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Key Points 
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• Over the past 20 years, I have seen many new faces arrive to the 
financial industry, only to leave shortly after. 

• The rate of failure is particularly high in machine learning (ML). 

• In my experience, the reasons boil down to 7 common errors: 

1. The Sisyphus paradigm 

2. Integer differentiation 

3. Inefficient sampling 

4. Wrong labeling 

5. Weighting of non-IID samples 

6. Cross-validation leakage 

7. Backtest overfitting 

• The contents of this presentation are based on my forthcoming 
book: Advances in Financial Machine Learning, Wiley (2017) 



 Electronic copy available at: https://ssrn.com/abstract=3031282 

Pitfall #1: 
The Sisyphean Quants 



The silo approach works for discretionary PMs 
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• Discretionary portfolio managers (PMs) make investment decisions 
that do not follow a particular theory or rigorous rationale. 

• Because nobody fully understands the logic behind their bets, they 
can hardly work as a team and develop deeper insights beyond the 
initial intuition. 

• If 50 PMs tried to work together, they would influence each other 
until eventually 49 would follow the lead of 1. 

For this reason, investment firms ask 
discretionary PMs to work in silos. 
 
Silos prevent one PM from influencing 
the rest, hence protecting 
diversification. 



The silo approach fails with quant PMs 
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• The boardroom’s mentality is, let us do with quants what has 
worked with discretionary PMs. 

• Let us hire 50 PhDs, and demand from each of them to produce an 
investment strategy within 6 months.  

• This approach typically backfires, because each of these PhDs will 
frantically search for investment opportunities and eventually settle 
for: 
– A false positive that looks great in an overfit backtest; or 

– A standard factor model, which is an overcrowded strategy with low Sharpe 
ratio, but at least has academic support. 

• Both outcomes will disappoint the investment board, and the 
project will be cancelled. 

• Even if 5 of those 50 PhDs found something, they would quit. 



Sisyphean Quants 
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“[…] there is no more 
dreadful punishment than 
futile and hopeless labor.” 

 

Albert Camus (1913-1960), 
The Myth of Sisyphus 

• Firms directing quants to work in silos, or to develop individual 
strategies, are asking the impossible. 

• Identifying new strategies requires large teams working together. 



The Meta-Strategy Paradigm (1/3) 

7 

• The complexities involved in developing a true investment strategy 
are overwhelming: 
– Data collection, curation, processing, structuring, 

– HPC infrastructure, 

– software development, 

– feature analysis, 

– execution simulators, 

– backtesting, etc. 

• Even if the firm provides you with shared services in those areas, 
you are like a worker at a BMW factory who has been asked to build 
the entire car alone, by using all the workshops around you. 
– One week you need to be a master welder, another week an electrician, 

another week a mechanical engineer, another week a painter, ... try, fail and 
circle back to welding. It is a futile endeavor. 



The Meta-Strategy Paradigm (2/3) 
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• It takes almost as much effort to produce one true investment 
strategy as to produce a hundred. 

• Every successful quantitative firm I am aware of applies the meta-
strategy paradigm. 

• Your firm must set up a research factory 
– where tasks of the assembly line are clearly divided into subtasks. 

– where quality is independently measured and monitored for each subtask. 

– where the role of each quant is to specialize in a particular subtask, to become 
the best there is at it, while having a holistic view of the entire process. 

• This is how Berkeley Lab and other U.S. National laboratories 
routinely make scientific discoveries, such as adding 16 elements to 
the periodic table, or laying out the groundwork for MRIs and PET 
scans: https://youtu.be/G5nK3B5uuY8  

https://papers.ssrn.com/sol3/papers.cfm?abstract_id=2547325
https://papers.ssrn.com/sol3/papers.cfm?abstract_id=2547325
https://papers.ssrn.com/sol3/papers.cfm?abstract_id=2547325
https://papers.ssrn.com/sol3/papers.cfm?abstract_id=2547325
https://youtu.be/G5nK3B5uuY8


The Meta-Strategy Paradigm (3/3) 
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Practical 

Application 
Classic approach Quantitative Meta-Strategy 

  

  

  

Selection & 

Hiring 

 

(Example 1) 

Interview candidates with SR (or any 

other performance statistic) and track 

record length above a given 

threshold. 

Pros: Trivial to implement. 

Cons: Unknown (possibly high) 

probability of hiring unskilled PMs. 

Design an interview process that recognizes the variables 

that affect the probability of making the wrong hire: 

 False positive rate. 

 False negative rate. 

 Skill-to-unskilled odds ratio. 

 Number of independent trials. 

 Sampling mechanism. 

Pros: It is objective and can be improved over time, based 

on measurable outcomes. 

Cons: More laborious. 

  

  

Oversight 

  

(Example 2) 

Allocate capital as if PMs were asset 

classes. 

Pros: Trivial to implement. 

Cons: Correlations are unstable, 

meaningless. Risks are likely to be 

concentrated. 

Recognize that PMs styles evolve over time, as they adapt 

to a changing environment. 

Pros: It provides an early signal while the style is still 

emerging. Allocations can be revised before it is too late. 

Cons: Allocation revisions may be needed on an irregular 

calendar frequency. 

  

  

Stop-Out  

  

(Example 3) 

Stop-out a PM once a certain loss 

limit has been exceeded. 

Pros: Trivial to implement. 

Cons: It allows preventable problems 

to grow until it is too late. 

For any drawdown, large or small, determine the expected 

time underwater and monitor every recovery. Even if a 

loss is small, a failure to recover within the expected 

timeframe indicates a latent problem.  

Pros: Proactive. Address problems before they force a 

stop-out. 

Cons: PMs may feel under tighter scrutiny. 



Pitfall #2: 
Integer Differentiation 



The Stationarity vs. Memory Dilemma 
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• In order to perform inferential analyses, researchers need to work 
with invariant processes, such as 
– returns on prices (or changes in log-prices) 

– changes in yield 

– changes in volatility 

• These operations make the series stationary, at the expense of 
removing all memory from the original series. 

• Memory is the basis for the model’s predictive power. 
– For example, equilibrium (stationary) models need some memory to assess 

how far the price process has drifted away from the long-term expected value 
in order to generate a forecast.  

• The dilemma is 
– returns are stationary however memory-less; and 

– prices have memory however they are non-stationary. 



The Optimal Stationary-Memory Trade Off 
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• Question: What is the minimum amount of differentiation that 
makes a price series stationary while preserving as much memory as 
possible? 

• Answer: We would like to generalize the notion of returns to 
consider stationary series where not all memory is erased. 

• Under this framework, returns are just one kind of (and in most 
cases suboptimal) price transformation among many other possible. 

• Green line: E-mini S&P 500 futures 
trade bars of size 1E4 

• Blue line: Fractionally differentiated 
(𝑑 = .4) 

• Over a short time span, it resembles 
returns 

• Over a longer time span, it resembles 
price levels 



Example 1: E-mini S&P 500 Futures 
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• On the x-axis, the d value used to generate the series on which the 
ADF stat was computed. 

• On the left y-axis, the correlation between the original series (𝑑 =
0) and the differentiated series at various d values. 

• On the right y-axis, ADF stats computed on log prices. 

The original series (𝑑 = 0) has an 
ADF stat of -0.3387, while the 
returns series (𝑑 = 1) has an ADF 
stat of -46.9114. 
 
At a 95% confidence level, the 
test’s critical value is -2.8623. 
 
The ADF stat crosses that threshold 
in the vicinity of 𝑑 = 0.35, where 
correlation is still very high (0.995). 



Example 2: Optimal FradDiff Stationarity (1/2) 
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0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

AD1 Curncy -1.7253 -1.8665 -2.2801 -2.9743 -3.9590 -5.4450 -7.7387 -10.3412 -15.7255 -22.5170 -43.8281

BO1 Comdty -0.7039 -1.0021 -1.5848 -2.4038 -3.4284 -4.8916 -7.0604 -9.5089 -14.4065 -20.4393 -38.0683

BP1 Curncy -1.0573 -1.4963 -2.3223 -3.4641 -4.8976 -6.9157 -9.8833 -13.1575 -19.4238 -26.6320 -43.3284

BTS1 Comdty -1.7987 -2.1428 -2.7600 -3.7019 -4.8522 -6.2412 -7.8115 -9.4645 -11.0334 -12.4470 -13.6410

BZ1 Index -1.6569 -1.8766 -2.3948 -3.2145 -4.2821 -5.9431 -8.3329 -10.9046 -15.7006 -20.7224 -29.9510

C 1 Comdty -1.7870 -2.1273 -2.9539 -4.1642 -5.7307 -7.9577 -11.1798 -14.6946 -20.9925 -27.6602 -39.3576

CC1 Comdty -2.3743 -2.9503 -4.1694 -5.8997 -8.0868 -10.9871 -14.8206 -18.6154 -24.1738 -29.0285 -34.8580

CD1 Curncy -1.6304 -2.0557 -2.7284 -3.8380 -5.2341 -7.3172 -10.3738 -13.8263 -20.2897 -27.6242 -43.6794

CF1 Index -1.5539 -1.9387 -2.7421 -3.9235 -5.5085 -7.7585 -11.0571 -14.6829 -21.4877 -28.9810 -44.5059

CL1 Comdty -0.3795 -0.7164 -1.3359 -2.2018 -3.2603 -4.7499 -6.9504 -9.4531 -14.4936 -20.8392 -41.1169

CN1 Comdty -0.8798 -0.8711 -1.1020 -1.4626 -1.9732 -2.7508 -3.9217 -5.2944 -8.4257 -12.7300 -42.1411

CO1 Comdty -0.5124 -0.8468 -1.4247 -2.2402 -3.2566 -4.7022 -6.8601 -9.2836 -14.1511 -20.2313 -39.2207

CT1 Comdty -1.7604 -2.0728 -2.7529 -3.7853 -5.1397 -7.1123 -10.0137 -13.1851 -19.0603 -25.4513 -37.5703

DM1 Index -0.1929 -0.5718 -1.2414 -2.1127 -3.1765 -4.6695 -6.8852 -9.4219 -14.6726 -21.5411 -49.2663

DU1 Comdty -0.3365 -0.4572 -0.7647 -1.1447 -1.6132 -2.2759 -3.3389 -4.5689 -7.2101 -10.9025 -42.9012

DX1 Curncy -1.5768 -1.9458 -2.7358 -3.8423 -5.3101 -7.3507 -10.3569 -13.6451 -19.5832 -25.8907 -37.2623

EC1 Comdty -0.2727 -0.6650 -1.3359 -2.2112 -3.3112 -4.8320 -7.0777 -9.6299 -14.8258 -21.4634 -44.6452

EC1 Curncy -1.4733 -1.9344 -2.8507 -4.1588 -5.8240 -8.1834 -11.6278 -15.4095 -22.4317 -30.1482 -45.6373

ED1 Comdty -0.4084 -0.5350 -0.7948 -1.1772 -1.6633 -2.3818 -3.4601 -4.7041 -7.4373 -11.3175 -46.4487

EE1 Curncy -1.2100 -1.6378 -2.4216 -3.5470 -4.9821 -7.0166 -9.9962 -13.2920 -19.5047 -26.5158 -41.4672

EO1 Comdty -0.7903 -0.8917 -1.0551 -1.3465 -1.7302 -2.3500 -3.3068 -4.5136 -7.0157 -10.6463 -45.2100

EO1 Index -0.6561 -1.0567 -1.7409 -2.6774 -3.8543 -5.5096 -7.9133 -10.5674 -15.6442 -21.3066 -35.1397

ER1 Comdty -0.1970 -0.3442 -0.6334 -1.0363 -1.5327 -2.2378 -3.2819 -4.4647 -7.1031 -10.7389 -40.0407

ES1 Index -0.3387 -0.7206 -1.3324 -2.2252 -3.2733 -4.7976 -7.0436 -9.6095 -14.8624 -21.6177 -46.9114

FA1 Index -0.5292 -0.8526 -1.4250 -2.2359 -3.2500 -4.6902 -6.8272 -9.2410 -14.1664 -20.3733 -41.9705

FC1 Comdty -1.8846 -2.1853 -2.8808 -3.8546 -5.1483 -7.0226 -9.6889 -12.5679 -17.8160 -23.0530 -31.6503

FV1 Comdty -0.7257 -0.8515 -1.0596 -1.4304 -1.8312 -2.5302 -3.6296 -4.9499 -7.8292 -12.0467 -49.1508

G 1 Comdty 0.2326 0.0026 -0.4686 -1.0590 -1.7453 -2.6761 -4.0336 -5.5624 -8.8575 -13.3277 -42.9177

GC1 Comdty -2.2221 -2.3544 -2.7467 -3.4140 -4.4861 -6.0632 -8.4803 -11.2152 -16.7111 -23.1750 -39.0715

GX1 Index -1.5418 -1.7749 -2.4666 -3.4417 -4.7321 -6.6155 -9.3667 -12.5240 -18.6291 -25.8116 -43.3610

HG1 Comdty -1.7372 -2.1495 -2.8323 -3.9090 -5.3257 -7.3805 -10.4121 -13.7669 -19.8902 -26.5819 -39.3267

HI1 Index -1.8289 -2.0432 -2.6203 -3.5233 -4.7514 -6.5743 -9.2733 -12.3722 -18.5308 -25.9762 -45.3396

HO1 Comdty -1.6024 -1.9941 -2.6619 -3.7131 -5.1772 -7.2468 -10.3326 -13.6745 -19.9728 -26.9772 -40.9824

IB1 Index -2.3912 -2.8254 -3.5813 -4.8774 -6.5884 -9.0665 -12.7381 -16.6706 -23.6752 -30.7986 -43.0687

IK1 Comdty -1.7373 -2.3000 -2.7764 -3.7101 -4.8686 -6.3504 -8.2195 -9.8636 -11.7882 -13.3983 -14.8391

IR1 Comdty -2.0622 -2.4188 -3.1736 -4.3178 -5.8119 -7.9816 -11.2102 -14.7956 -21.6158 -29.4555 -46.2683

JA1 Comdty -2.4701 -2.7292 -3.3925 -4.4658 -5.9236 -8.0270 -11.2082 -14.7198 -21.2681 -28.4380 -42.1937

JB1 Comdty -0.2081 -0.4319 -0.8490 -1.4289 -2.1160 -3.0932 -4.5740 -6.3061 -9.9454 -15.0151 -47.6037

JE1 Curncy -0.9268 -1.2078 -1.7565 -2.5398 -3.5545 -5.0270 -7.2096 -9.6808 -14.6271 -20.7168 -37.6954

JG1 Comdty -1.7468 -1.8071 -2.0654 -2.5447 -3.2237 -4.3418 -6.0690 -8.0537 -12.3908 -18.1881 -44.2884

JO1 Comdty -3.0052 -3.3099 -4.2639 -5.7291 -7.5686 -10.1683 -13.7068 -17.3054 -22.7853 -27.7011 -33.4658

JY1 Curncy -1.2616 -1.5891 -2.2042 -3.1407 -4.3715 -6.1600 -8.8261 -11.8449 -17.8275 -25.0700 -44.8394

KC1 Comdty -0.7786 -1.1172 -1.7723 -2.7185 -3.8875 -5.5651 -8.0217 -10.7422 -15.9423 -21.8651 -35.3354

L 1 Comdty -0.0805 -0.2228 -0.6144 -1.0751 -1.6335 -2.4186 -3.5676 -4.8749 -7.7528 -11.7669 -44.0349

These tables show ADF 
stats for the most liquid 
futures contracts 
worldwide. 
 
One row per instrument, 
and one column per 
differentiation value. 
 
Highlighted in green are 
ADF values that do not 
reject the null 
hypothesis of unit root.  
 
Highlighted in red are 
ADF values that reject 
the null hypothesis of 
unit root. 



Example 2: Optimal FradDiff Stationarity (2/2) 

15 

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

LB1 Comdty -2.0133 -2.2043 -2.7692 -3.7363 -4.9980 -6.8712 -9.5572 -12.5024 -17.7300 -23.1173 -31.9508

LC1 Comdty -3.0977 -3.2487 -4.0104 -5.1441 -6.8472 -9.1425 -12.4560 -16.0186 -21.8070 -27.1929 -34.2574

LH1 Comdty -2.4059 -2.5980 -2.6847 -3.0616 -3.7269 -4.8461 -6.6899 -8.8143 -13.3179 -18.6747 -34.4944

MFS1 Index -1.8618 -2.4061 -3.0316 -4.2111 -5.6544 -8.2728 -11.3954 -14.2083 -19.2276 -23.7318 -29.9174

NG1 Comdty -1.2022 -1.2278 -1.2971 -1.5259 -1.9188 -2.5619 -3.5688 -4.7757 -7.4392 -11.2455 -41.3164

NI1 Index -1.0865 -1.4354 -2.1171 -3.0946 -4.3528 -6.1476 -8.8056 -11.7667 -17.6428 -24.6738 -43.8325

NK1 Index -0.8467 -1.1964 -1.8390 -2.7349 -3.8871 -5.5119 -7.9025 -10.5570 -15.8085 -22.0688 -38.7505

NQ1 Index 0.0153 -0.2883 -0.7985 -1.5227 -2.3900 -3.5965 -5.3719 -7.4372 -11.7580 -17.5718 -47.7300

NX1 Index -1.2749 -1.6410 -2.3648 -3.4331 -4.8169 -6.8106 -9.7514 -13.0195 -19.3190 -26.5442 -43.2635

O 1 Comdty -1.9643 -2.3536 -3.1711 -4.4057 -6.0102 -8.3139 -11.6484 -15.2893 -21.7540 -28.5592 -39.9112

OAT1 Comdty -2.1234 -1.9151 -2.2928 -2.9948 -3.9627 -5.3126 -7.0749 -8.8556 -11.2388 -13.2080 -15.0069

OE1 Comdty 0.1688 -0.0863 -0.4587 -0.8500 -1.3174 -2.0411 -2.9760 -4.0461 -6.4504 -9.8420 -44.0898

PA1 Comdty -1.4237 -1.6949 -2.2550 -3.1287 -4.2748 -5.9456 -8.4346 -11.2251 -16.6076 -22.8823 -37.8283

PE1 Curncy -1.7713 -2.1928 -3.0869 -4.3894 -6.0523 -8.4218 -11.9137 -15.7241 -22.6601 -30.1037 -43.8788

PT1 Index -1.9088 -2.2753 -3.0047 -4.1548 -5.6979 -7.9456 -11.2588 -14.8504 -21.5933 -28.9158 -43.4395

QS1 Comdty -0.2084 -0.4919 -0.9675 -1.6192 -2.4490 -3.6160 -5.3075 -7.2161 -11.0838 -15.9596 -32.1660

RR1 Comdty -0.0657 -0.4432 -0.9827 -1.6856 -2.5403 -3.7445 -5.4592 -7.4618 -11.4360 -16.4247 -33.0067

RTA1 Index -0.4991 -0.8450 -1.4518 -2.2701 -3.3347 -4.8131 -7.0163 -9.4859 -14.4313 -20.5139 -38.4632

RX1 Comdty 0.3374 0.0368 -0.3370 -0.8033 -1.3293 -2.0307 -3.1201 -4.2717 -6.8379 -10.4035 -43.1525

S 1 Comdty -2.3905 -2.5632 -3.0364 -3.8647 -5.0057 -6.7561 -9.4036 -12.4148 -18.2529 -24.9520 -39.1747

SB1 Comdty -1.3895 -1.7489 -2.4806 -3.5180 -4.9204 -6.9044 -9.7911 -12.8777 -18.5958 -24.6554 -35.9220

SF1 Curncy -2.4335 -2.8967 -3.8496 -5.3187 -7.2411 -9.9945 -13.9627 -18.2641 -25.8117 -33.5334 -46.1841

SI1 Comdty -1.6435 -1.9468 -2.6104 -3.6207 -4.9544 -6.8834 -9.7471 -12.9306 -18.9448 -25.6872 -39.6744

SM1 Comdty -2.1197 -2.0686 -2.2593 -2.7314 -3.5152 -4.6986 -6.5691 -8.7911 -13.3516 -19.1866 -37.8627

SM1 Index -1.4716 -1.7336 -2.3942 -3.3732 -4.6921 -6.5834 -9.3968 -12.5018 -18.5601 -25.5175 -42.7253

SP1 Index -0.5900 -0.9726 -1.6887 -2.6118 -3.7857 -5.4356 -7.8842 -10.6784 -16.4223 -23.8436 -50.2515

ST1 Index -1.5957 -1.8926 -2.5130 -3.4803 -4.7593 -6.6294 -9.4127 -12.5153 -18.4786 -25.2546 -40.7900

TP1 Index -1.2901 -1.6144 -2.2911 -3.3049 -4.5946 -6.4768 -9.2514 -12.3480 -18.5256 -25.9865 -46.2311

TU1 Comdty -0.6340 -0.6768 -0.8529 -1.1306 -1.5256 -2.1951 -3.2065 -4.2674 -6.8060 -10.4758 -48.7361

TW1 Index -1.1854 -1.5331 -2.2852 -3.3336 -4.6677 -6.5776 -9.3678 -12.4932 -18.5628 -25.6502 -42.5179

TY1 Comdty -0.8208 -0.9876 -1.2585 -1.6069 -2.1026 -2.8142 -4.0467 -5.4328 -8.6137 -13.1678 -48.6412

UB1 Comdty -0.3052 -0.5418 -0.9441 -1.4744 -2.1400 -3.0797 -4.4703 -6.0749 -9.4466 -13.9063 -36.3328

US1 Comdty -0.8071 -1.1082 -1.5195 -2.0586 -2.8385 -4.0023 -5.7401 -7.7040 -12.0160 -18.0689 -47.9605

VG1 Index -1.9920 -2.4127 -3.3269 -4.7189 -6.5700 -9.1847 -13.0116 -17.1131 -24.4105 -31.9086 -44.9058

VH1 Index -1.5805 -1.9248 -2.7044 -3.8438 -5.3480 -7.5449 -10.7841 -14.3586 -21.2567 -29.0585 -46.5168

W 1 Comdty -0.6236 -0.9148 -1.3959 -2.1267 -3.0507 -4.3849 -6.3497 -8.6538 -13.3216 -19.3053 -41.4181

XB1 Comdty -2.2352 -2.4744 -2.9506 -3.7092 -4.9733 -6.7217 -9.4858 -12.5086 -18.3777 -25.0316 -39.5784

XG1 Comdty -2.0082 -2.0972 -2.3756 -3.0026 -3.9027 -5.3023 -7.5000 -10.0158 -15.1353 -21.6376 -41.2603

XM1 Comdty -0.9140 -1.1841 -1.8967 -2.8240 -4.0056 -5.6936 -8.2092 -11.0940 -17.0495 -24.7002 -51.5154

XP1 Index -1.5053 -1.7699 -2.4437 -3.4436 -4.7258 -6.6019 -9.3891 -12.5294 -18.8368 -26.5249 -48.0102

YM1 Comdty -1.1028 -1.1658 -1.6422 -2.3731 -3.3197 -4.6849 -6.7878 -9.1765 -14.2354 -20.9065 -49.2648

YS1 Comdty -1.9101 -2.1735 -2.8727 -3.8500 -5.2679 -7.2488 -10.2821 -13.6430 -19.9992 -27.0788 -41.5913

Z 1 Index -1.3096 -1.7242 -2.6045 -3.7736 -5.3196 -7.5241 -10.7341 -14.2851 -21.0992 -28.7746 -45.6802

Most financial series can 
be made stationary with 
a fractional 
differentiation of order 
𝑑 < 0.5. 
 
However, most financial 
studies are based on 
returns, where 𝑑 = 1. 
 
The implication is that 
for decades most 
financial research has 
been based on over-
differentiated (memory-
less) series, leading to 
spurious forecasts and 
overfitting. 



Pitfall #3: 
Inefficient Sampling 



Chronological Sampling 
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• Information does not arrive to the market at a constant entropy 
rate. 

• Sampling data in chronological intervals means that the 
informational content of the individual observations is far from 
constant. 

• A better approach is to sample observations as a subordinated 
process of the amount of information exchanged: 
– Trade bars. 

– Volume bars. 

– Dollar bars. 

– Volatility or runs bars. 

– Order imbalance bars. 

– Entropy bars. 



Example 1: Dollar Bars (1/2) 
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• Let’s define the imbalance at time T as 𝜃𝑇 =  𝑏𝑡𝑣𝑡
𝑇
𝑡=1 , where 

𝑏𝑡 ∈ −1,1  is the aggressor flag, and 𝑣𝑡 may represent either the 
number of securities traded or the dollar amount exchanged. 

• We compute the expected value of 𝜃𝑇 at the beginning of the bar 

E0 𝜃𝑇 = E0  𝑣𝑡

𝑡 𝑏𝑡=1

− E0  𝑣𝑡

𝑡 𝑏𝑡=−1

= E0 𝑇  P 𝑏𝑡 = 1 E0 𝑣𝑡 𝑏𝑡 = 1
− P 𝑏𝑡 = −1 E0 𝑣𝑡 𝑏𝑡 = −1   

• Let’s denote 𝑣+ = P 𝑏𝑡 = 1 E0 𝑣𝑡 𝑏𝑡 = 1 , 
𝑣− = P 𝑏𝑡 = −1 E0 𝑣𝑡 𝑏𝑡 = −1 , so that E0 𝑇 −1𝐸0  𝑣𝑡𝑡 =
E0 𝑣𝑡 = 𝑣+ + 𝑣−. You can think of 𝑣+ and 𝑣− as decomposing the 
initial expectation of 𝑣𝑡 into the component contributed by buys and 
the component contributed by sells. 



Example 1: Dollar Bars (2/2) 
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• Then, E0 𝜃𝑇 = E0 𝑇 𝑣+ − 𝑣− = E0 𝑇 2𝑣+ − E0 𝑣𝑡  

• In practice, we can estimate E0 𝑇  as an exponentially weighted 
moving average of T values from prior bars, and 2𝑣+ − E0 𝑣𝑡  as 
an exponentially weighted moving average of 𝑏𝑡𝑣𝑡 values from prior 
bars. 

• We define a bar as a 𝑇∗-contiguous subset of ticks such that the 
following condition is met 

𝑇∗ = arg min
𝑇

𝜃𝑇 ≥ E0 𝑇 2𝑣+ − E0 𝑣𝑡  

where the size of the expected imbalance is implied by 2𝑣+ − E0 𝑣𝑡 . 

• When 𝜃𝑇 is more imbalanced than expected, a low T will satisfy 
these conditions. 



Example 2: Sampling Frequencies 
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Three bar types computed on 
E-mini S&P 500 futures. 
 
Tick bars tend to exhibit a wide 
range of sampling frequencies, 
for multiple microstructural 
reasons. 
 
Sampling frequencies for 
volume bars are often inversely 
proportional to price levels. 
 
In general, dollar bars tend to 
exhibit more stable sampling 
frequencies. 



Pitfall #4: 
Wrong Labeling 



Labeling in Finance 
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• Virtually all ML papers in finance label observations using the fixed-
time horizon method. 

• Consider a set of features 𝑋𝑖 𝑖=1,…,𝐼, drawn from some bars with 
index 𝑡 = 1,… , 𝑇, where 𝐼 ≤ 𝑇. An observation 𝑋𝑖  is assigned a label 

𝑦𝑖 ∈ −1,0,1 , 𝑦𝑖 =  

−1   if 𝑟𝑡𝑖,0,𝑡𝑖,0+ℎ < −𝜏

   0   if 𝑟𝑡𝑖,0,𝑡𝑖,0+ℎ ≤ 𝜏

1   if 𝑟𝑡𝑖,0,𝑡𝑖,0+ℎ > 𝜏

 

where 𝜏 is a pre-defined constant threshold, 𝑡𝑖,0 is the index of the bar 
immediately after 𝑋𝑖  takes place, 𝑡𝑖,0 + ℎ is the index of h bars after 

𝑡𝑖,0, and 𝑟𝑡𝑖,0,𝑡𝑖,0+ℎ is the price return over a bar horizon h. 

• Because the literature almost always works with time bars, h implies 
a fixed-time horizon. 



Caveats of the Fixed Horizon Method 
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• There are several reasons to avoid such labeling approach: 
– Time bars do not exhibit good statistical properties. 

– The same threshold 𝜏 is applied regardless of the observed volatility. 
• Suppose that 𝜏 = 1𝐸 − 2, where sometimes we label an observation as 𝑦𝑖 = 1 subject to a 

realized bar volatility of 𝜎𝑡𝑖,0 = 1𝐸 − 4 (e.g., during the night session), and sometimes 

𝜎𝑡𝑖,0 = 1𝐸 − 2 (e.g., around the open). The large majority of labels will be 0, even if return  

𝑟𝑡𝑖,0,𝑡𝑖,0+ℎ was predictable and statistically significant. 

• A couple of better alternatives would be: 

– Label per a varying threshold 𝜎𝑡𝑖,0, estimated using a rolling exponentially-

weighted standard deviation of returns. 

– Use volume or dollar bars, as their volatilities are much closer to constant 
(homoscedasticity). 

• But even these two improvements miss a key flaw of the fixed-time 
horizon method: The path followed by prices. We will address this 
with the Triple Barrier Method. 



The Triple Barrier Method 
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• It is simply unrealistic to build a strategy that profits from positions 
that would have been stopped-out by the fund, exchange (margin 
call) or investor. 

• The Triple Barrier Method labels an observation according to the 
first barrier touched out of three barriers. 
– Two horizontal barriers are defined by profit-taking and stop-loss limits, which 

are a dynamic function of estimated volatility (whether realized or implied).  

– A third, vertical barrier, is defined in terms of number of bars elapsed since the 
position was taken (an expiration limit). 

• The barrier that is touched first by the price path determines the 
label: 
– Upper horizontal barrier: Label 1. 

– Lower horizontal barrier: Label -1. 

– Vertical barrier: Label 0. 



How to use Meta-labeling 
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• Meta-labeling is particularly helpful when you want to achieve 
higher F1-scores: 
– First, we build a model that achieves high recall, even if the precision is not 

particularly high. 

– Second, we correct for the low precision by applying meta-labeling to the 
positives identified by the primary model. 

• Meta-labeling is a very powerful tool in your arsenal, for three 
additional reasons: 
– ML algorithms are often criticized as black boxes. Meta-labeling allows you to 

build a ML system on a white box. 

– The effects of overfitting are limited when you apply meta-labeling, because 
ML will not decide the side of your bet, only the size. 

– Achieving high accuracy on small bets and low accuracy in large bets will ruin 
you. As important as identifying good opportunities is to size them properly, so 
it makes sense to develop a ML algorithm solely focused on getting that critical 
decision (sizing) right. 



Meta-labeling for “Quantamental” Firms 
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• You can always add a meta-labeling layer to any primary model, 
whether that is an ML algorithm, a econometric equation, a 
technical trading rule, a fundamental analysis… 

• That includes forecasts generated by a human, solely based on his 
intuition. 

• In that case, meta-labeling will help us figure out when we should 
pursue or dismiss a discretionary PM’s call. 

• The features used by such meta-labeling ML algorithm could range 
from market information to biometric statistics to psychological 
assessments. 

• Meta-labeling should become an essential ML technique for every 
discretionary hedge fund. In the near future, every discretionary 
hedge fund will become a quantamental firm, and meta-labeling 
offers them a clear path to make that transition. 



Pitfall #5: 
Weighting of non-IID samples 



The “spilled samples” problem (1/2) 
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• Most non-financial ML researchers can assume that observations 
are drawn from IID processes. For example, you can obtain blood 
samples from a large number of patients, and measure their 
cholesterol. 

• Of course, various underlying common factors will shift the mean 
and standard deviation of the cholesterol distribution, but the 
samples are still independent: There is one observation per subject.  

• Suppose you take those blood samples, and someone in your 
laboratory spills blood from each tube to the following 9 tubes to 
their right. 
– That is, tube 10 contains blood for patient 10, but also blood from patients 1 to 

9. Tube 11 contains blood from patient 11, but also blood from patients 2 to 
10, and so on.  



The “spilled samples” problem (2/2) 
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• Now you need to determine the features predictive of high 
cholesterol (diet, exercise, age, etc.), without knowing for sure the 
cholesterol level of each patient. 

• That is the equivalent challenge that we face in financial ML. 
– Labels are decided by outcomes. 

– Outcomes are decided over multiple observations. 

– Because labels overlap in time, we cannot be certain about what observed 
features caused an effect. 

My friend Luna can recognize faces, like Google 
or FaceBook. She is not so good at investing, and 
Google’s ML would probably fail miserably if 
applied to financial markets. 
 
Finance is not a plug-and-play subject as it 
relates to ML 



Weighting observations by uniqueness (1/2) 
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• Two labels 𝑦𝑖 and 𝑦𝑗 are concurrent at t when both are a function of 

at least one common return, 𝑟𝑡−1,𝑡 =
𝑝𝑡

𝑝𝑡−1
− 1. 

1. For each observation 𝑡 = 1,… , 𝑇 we form a binary array, 

1𝑡,𝑖 𝑖=1,…,𝐼
, with 1𝑡,𝑖 ∈ 0,1 , which indicates whether its outcome 

spans over return 𝑟𝑡−1,𝑡. 

2. We compute the number of labels concurrent at t, 𝑐𝑡 =  1𝑡,𝑖
𝐼
𝑖=1 . 

3. The uniqueness of a label i at time 𝑡 1𝑡,𝑗 = 1 is 𝑢𝑡,𝑖 = 1𝑡,𝑖𝑐𝑡
−1. 

4. The average uniqueness of label i is the average 𝑢𝑡,𝑖 over the label’s 

lifespan, 𝑢 𝑖 =  𝑢𝑡,𝑖
𝑇
𝑡=1  1𝑡,𝑖

𝑇
𝑡=1

−1
. 



Weighting observations by uniqueness (2/2) 
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5. Sample weights can be defined as the sum of the attributed 

absolute log returns, 𝑟𝑡𝑖−1,𝑡𝑖 , over the event’s lifespan, 𝑡𝑖,0, 𝑡𝑖,1 , 

 

𝑤 𝑖 =  
𝑟𝑡−1,𝑡

𝑐𝑡

𝑡𝑖,1

𝑡=𝑡𝑖,0

 

𝑤𝑖 = 𝑤 𝑖𝐼  𝑤 𝑗

𝐼

𝑗=1

−1

 

 

• The rationale for this method is that we weight an observation as a 
function of the absolute log returns that can be attributed uniquely 
to it. 



Pitfall #6: 
Cross-Validation (CV) Leakage 



Why standard CV fails in Finance 
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• One reason k-fold CV fails in finance is because observations cannot 
be assumed to be drawn from an IID process. 

• Leakage takes place when the training set contains information that 
also appears in the testing set. 

• Consider a serially correlated feature X that is associated with labels 
Y that are formed on overlapping data: 
– Because of the serial correlation, 𝑋𝑡 ≈ 𝑋𝑡+1. 

– Because labels are derived from overlapping data points, 𝑌𝑡 ≈ 𝑌𝑡+1. 

•  Then, placing t and t+1 in different sets leaks information. 
– When a classifier is first trained on 𝑋𝑡, 𝑌𝑡 , and then it is asked to predict 

E 𝑌𝑡+1  based on an observed 𝑋𝑡+1, this classifier is more likely to achieve 
𝑌𝑡+1 = E 𝑌𝑡+1  even if 𝑋 is an irrelevant feature. 

•  In the presence of irrelevant features, leakage leads to false 
discoveries. 



Purged K-Fold CV 
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• One way to reduce leakage is to purge from the training set all 
observations whose labels overlapped in time with those labels 
included in the testing set. I call this process purging. 

• Consider a label 𝑌𝑗 that is a function of observations in the closed 

range 𝑡 ∈ 𝑡𝑗,0, 𝑡𝑗,1 , 𝑌𝑗 = 𝑓 𝑡𝑗,0, 𝑡𝑗,1 . 

– For example, in the context of the triple barrier labeling method, it means that 

the label is the sign of the return spanning between price bars with indices 𝑡𝑗
0 

and 𝑡𝑗
1, that is sgn 𝑟𝑡𝑗,0,𝑡𝑗,1 . 

• A label 𝑌𝑖 = 𝑓 𝑡𝑗,0, 𝑡𝑗,1  overlaps with 𝑌𝑗 if any of the three 

sufficient conditions is met: 

– 𝑡𝑗,0 ≤ 𝑡𝑖,0 ≤ 𝑡𝑗,1 

– 𝑡𝑗,0 ≤ 𝑡𝑖,1 ≤ 𝑡𝑗,1 

– 𝑡𝑖,0 ≤ 𝑡𝑗,0 ≤ 𝑡𝑗,1 ≤ 𝑡𝑖,1 



Embargoed K-Fold CV 
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• Since financial features often incorporate series that exhibit serial 
correlation (like ARMA processes), we should eliminate from the 
training set observations that immediately follow an observation in 
the testing set. I call this process embargo. 
– The embargo does not need to affect training observations prior to a test, 

because training labels 𝑌𝑖 = 𝑓 𝑡𝑖,0, 𝑡𝑖,1 , where 𝑡𝑖,1 < 𝑡𝑗,0 (training ends 

before testing begins), contain information that was available at the testing 
time 𝑡𝑗,0. 

– We are only concerned with training labels 𝑌𝑖 = 𝑓 𝑡𝑖,0, 𝑡𝑖,1  that take place 

immediately after the test, 𝑡𝑗,1 ≤ 𝑡𝑖,0 ≤ 𝑡𝑗,1 + ℎ. 

• We can implement this embargo period h by setting 

𝑌𝑗 = 𝑓 𝑡𝑗,0, 𝑡𝑗,1 + ℎ  before purging. A small value ℎ ≈ .01𝑇, 

where 𝑇 is the number of bars, often suffices to prevent all leakage. 



Example: Purging and Embargoing 
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This plot shows one partition of 
the K-Fold CV. The test set is 
surrounded by two train sets, 
generating two overlaps that 
must be purged to prevent 
leakage. 
 
To further prevent leakage, the 
train observations immediately 
after the testing set are also 
embargoed. 



Pitfall #7: 
Backtest Overfitting 



Backtest Overfitting 
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Data Dredging: 
Searching for empirical 
findings regardless of 
their theoretical basis 
is likely to magnify the 

problem, as V 𝑆𝑅 𝑛  

will increase when 
unrestrained by theory. 

This is a consequence of pure random behavior. We will observe better candidates even 

if there is no investment skill associated with this strategy class (E 𝑆𝑅 𝑛 = 0). 

E max 𝑆𝑅 𝑛 ≈ V 𝑆𝑅 𝑛 1 − 𝛾 Z−1 1 −
1

𝑁
+ 𝛾Z−1 1 −

1

𝑁
𝑒−1  

http://ssrn.com/abstract=2308659
http://ssrn.com/abstract=2308659
http://ssrn.com/abstract=2308659
http://en.wikipedia.org/wiki/Data_dredging


The Deflated Sharpe Ratio (1/2) 
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• The Deflated Sharpe Ratio computes the probability that the 
Sharpe Ratio (SR) is statistically significant, after controlling for the 
inflationary effect of multiple trials, data dredging, non-normal 
returns and shorter sample lengths. 

 

𝐷𝑆𝑅 ≡ 𝑃𝑆𝑅 𝑆𝑅 0 = 𝑍
𝑆𝑅 − 𝑆𝑅 0 𝑇 − 1

1 − 𝛾 3𝑆𝑅 +
𝛾 4 − 1

4
𝑆𝑅 2

 

where 

𝑆𝑅 0 = 𝑉 𝑆𝑅 𝑛 1 − 𝛾 𝑍−1 1 −
1

𝑁
+ 𝛾𝑍−1 1 −

1

𝑁
𝑒−1  

 

• DSR packs more information than SR, and it is expressed in 
probabilistic terms. 

http://ssrn.com/abstract=2460551
http://ssrn.com/abstract=2460551


The Deflated Sharpe Ratio (2/2) 
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• The standard SR is computed as a function of two estimates: 
– Mean of returns 

– Standard deviation of returns. 

• DSR deflates SR by taking into consideration five additional 
variables (it packs more information): 
– The non-Normality of the returns 𝛾 3, 𝛾 4  

– The length of the returns series 𝑇  

– The amount of data dredging V 𝑆𝑅 𝑛  

– The number of independent trials involved in the selection of the investment 
strategy 𝑁  

Deflation will take place when the track record contains “bad” attributes. However, 
strategies with positive skewness or negative excess kurtosis may indeed see their 
DSR boosted, as SR was failing to reward those “good” attributes. 



Numerical Example (1/2) 
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• An analyst uncovers a daily strategy with annualized SR=2.5, after 

running N=100 independent trials, where V 𝑆𝑅 𝑛 =
1

2
, T=1250, 

𝛾 3 = −3 and 𝛾 4 = 10. 

• QUESTION: Is this a legitimate discovery, at a 95% conf.? 

• ANSWER: No. There is only a 90% probability that the true Sharpe 
ratio is above zero. 

o 𝑆𝑅 0 =
1

2∙250
1 − 𝛾 𝑍−1 1 −

1

100
+ 𝛾𝑍−1 1 −

1

100
𝑒−1 ≈

0.1132 

o 𝐷𝑆𝑅 ≈ 𝑍

2.5

250
−0.1132 1249

1− −3
2.5

250
+

10−1

4

2.5

250

2
= 0.9004. 



Numerical Example (2/2) 
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Should the strategist have 
made his discovery after 
running only N=46, then 
𝐷𝑆𝑅 ≈ 0.9505. 

 

Non-Normality also played a 
role in discarding this 
investment offer: For 
𝛾 3 = 0, 𝛾 4 = 3, then 
𝐷𝑆𝑅 = 0.9505 after N=88 
independent trials. 
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It is critical for investors to account for both sources of 
performance inflation jointly, as DSR does. 



THANKS FOR YOUR ATTENTION! 
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