signals of the rules

in the portfolio, which results in getting long or short the index with a proportion

of the wealth, and investing the remaining money at the risk-free rate. The in-

sample performance when we update the rules monthly is significantly higher than

what we can achieve if we have to keep the same rules over multiple-year periods.

However, the out-of-sample performance is negative in most cases throughout the

recent periods. Even equipped with the more powerful FDR method, investors

could not have reasonably anticipated which rules would generate positive returns,

and this even in the unrealistic case of zero transaction costs. Hence, there is

no hot hands phenomenon. Other signs show that the reason for choosing the

outperforming rules is only clear to researchers examining the price data ex post.

The number of selected rules varies greatly from month to month. A study of

the portfolio turnover shows that on average, less than five percent of the rules
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remain in the portfolio after the first rebalancing. After two rebalancings the

portfolio consists of almost exclusively new rules. Although it can be the case

that we are able to find ex post technical rules with apparent predictive power,

our persistence tests indicate that it is not possible to select these rules ex ante.

Our results show that the examples of in-sample predictability reported ex post

by BLL and STW have no economic value.

Table 4 also displays the advantages of using the FDR approach. The FDR

approach efficiently avoids the lucky rules with no genuine performance, as illus-

trated by the higher out-of-sample returns of the 10%-FDR+ portfolio compared

with the performance of the portfolio of the 50 previously best-performing rules.

The median size of the different portfolios shows the power advantage of the FDR

method, when the RW portfolio is empty most of the times. As explained above

and illustrated in the Monte Carlo study (Appendix G), the lack of power of the

RW method (and simultaneously of the BRC) comes from the very conservative

criteria underlying that method which prevents it from selecting further rules as

soon as it encounters one whose performance is due to luck.

The results of Table 4 show that the performance of trading rules is not

persistent, and that knowing which rules are going to perform best can only

be clear to a person observing the returns ex post. In order not to leave any

argument in favor of trading rules, we now show that even the smallest transaction

costs are sufficient to erase the apparent positive out-of-sample performance still

remaining in the early sample periods. Table 5 reports the minimum level of

transaction costs so that the out-of-sample performance disappears. As in the

previous section, we treat the transaction costs as endogenous to the selection

process, and we can view the reported levels as break-even transaction costs

computed ex ante. Even during the early periods, one-way transaction costs of

less than 5 to 35 basis points suffice to offset any out-of-sample performance.

As pointed out in Appendix H, transaction costs were significantly higher in the

prevailing periods. Hence, even if the in-sample performance looks attractive, the

persistence analysis shows that an investor cannot realistically select the future

outperforming rules.
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[Table 5]

A further source of friction arises from the lending fees when taking a short

position. The 10%-FDR+ portfolio results in short positions in more than 20% of

the days. Table 6 displays the minimum level of short selling costs that make the

out-of-sample performance disappear. In the first three sample periods (1897–

1962), with yearly lending fees only between 5 and 20 basis points (see Appendix

H for studies on lending fees in the equity loan market) we are not able to select

rules with positive out-of-sample performance, and this while keeping one-way

transaction costs at zero. In later periods, out-of-sample performance is already

negative before costs.

[Table 6]

We have just shown that it is impossible to select the future best performing

rules by looking solely on their past performance. As a robustness check, we

test whether other variables can help to predict which trading rules are going

to outperform in the future. For example, we test whether certain trading rules

perform better within a particular economic environment, using business cycle

data form the National Bureau of Economic Research (NBER). Our analysis

shows that even knowing the state of the business cycle ex ante would not help

an investor selecting the future outperforming rules. We also investigate the

predictability of the trading rules conditional on the market environment. For

some subperiods, the FDR+ portfolio has a return profile similar to a straddle

on the index, i.e., the selected rules perform only when the DJIA index exhibits

strong negative or positive returns. Such a pattern has been observed for hedge

funds; see Fung and Hsieh (1997). However, the relation is only present in a few

sample periods.

6. Conclusion

Previous studies, e.g., BLL and STW, have reported examples of technical trad-

ing rules generating superior returns, at least during early time periods. Based
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on such results observed ex post, they have concluded that trading rules were

useful to deliver profits. In the present paper, we reassess this apparent historical

success.

First, we propose a new approach to select outperforming rules while account-

ing for data snooping based on the False Discovery Rate. The FDR method is

designed to control false positives—conclusions that something is statistically sig-

nificant when it is entirely random. Our Monte Carlo simulations calibrated to

our empirical study and taking into account serial and cross-sectional dependen-

cies confirm that the FDR approach is more powerful and better suited than

statistical methods used in previous studies. It allows to select more rules and

diversify against model uncertainty. Methods derived from the BRC are by con-

struction unable to select further rules once they find a rule whose performance

is due to luck. As our simulations illustrate, it is very likely that a rule with no

real predictive power achieves by luck a performance better than the majority of

the true outperforming rules.

Second, we test whether the trading rules can really be used to make money.

Since the strategies selected by BLL and STW generate frequent trading signals,

return forecastability may not imply superior returns once transaction costs are

considered. Another important question is how an investor could have selected

the rules able to deliver future returns outweighing transaction costs, without the

benefit of hindsight. We address these issues by performing persistence tests of the

performance of rules selected with the FDR approach, and adding a transaction

cost each time a buy or sell signal is generated. Our results show that, in reality,

an investor could not have extracted economic value from the simple trading

rules of STW in the liquid investment environment (blue-chip index) we consider,

even in early sample periods. Even with the help of the more powerful FDR

approach, we are not able to select rules whose performance is persistent and

not canceled by transaction costs. The rules in the STW universe originate from

the Dow Theory of the late 19th century; see Brown, Goetzmann, and Kumar

(1998). They are nowadays displayed interactively on popular finance websites

and quoted routinely by analysts. They are part of standard packages provided
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by online brokerage houses, and data or news vendors. They can be considered

as publicly available, and, in that sense, our results are in favor of the weak

efficient-market hypothesis.

However, our results say little about the existence of profitable trading strate-

gies in other markets, using different frequencies or more sophisticated rules. The

recent growing number of institutions getting involved in high-frequency trading

hints that profitable algorithmic strategies can indeed be found. The same remark

applies to the success of statistical arbitrage trading strategies used by several

proprietary trading desks and hedge funds in the 80s and 90s; see Gatev, Goetz-

mann, and Rouwenhorst (2006). Our results only indicate that investors should

be wary of the common technical indicators present on any investment website or

professional information system, and advertised as obvious money making tools.
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Appendices

We summarize here results from Barras, Scaillet, and Wermers (2010) and STW,

and present the results of our Monte Carlo experiment showing the better ability

of the FDR approach to select the outperforming rules. We also review the

literature on transaction costs and short selling constraints, and provide guidelines

about which level can be regarded as low (conservative).

A. Stationary bootstrap

For each trading rule, we test the null hypothesis of no abnormal performance. To

obtain the individual p-values, we follow STW and apply the stationary bootstrap

of Politis and Romano (1994). This resampling technique is chosen due to the

weak correlation in the daily returns. We describe the algorithm that generates

a resampled time series of returns. The notation corresponds to that of the text

and of STW. Let {ft, t = L, . . . , T} denote the original series of returns. For

b = 1, . . . , B, with q ∈ [0, 1] a smoothing parameter, the bootstrapped series of

returns {f bt , t = L, . . . , T} are obtained as follows.

1. Set t = L. Draw the index θ(t) at random, independently and uniformly

from {L, . . . , T}. Set f bt = fθ(t).

2. Set t = t + 1. If t > T , stop. Otherwise, draw a random variable U from

the standard uniform distribution.

(a) If U < q, draw θ(t) at random, independently and uniformly from

{L, . . . , T}.

(b) If U ≥ q, set θ(t) = θ(t− 1) + 1. If θ(t) > T , set θ(t) = L.

Set f bt = fθ(t).

3. Repeat step 2.
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The stationary bootstrap resamples blocks of varying length from the original

data. The average block length equals 1/q. The parameter q has to be chosen

according to the dependence exhibited by the data. We follow STW who set the

average block length to 10 (i.e., q = 0.1). STW show that the results are robust

to the choice of q.

For each simulated series of return, we compute the corresponding perfor-

mance measure ϕb, b = 1, . . . , B. The p-value is obtained by comparing the

original performance ϕ to the quantiles of ϕb−ϕ, b = 1, . . . , B. We set B = 1000

for the number of bootstrap iterations.

B. Estimation of the FDR+ and the FDR−

Suppose that we test the null hypothesis of no abnormal performance for each

trading rule and obtain the l corresponding p-values. We call a trading rule

significant (i.e., reject the null hypothesis) when its p-value is less than or equal

to some threshold γ. Since the Null hypothesis we test is two-sided with equal tail

significance γ/2 (see Section 2.2), the false discoveries are spread evenly between

outperforming and underperforming trading rules. Based on that observation

and following Storey (2003), Barras, Scaillet, and Wermers (2010) propose the

following estimators for the FDR separately among the rules yielding positive

and negative performance:

F̂DR
+

(γ) =
F̂+

R̂+
=

1
2
π̂0 l γ

# {pk ≤ γ, ϕk > 0; k = 1, . . . , l}
, (1)

F̂DR
−

(γ) =
F̂−

R̂−
=

1
2
π̂0 l γ

# {pk ≤ γ, ϕk < 0; k = 1, . . . , l}
. (2)

π̂0 is an estimate of π0 ≡ l0/l, the proportion of rules in the population generating

no abnormal performance. Hence, measuring the FDR+/− boils down to the

estimation of π0, which we describe in the following section.
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C. Estimation of π0

To estimate π0, Storey (2002) proposes a method exploiting the fact that, for a

two-sided test, null p-values are uniformly distributed over [0, 1], whereas p-values

of alternative models tend to be close to zero. Fig. 4 shows the histogram density

of p-values corresponding to our l = 7, 846 trading rules. We see that beyond 0.6,

the histogram looks fairly flat, which indicates that there are mostly null p-values

in this region. The height of this flat portion gives a conservative estimate of the

overall proportion of null p-values:

π̂0(λ) =
# {pk > λ; k = 1, . . . , l}

l(1− λ)
, (3)

which involves the tuning parameter λ. It is possible to automate the selection

of λ. However, as π̂0 is not sensitive to the choice of λ when the number of rules

is high, we set λ = 0.6 by visually examining the histograms. The automated

method described in Storey (2002) produces almost identical estimates of π0.

[Figure 4]

D. Estimation of π+
A and π−A

Appendix C shows how to estimate π0, from which we can deduce πA = 1−π0, the

proportion of rules with abnormal (i.e., non zero) performance in the population.

It is useful to split πA into the proportions of rules with positive (π+
A) and negative

abnormal performance (π−A), which can be written as:

π+
A =

T+(γ) + A+(γ)

l
, π−A =

T−(γ) + A−(γ)

l
. (4)

T+(γ) denotes the number of alternative models with positive performance and

a p-value smaller than γ. A+(γ) denotes the number of alternative models with

positive performance which are not rejected by the hypothesis test (i.e., with a

p-value greater than γ). T−(γ) and A−(γ) are defined accordingly for negative

performance.
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Using the same approach as in Appendix B, we estimate T+(γ) and T−(γ)

with:

T̂+(γ) = R̂+(γ)− F̂+(γ) = # {pk ≤ γ, ϕk > 0; k = 1, . . . , l} − 1

2
π̂0 l γ, (5)

T̂−(γ) = R̂−(γ)− F̂−(γ) = # {pk ≤ γ, ϕk < 0; k = 1, . . . , l} − 1

2
π̂0 l γ. (6)

As we increase γ, A+(γ) and A−(γ) tend to zero, while T+(γ) and T−(γ) increase.

Hence, by taking a sufficiently high value γ∗, we can estimate π+
A and π−A with:

π̂+
A =

T̂+(γ∗)

l
, π̂−A =

T̂−(γ∗)

l
, (7)

as explained in Barras, Scaillet, and Wermers (2010). We set γ∗ = 0.4, which

corresponds to the value for which π̂+
A and π̂−A become constant.

E. Controlling the portfolio FDR+ level

Storey, Taylor, and Siegmund (2004) show that the FDR point estimates can be

used to define valid FDR controlling procedures under weak dependence. Hence,

we can derive the following algorithm that allows the construction of a portfolio

of trading rules with a FDR+ level fixed at at predetermined target rate. The

algorithm starts with the rule having the smallest p-value (and a positive perfor-

mance). Then, the rule corresponding to the next p-value is added and the FDR+

recomputed. This process is repeated until we reach the desired FDR+ target.

F. Determining the standard deviation of the

estimators under dependence

Barras, Scaillet, and Wermers (2010) have derived the asymptotic properties of

the estimators for π0, π
+
A and π−A under independent p-values. They use the large

sample theory proposed by Genovese and Wasserman (2004). Here we use the

results of Farcomeni (2007), who extends the results of Genovese and Wasser-

man (2004) to the dependent case; see also Wu (2008). The idea is to directly
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exploit the convergence of the empirical process associated to the p-values. In

this appendix, we assume that the test statistics are totally ordered. Let us in-

troduce the cdf G(λ) = P [pk ≤ λ] and its empirical counterpart Ĝ(λ) = ]{pk ≤
λ; k = 1, ..., l}/l, λ ∈ (0, 1). Farcomeni (2007) shows that, when l → +∞, the

empirical process
√
l(Ĝ(λ) − G(λ)) converges to a centered Gaussian random

process whose covariance kernel is K(λ1, λ2) = G(min(λ1, λ2)) − G(λ1)G(λ2) +

2
∞∑
j=2

(Gj(λ1, λ2) − G(λ1)G(λ2)), where Gj(λ1, λ2) = P [p1 ≤ λ1, pj ≤ λ2]. That

result holds true under a wide range of dependence structure such as associa-

tion, latent factor model, block dependence, and mixing. Mixing refers here to

spatial mixing and not temporal mixing used in the time series literature. This

requires to view the p-values corresponding to the test statistics as a spatial pro-

cess on [0,1] such that the mixing conditions make the p-values located in the

sub-intervals close to zero sufficiently independent from the p-values located in

the sub-intervals close to one. The infinite sum in the covariance kernel cor-

responds to the contribution coming from dependence. We can estimate it by

2

al∑
j=2

(Ĝj(λ1, λ2) − Ĝ(λ1)Ĝ(λ2)), where Ĝj(λ1, λ2) = ]{pi ≤ λ1, pi+j ≤ λ2; i =

1, ..., l− j}/(l− j), with al → +∞ such that al/l→ 0. Hence, we deduce that an

estimate of the standard deviation of π̂0(λ) = (1−Ĝ(λ))/(1−λ) under dependence

is σ̂π̂0(λ) = {Ĝ(λ)(1− Ĝ(λ)) + 2

al∑
k=2

(Ĝk(λ, λ)− Ĝ(λ)2)}1/2/((1− λ)
√
l).

Let us now look at the estimator of π+
A (the treatment for π−A is similar). We

recognize that, in π̂+
A = Ĝ+(γ∗) − γ∗

2
π̂0(λ), the first term Ĝ+(γ∗) = R̂+(γ∗)/l =

]{pk ≤ γ∗, ϕk > 0; k = 1, ..., l}/l is an estimate of the probability of the event

{pk ≤ γ∗} ∩ {ϕk > 0}. Hence, we can estimate its standard deviation with

σ̂Ĝ+(γ∗) = {Ĝ+(γ∗)(1 − Ĝ+(γ∗)) + 2

al∑
k=2

(Ĝ+
k (γ∗, γ∗) − Ĝ+(γ∗)2)}1/2/

√
l, where

Ĝ+
j (λ1, λ2) = ]{pi ≤ λ1, pi+j ≤ λ2, ϕi > 0, ϕi+j > 0; i = 1, ..., l − j}/(l − j).

Combining the two results, we deduce that an estimate of the standard deviation

of π̂+
A is σ̂π̂+

A
= {σ̂2

Ĝ+(γ∗)
+ (γ∗/2)2σ̂2

π̂0(λ)
+ 2

(γ∗/2)

(1− λ)
σ̂Ĝ+(γ∗),Ĝ(λ)}

1/2/
√
l, with the

covariance term estimated by σ̂Ĝ+(γ∗),Ĝ(λ) = Ĝ+(γ∗)(1−Ĝ(λ))+2

al∑
k=2

(Ĝ+
k (γ∗, γ∗)−
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Ĝ+(γ∗)Ĝ(λ)).

G. Monte Carlo experiments

We perform a simulation study which shows that the FDR method correctly

estimates the proportions of outperforming, underperforming, and nonperforming

trading rules, and that it is more powerful than the RW method. The simulations

also illustrate that one explanation of the lack of power of the RW method is

that it does not select further rules once it encounters a lucky rule. As the

RW method is an extension of the BRC, our results simultaneously show the

advantage compared with the BRC. We design the Monte Carlo simulations to

match the historical performance of strategies and their empirical properties. In

particular, we preserve both the time-series and the cross-sectional dependences

among trading rules. By maintaining the clusters of similar strategies, e.g., filter

rules or moving averages with only slightly different parameters, our Monte Carlo

study illustrates the good behavior of the FDR approach even under the weak

dependence structure relevant to our empirical study.

We simulate 126-day trajectories, corresponding to a 6-month period, for

l = 7, 846 strategies as in the empirical study. We set 20% of the simulated

strategies to outperform the benchmark, 50% to generate no significant abnor-

mal returns, and 30% to deliver negative performance. The original sample used

to generate the simulated paths is a 126-day interval randomly chosen during

subperiod 3 (1939–1962), to have a basis of strategies with positive performance.

To generate the simulated path, we apply the stationary block bootstrap just as

when computing the p-values. We do not, however, resample blocks of returns

independently for each strategy. Rather, we draw l × b matrices, where b is the

random size of the block in the time series dimension. This approach allows us

to maintain the cross-sectional relations among same-category strategies. Be-

cause of the intrinsic properties of the stationary block bootstrap, the new paths

we obtain match the empirical properties of the trading strategies, e.g., serial

correlation, cross-sectional dependence, skewness, time-varying volatility. Our
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simulation approach is nonparametric since we use a nonparametric bootstrap to

generate the new trajectories.

To control which rules are respectively underperforming, null, and outper-

forming, we start by computing the average return for each simulated strategy,

and recenter the whole trajectory. By construction, all paths have zero mean at

this step. We then select the underperforming, null, and outperforming strate-

gies, and shift the trajectories of the underperforming and outperforming rules

by respectively some negative and positive value. This type of vertical parallel

translation does not affect the other empirical characteristics of the trajectories

since only the mean is adjusted (see Paparoditis and Politis (2003)). We choose

30% of underperforming and 20% of outperforming trading rules within each of

the five categories. For each category, the outperforming rules are selected as

the block of adjacent rules with the highest average performance ranking in the

historical sample. Underperforming rules are chosen similarly. The aim of this

approach is to preserve adjacent pools of outperforming and underperforming

rules. It avoids a situation in which strategies with only slightly different param-

eters are suddenly either outperforming or underperforming. The cross-sectional

dependence among strategies is maintained.

We set the values used to shift the trajectories of the selected outperform-

ing and underperforming rules such as to match sensible levels of Sharpe ratios

corresponding to our empirical study. We choose three specific levels of outper-

formance, namely a positive Sharpe ratio equal to 2, 3, or 4, and three specific

levels of underperformance, namely a negative Sharpe ratio equal to -2, -3, or

-4. These values correspond to annualized Sharpe ratios computed using daily

returns, i.e., they are obtained by multiplying the daily mean excess return over

daily standard deviation ratio by
√

252. Hence, the annualized Sharpe ratios

of 2, 3, and 4 correspond to daily Sharpe ratio values of only 0.13, 0.19, and

0.25. In our historical sample, we observe daily Sharpe ratios as high as 0.23

(3.6/
√

252) for the outperforming rules, and as low as -0.30 (−4.8/
√

252) for the

underperforming rules. The positive daily Sharpe ratio of 0.13 corresponds to

the 83th percentile of the distribution of observed positive daily Sharpe ratios
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in our sample. The negative daily Sharpe ratio of -0.13 corresponds to the 64th

percentile of the distribution of observed negative daily Sharpe ratios. The an-

nualized Sharpe ratio levels we use remain conservative, and in particular the

(2, -2) pair of outperformance versus underperformance results in a challenging

setting for any rule selection method. We investigate the nine resulting combi-

nations of specific alternative hypotheses of positive and negative Sharpe ratios,

the null hypothesis being a Sharpe ratio equal to zero. This broad set of alter-

native hypotheses allows observing the behavior of the RW and FDR methods

for outperforming and underperforming rules more or less distinguishable from

rules with no genuine performance. We shift the trajectories of the different rules

in such a way as to precisely obtain the same chosen positive Sharpe ratio level

for all outperforming rules, and the same chosen negative Sharpe ratio level for

all underperforming rules. If we take as an example the pair (2,−2) of Sharpe

ratios for outperformance and underperformance, we construct 20% of strate-

gies sharing the same Sharpe ratio of 2 (same alternative hypothesis of positive

performance) and 30% of strategies sharing the same Sharpe ratio of -2 (same

alternative hypothesis of negative performance), the remaining 50% having a zero

Sharpe ratio (same null hypothesis of zero performance). To provide an accurate

idea of the alternative hypotheses, Table 7 reports the quartiles of the annualized

mean excess return of the outperforming and underperforming rules, for the nine

combinations of Sharpe ratios. For example, when we set the Sharpe ratio of the

outperforming and underperforming rules to respectively 2 and -3, the annual-

ized mean excess return of the majority of the outperforming rules lies between

3.7% and 12.5%, and between -6.8% and -18.1% for the underperforming rules.

Furthermore, the volatility of trading rules corresponding to the null hypothesis

of zero performance is of the same order of magnitude as for the outperforming

and underperforming rules.

[Table 7]

Our results are based on 1,000 Monte Carlo iterations. Table 8 displays the

estimates using the FDR method of the proportions of outperforming (π+
A), un-
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derperforming (π−A), and nonperforming (π0) rules, for the nine Sharpe ratio com-

binations. The reported results show that the estimates are very accurate. Unre-

ported results obtained in a simpler setting in which strategies are all independent

show that standard deviations are only slightly increased when we preserve the

cross-sectional dependencies.

Next, we form portfolios of trading rules by controlling the FDR+ at 10% and

20%, and by using the RW approach to control the FWER at the 5% and 20%

level. For the different portfolios and the nine Sharpe ratio combinations, Table

9 reports average values over the 1,000 simulations for the true false discovery

rate, the percentage of true outperforming rules detected, and the portfolio size.

Focusing on the (3,−3) pair of Sharpe ratios (center of the Table), we see that

the 10%-FDR+ portfolio detects on average 52.6% of the outperforming rules,

and closely meets its FDR target at 9.7%. In comparison, the 5%-RW portfolio

detects only 0.6% of the outperforming rules on average. Controlling the FWER

at 20% with the RW approach increases the power to only 4.7%. The 20%-FDR+

portfolio on the other hand detects on average 64.7% of the outperforming rules.

The FDR is below the target level 20% at 11.4%. This shows that the procedure

achieves a control of the FDR, namely the achieved FDR is below the chosen

target level as predicted by asymptotic theory, while simultaneously achieving

good power properties. Hence, the FDR approach has a clear advantage over

the RW method (and over the BRC) in the environment of our study. Methods

based on the FWER are too conservative when l is large. The Monte Carlo

study is also a good illustration for one cause behind the low power of the RW

method. The RW approach starts with the best-performing rules, and is not

able to detect further rules once it reaches a lucky rule, i.e., a rule with no real

predictive power. As our study shows, a situation where a rule achieves one of

the highest performance by luck is not uncommon, e.g., with the (3, -3) pair of

Sharpe ratios, the median ranking of the first lucky rule in the simulations is 422st

(mean: 521, standard deviation: 386). As there are 1,569 outperforming rules in

our setting, the power of the RW method cannot exceed 25% on average.

Further Monte Carlo results under a similar design, but when performance
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is measured with the mean return instead of the Sharpe ratio and for specific

null and alternative hypotheses set in terms of mean returns, are included in the

supplementary appendix.

[Tables 8 and 9]

H. Transaction costs and short sale constraints

Transaction costs are commonly decomposed into two major components: ex-

plicit costs and implicit costs. Explicit costs are the direct costs of trading, such

as broker commissions and taxes. Implicit costs, which are harder to measure,

represent indirect costs such as the price impact of the trade and the opportunity

cost of failing to execute the order in a timely manner. For the period January

1991 to March 1993, Keim and Madhavan (1997) estimate that, for exchange

listed stocks, the average total cost for a buy order is 0.49% (0.31% implicit costs

+ 0.18% explicit costs). Transaction costs were significantly more important in

earlier years, particularly before commissions were deregulated in May 1975. Stoll

and Whaley (1983) use published commission schedules to estimate transaction

costs during the 1960 to 1975 period. For the largest decile of NYSE securities,

they report an estimated one-way transaction cost of 1.35% (the commission plus

half the bid-ask spread).

Selling short also incurs a cost. The investor willing to take a short position

must borrow the stock from a current owner at a fee. In addition, there are other

costs associated with shorting, such as legal and institutional constraints, or the

risk that the short position will have to be involuntarily closed due to recall of

the stock loan (short squeeze). D’Avolio (2002), Duffie, Gârleanu, and Pedersen

(2002), Geczy, Musto, and Reed (2002), and Jones and Lamont (2002) provide

useful analyzes of the equity loan market. While short sale costs might be quite

low on average, they are systematically high exactly when they are critical. As for

transaction costs, lending fees have declined over time. The average shorting cost

in Jones and Lamont (2002) sample (1926–1933) is 35 basis points per month.
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For the period 2000–2001, D’Avolio (2002) reports only 41 basis points per year.

However, 9% are loan market specials, with fees averaging 4.3% per annum, but

reaching spectacular heights in some rare instances.

The one-way transaction costs considered in our study correspond to broker-

age fees, bid-ask spread, and slippage. In practice, there are further costs incurred

by the manager and passed on to the investor. To have a realistic view of the

current status of transaction costs and market frictions, we have contacted several

retail online brokers, banks and hedge funds to gather up-to-date data. These

data show that the typical levels of transaction costs offsetting out-of-sample

performance found in our study can be viewed as low (conservative). In recent

periods, most of the time we do not detect genuine performance already before

transaction costs (see Table 5).

We consider three real life cases for a fund manager trading on futures9. We

investigate all types of costs incurred through a managed account, an off-shore

fund or a on-shore fund. The managed account case is not far from a retail

investor trading by himself through an online broker. The off-shore fund case

corresponds to a fund manager living within a light and unregulated structure.

The on-shore fund case concerns a fund regulated by a supervisory authority.

The types of costs cover the cost of the structure (the vehicle), the custody and

administration costs, and the brokerage fees. Common costs driven by the spe-

cific selected structure include formation expenses (amortization of fund creation

expenses), legal expenses (audit, fund prospectus), taxes, and hiring of a manage-

9Trading an ETF (Exchange Traded Fund) instead of futures will further raise the trading

costs. Besides index futures are sufficiently liquid nowadays to avoid any price impact when

the traded volume stays below several millions of dollars (based on the current market liquidity

conditions). This does not necessarily apply in the case of ETFs. For futures, it is considered

that trading up to 2% of the average daily volume (computed over 20 days typically) does not

lead to a price impact. The average daily number of E-mini S&P 500 futures traded on the

CME (Chicago Mercantile Exchange) is around 2.5 million contracts. This corresponds to a

daily traded volume of USD 148 billions, and the price should not be impacted if we trade

below USD 3 billions. For the E-mini Dow, we have 80,000 contracts corresponding to USD 4.5

billions. This gives a limit of USD 100 millions.
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ment company. Custody and administration costs relate to expenses induced by

the deposit of the assets and their administration (NAV computation, reporting,

hedging) as well as the booking fees (fees charged by the custodian for each exe-

cuted transaction). We report transaction costs corresponding to a low turnover,

namely 20 times the asset under management (AUM) per year. In the case of our

study, this amounts to buying or selling 20 times the index based on 20 trading

signals. These costs include explicit and implicit costs, namely brokerage fees,

bid-ask spread, and slippage. Beside these costs linked to fund operations, we

need to add management fees (fund manager remuneration) here taken as a stan-

dard 2% flat without a performance fee. The sum of all these expenses and fees

make up the so-called total expense ratio (TER). Table 10 shows that (i) the costs

before accounting for management fees, i.e., the total operating costs, currently

range from 31 basis points to 126 basis points per year, (ii) the final TER ranges

from 231 basis points to 326 basis points per year. These figures are computed

from a span of four values for the AUM: USD 0.1, 1, 10, and 100 millions.

[Table 10]
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TC such that Corresponding
Sample π̂+

A = 0 π̂−A
1: 1897–1914 16 bps 0%
2: 1915–1938 35 bps 15%
3: 1939–1962 70 bps 36%
4: 1962–1986 - 49%∗

5: 1987–1996 - 13%∗

6: 1997–2011 - 26%∗

Table 2: Transaction costs (TC) such that the long-term in-sample performance
disappears under the Sharpe ratio criterion. This table presents one-way trans-
action costs in basis points (bps) such that π̂+

A becomes zero, across the different
sample periods. It also displays the corresponding π̂−A . An asterisk (∗) indicates
that π−A is estimated with zero transaction costs.
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Lending fees such that Median
Sample OOS perf. = 0 Port. size
1: 1897–1914 10-15 bps 10
2: 1915–1938 0-5 bps 13
3: 1939–1962 15-20 bps 9
4: 1962–1986 - -
5: 1987–1996 - -
6: 1997–2011 - -

Table 6: Lending fees such that the out-of-sample (OOS) performance disappears
under the Sharpe ratio criterion. This table reports the level of yearly lending
fees in basis points (bps) such that the OOS performance of the 10%–FDR+ port-
folio rebalanced monthly disappears. It also displays the corresponding median
portfolio size across the different rebalancings.
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Underperf. SR
Outperf. SR -2 -3 -4
2 π0 = 50 70.5 (6.6) 62.0 (5.4) 58.9 (6.0)

π+
A = 20 9.8 (8.9) 9.8 (7.3) 10.0 (7.2)
π−A = 30 19.7 (10.5) 28.2 (7.0) 31.1 (5.2)

3 π0 = 50 65.5 (6.8) 57.4 (5.7) 53.6 (5.7)
π+
A = 20 15.3 (6.7) 15.6 (5.4) 15.7 (5.4)
π−A = 30 19.2 (10.1) 27.1 (7.0) 30.7 (5.1)

4 π0 = 50 62.3 (7.0) 54.9 (6.1) 51.6 (6.3)
π+
A = 20 18.2 (5.5) 17.7 (4.3) 17.9 (4.4)
π−A = 30 19.6 (9.3) 27.4 (6.7) 30.5 (5.3)

Table 8: Average estimates of the proportions of null, outperforming, and un-
derperforming rules, under the Sharpe ratio criterion. This table presents the
average over 1,000 Monte Carlo simulations of the FDR estimates of π0, π

+
A , and

π−A . The true values are set respectively to 50, 20 and 30 (in %). Numbers in
parentheses correspond to standard deviations (in %). The results are provided
for the nine combinations of outperforming rules annualized Sharpe ratio (SR)
set to 2, 3, or 4, and underperforming rules annualized Sharpe ratio set to -2, -3,
or -4.
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Fig. 1: Proportions of outperforming (π+
A), null (π0), and underperforming (π−A)

rules, under the Sharpe ratio criterion and with no transaction costs. This figure
displays estimates of π+

A , π0, and π−A , across the different sample periods.
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Fig. 2: Break-even transaction costs for the 7,846 trading rules in sample period
3 (1939–1962). Values are given in basis points (bps). Negative values correspond
to a negative performance (divided by the number of transactions). The vertical
lines separate the different categories of trading rules, which are displayed in
the following order: filter rules, moving averages, support and resistance rules,
channel breakouts, and on-balance volume averages.
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Fig. 3: Break-even transaction costs for the 7,846 trading rules in sample period
4 (1962–1986). Values are given in basis points (bps). Negative values correspond
to a negative performance (divided by the number of transactions). The vertical
lines separate the different categories of trading rules, which are displayed in
the following order: filter rules, moving averages, support and resistance rules,
channel breakouts, and on-balance volume averages.
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Fig. 4: Density histogram of the 7,846 p-values (sample period 3 (1939–1962),
Sharpe ratio criterion). The dashed line is the density histogram we would expect
if all rules were truly null (i.e., did not generate abnormal performance). Beyond
λ = 0.6, the histogram looks fairly flat, which indicates that there are mostly
null p-values in this region. The dotted line is at the height of the estimate of
the proportion of rules that do not generate abnormal performance (i.e., π̂0).
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