

Outline

Exchange tradable cryptocurrency instruments

Exchange mechanics and fees

Architecture of an ML-based systematic strategy

Machine learning choices

Fellowship process to develop systematic strategies

Cryptocurrency Flavors and MCaps

* #	Name	Market Cap	Price	Available Supply	Volume (24h)	% Change (24h)	Price Graph (7d)
1	Bitcoin	\$ 6,477,017,277	\$ 420.91	15,388,275 BTC	\$ 32,935,500	-0.00 %	Mund
2	♦ Ethereum	\$ 914,022,103	\$ 11.61	78,716,970 ETH	\$ 6,271,040	1.07 %	Variation .
3	• Ripple	\$ 259,153,481	\$ 0.007525	34,439,870,367 XRP *	\$ 334,116	0.95 %	~~~
4	Litecoin	\$ 147,164,496	\$ 3.26	45,195,026 LTC	\$ 778,374	-0.11 %	Munu
5	D ash	\$ 42,470,529	\$ 6.70	6,340,721 DASH	\$ 229,393	-6.62 %	Amm

Available in ~30 Quote Currencies

	Ove	rview	Curre	ncies	All Mark	cets													
GE UA	BP	KRW HKD USD	NMC HUF XRP	IDR ILS ZAR	RON	ARS JPY	AUD LTC	BGN MXN	BRL	BTC NZD	CAD	CHF PLN	CLP RUB	CNY	CZK SEK	DKK SGD	EUR		
		5	Symbol		Lates	t Price	30 days	Ave	rage	Volume)	Low/High		Bid	Ask	24h A	/g.	Volume	Low/High
USD	Bitfi					9.2 n ago	hard		2.56 1.61%	371,878.8 153,423,053.70		389 431	4	19.2	419.25	419.7 -0.55 -0.1		2,194.16 920,996.78 USD	418.6 420.79
USD		nbase paseUSD				9.48 n ago	M		2.62 1.66%	195,723. 80,759,360.46		381.09 426.5	4	19.49	419.55	419.6 -0.16 -0.0		3,296.23 1,383,240.21 USD	418.51 420.38
USD		Stamp ImpUSD				7.87 n ago	مهمر		2.27 1.36%	142,419. 2 58,714,707.38		382 427.99	4	17.87	417.9	418.1 -0.31 -0.0		1,602.70 670,211.40 USD	416.1 419.5
▲ USD	btc-c					.051 n ago	JAA		3.68 _{0.57%}	134,150. 3 55,495,922.62		393.996 427	41	5.981	416.192	415.6 0.39 0.1		2,886.36 1,199,733.16 USD	413.101 416.8
USD	itBit				416 26 mi	6.41 in ago	444		2.90 _{0.85%}	81,733.3 33,747,462.50		386 426.33	4	17.19	417.68	417.8 -1.47 -0.3		2,960.94 1,237,327.12 USD	416 419.73
▲ USD		alBitco	ins			1.96 n ago	MAN		8.09 -0.66%	61,061.8 29,193,190.48		271.53 4373.18	4150	4160417	410.35	471.0 3.88 0.8		1,321.07 622,324.28 USD	353.86 2099.08
USD	Kral krake					.079 n ago	44-1		2.87 1.75%	49,662.0 20,503,742.92		387.27 429.999	4	19.33	420.079	420.4 -0.41 -0.1		525.75 221,073.11 USD	418.61 422
100000000000000000000000000000000000000	The rockU		rading C	ompany		9.34 5 min ago	W 14		5.32 _{0.97%}	1,536.2 4		390 429.77	4	19.01	419.64	420. 6		9.80 4,122.76 USD	419.34 421.69

How a Bitcoin transaction works

Bob, an online merchant, decides to begin accepting bitcoins as payment. Alice, a buyer, has bitcoins and wants to purchase merchandise from Bob.

WALLETS AND **ADDRESSES**

Bob and Alice both have Bitcoin "wallets" on their computers.

Wallets are files that provide access to multiple Bitcoin addresses.

An address is a string of numbers. such as **IHULMWZEP** kiEPeCh

Bob creates a new Bitcoin address for Alice to send her payment to.

Each address has its own balance of bitcoins.

letters and 43BeKJLlvb LCWrfDpN.

Alice tells her

Bitcoin client

that she'd like

to transfer

the purchase

amount to

Bob's address.

Private

Alice's wallet holds the private key for each

Public Key Cryptography 101

When Bob creates a new address, what he's really doing is generating a "cryptographic key pair," composed of a private key and a public key. If you sign a message with a private key (which only you know), it can be verified by using the matching public key (which is known to anyone). Bob's new Bitcoin address represents a unique public key, and the corresponding private key is stored in his wallet. The public key allows anyone to verify that a message signed with the private key is valid.

It's tempting to think of addresses as bank

accounts, but they work a bit differently, Bitcoin

users can create as many addresses as they wish

and in fact are encouraged to create a new one

for every new transaction to increase privacy.

Gary, Garth, and Glenn are Bitcoin miners.

Their computers bundle the transactions of the past 10 minutes into a new "trans-

Anyone on the network can now use of her addresses. The Bitcoin client signs her the public key to verify that the transaction transaction request with the private key of the request is actually coming from the address she's transferring bitcoins from. legitimate account owner.

The miners' computers are set up to calculate cryptographic hash functions.

* Each new hash value contains information about all previous Bitcoin transactions.

Hash

value*

Cryptographic Hashes Cryptographic hash functions transform a collection of data into an

alphanumeric string with a fixed length,

called a hash value. Even tiny changes in

the original data drastically change the

resulting hash value. And it's essentially

impossible to predict which initial data set

New hash

The mining computers

calculate new hash values based on a combination of the

previous hash value, the new

transaction block, and a nonce.

Creating hashes is computationally trivial, but the Bitcoin system requires that the new hash value have a particular form-specifically, it must start with a certain number of zeros.

will create a specific hash value.

Nonces

To create different hash values from the same data, Bitcoin uses "nonces." A nonce is

just a random number that's added to data

prior to hashing. Changing the nonce results

in a wildly different hash value.

The miners

Each block includes a "coinbase" transaction that pays out 50 bitcoins to the winning miner-in this case, Gary. A new address is created in Gary's wallet with a balance of newly minted bitcoins.

required number of leading zeros. So they're forced to generate many hashes with different nonces until they happen upon one that works.

As time goes on, Alice's transfer to Bob gets buried beneath other. more recent transactions. For anyone to modify the details, he would have to redo the work that Gary did-because any changes require a completely different winning nonce-and then redo the work of all the subsequent miners. Such a feat is nearly impossible.

Modern Exchanges Being Built

Real-time order book (level 3)

Websocket Feed

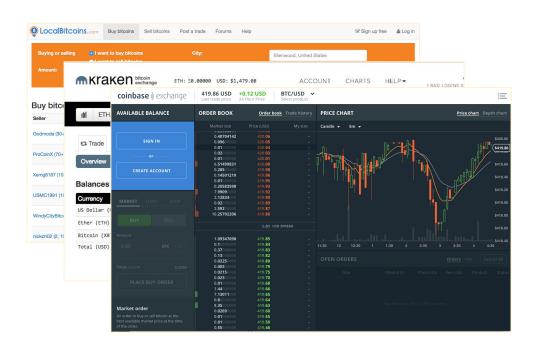
Colocation (aws region)

REST end-points orders, account, fills

FIX 4.2 support

Reasonable rate limit (3 req. / sec)

Python / Ruby sample code



Fee Structures Encourage Market Making

coinbase

USER 30 DAY VOLUME	TAKER FEE
> 0 % (~0.00 BTC)	0.25 %
> 1 % (~1,925.87 BTC)	0.24 %
> 2.5 % (~4,814.68 BTC)	0.22 %
> 5 % (~9,629.36 BTC)	0.19 %
> 10 % (~19,258.73 BTC)	0.15 %
> 20 % (~ 38,517.45 BTC)	0.10 %

Note: Taker trades are charged 0.25% fee at the time of trade but a rebate for the previous 24 hours of trading fees will be

Fee Schedule

Maker	Taker	Volume
0.16%	0.26%	< 50,000
0.14%	0.24%	< 100,000
0.12%	0.22%	< 250,000
0.10%	0.20%	< 500,000
0.08%	0.18%	< 1,000,000
0.06%	0.16%	< 2,500,000
0.04%	0.14%	< 5,000,000
0.02%	0.12%	< 10,000,000
0.00%	0.10%	> 10,000,000

Market Making Introduces Execution Risks

Limit orders are harder to time

When the prediction is right, execution is particularly challenging

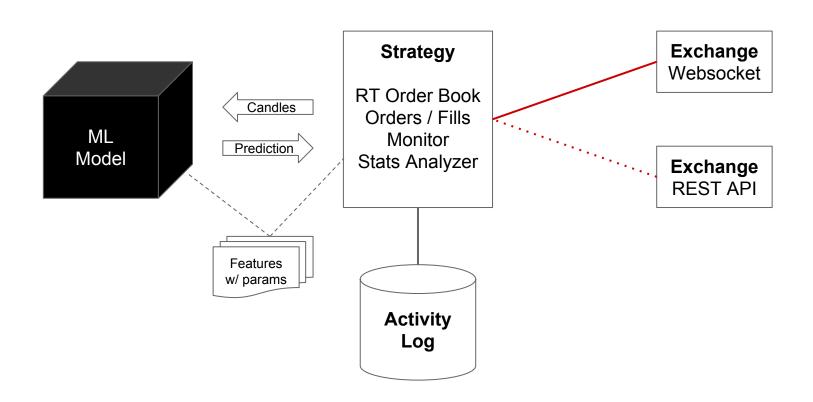
Introduces more parameters that need to be optimized

Taker strategies are easier but may require leverage

Bitfinex (3.3x), Kraken (5x)

Beware of clawbacks and exchange risks

Deployment Architecture



ML-Based Strategy Considerations

Input Features

Price differences

Lagged windows

Technical indicators

Order book pressure

Prediction Types

Point regression

Slope regression

Binary classification

Multi-class classification

Parameters

Algorithm params

Candle size

Buy / Sell threshold(s)

Stop loss

Order wait (attempts/time)

Order commit threshold

Max hold

Bet size

Allocation

Picking the Best Modeling Approach

Representation

instances k-nearest neighbor support vector machine hyperplanes naïve bayes logistic regression decision trees set of rules propositional rules logic programs neural networks graphical models bayesian networks conditional random fields

Evaluation

accuracy / error rate precision and recall squared error likelihood posterior probability information gain k-I divergence cost/utility margin

Optimization

combinatorial optimization greedy search beam search branch-and-bound continuous optimization unconstrained gradient descent conjugate gradient quasi-newton method constrained linear programming quadratic programming

ML-Based Strategy Considerations

Input Features

Price differences

Lagged windows

Technical indicators

Order book pressure

Prediction Types

Point regression

Slope regression

Binary classification

Multi-class classification

Parameters

Algorithm params

Candle size

Buy / Sell threshold(s)

Stop loss

Order wait (attempts/time)

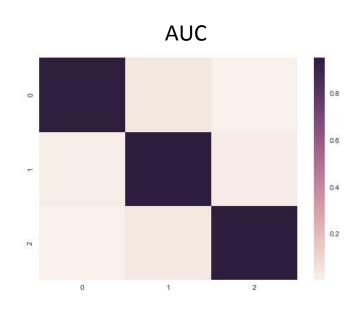
Order commit threshold

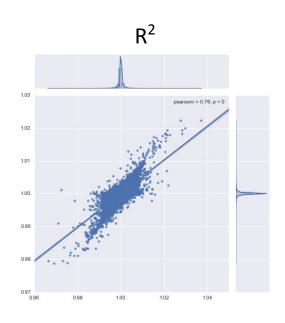
Max hold

Bet size

Allocation

Evaluating Model Fit





ML-Based Strategy Considerations

Input Features

Price differences

Lagged windows

Technical indicators

Order book pressure

Prediction Types

Point regression

Slope regression

Binary classification

Multi-class classification

Parameters

Algorithm params

Candle size

Long/short threshold(s)

Stop loss

Order wait (attempts/time)

Order commit threshold

Max hold

Bet size

Allocation

Strategy Optimization

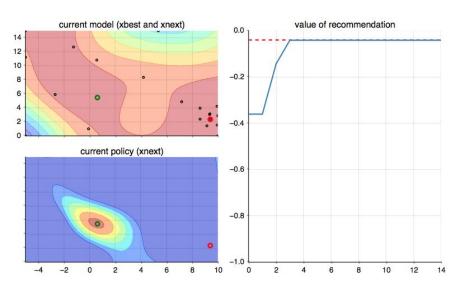
Dozens of parameters

Many difficult to simulate

Hours / days to optimize

Significantly more dynamic than prediction

Next set of machine learning challenges!



Temporal Strategies, Continuous Process

Real-world machine learning applications

Immersive 4 month program

Program almost exclusively hands-on practice

Agile software development methodology

Mentoring by experienced data scientists

1 mentor: 4 fellows ratio

Acceptance rate < 3%

Free to the fellows

Experienced Mentor Team

Fellows Doing Meaningful Data Science Work

Alex Chao, Uber ATC

Rewon Child, Enlitic

Angie Hsieh

George Manuelpillai, Orange

Philip Margolis

Alex Miller, Yelp

Yevhen Mohylevskyy

Saad Eddin Al Orjany

Shonket Ray

Daniel Saltiel, Engineers Gate

Marjorie Sayer, CloudGenix

Peter Skipper, Sentient Technologies

Layla Tadipour

Vrushank Vora

Eric Wayman, Pivotal

