Vol.1

2t o

01 Apikzte] 01
2124229 0j2 01
02 7| 05
BMLLE| H|ZLALH 05
03 M= 08
Tensorflow®t F7t0|&2 2% 08

04 Eo[LUAMEINE 0|

olo

11

o

5= Y BaN 12

Fio

EMHIHIEIE

Qo O|= 2017.05.10

EzM2210| 0jay

SEUYO0l Aot Hoto] 2HSASLICH OHLFALUE 42 242 7[AH0]
T2 D2 SHEo| et ool 122YS ZHIS

CREFE0 233} 5194 SHAY HEH MYREE XYL 24210/50]
SIL} EH BURIE S S HE 21 A0k 0/2fF HYo2 HEHO F
7 g0 FFAH SHES CJYYHYS GEGY SN HEE 228U

g PRZY Yo St

CIAEZ 82 2YUAYE ottt I 8FAAY L AAM2EAY Lo &
ol 0|27|7tA| MEdez JTE 0% Y& Lt oz HelE 43
st= ©O{7t ‘TLE R YLCH THIZYE 7tHEe Hats AR o 2244
C}. Robotics Automation Process 7t 7| 22401 HIEJLICH OH I 8FA}
ot st 2A2F EXAMEA9| Ol2j= o{E71e? 0| CFA 7t 2017 d 4

2o 22kt Future State of the Investment Profession: Pursuing better

outcomes—forthe end investor, the industry, and society @} L|C}.

2AE 5H0|A 1080 EHCES 045D 0lof TSt HRUARE
= o|deLCH EM7 EER O&st= 42 Aging Demographics,
Tech-Empowered Individuals, Tech-Empowered Organizations, Economic
Imbalances, Government Footprint(d5 Zrat=, A|ZHO|LE 7| 0| Cist HE

o A&t &2 JHY22 0]5l), Resource Management & L|C}.

Ir

MEGATRENDS COMBINE FOR POSSIBLE FUTURES

Megatrends
Big worldview changes not
specific to finance

tionand scenafios

n specific Tools to evaluate industry
changes

%
— Fintech Disruption
@ Parallel Worlds
@ Lower for Longer

Purposeful Capltalism

Aging Demographics

Tech-Empowered Individuals

Tech-Empowered Organizations

Economic Imbalances

Government Footprint

Resource Management

The best way to predict the future is to create

BOM7t A2l 47139 AlLt2|E EH™ Fintech Disruption,Lower for

Longer, Parallel Worlds, Purposeful Capitalism & L|Ct. Parallel Worlds & B 2FE
XSHAIBF ALR| D) Chtetst JHQISHHAM MO, AT, Aoz £HAQ UAHE YWe
Atel= OlaeY 4 AUt olof et Jhelst, Chest, &5 AE 4F0ILE MB[A

7t S2s YL

Fintech
Disruption

Parallel
Worlds

Lower for
Longer

Purposeful
Capltallsm

New technologies promaote new
business models; disruption
and creative destruction

are endemic; challengers do
better than incumbents; major
disruptions to the world of work

Major Elements

* Quickening flow of disrup-
tions from technological
innovation in digitization and
digitalization

Fintech develops globally with
a particularly strong Asia-
Pacific element

Regulstory infrastructurein
finance gradually integrates
technology-driven models
Disruptions to investment
organization business models;
success with technological
advancement is critical
Traditional sctive manage-
ment shrinks; some growth in
alternatives, smart betas, and
outcome-oriented solutions
Smart machines and systems,
data analysis, and inference
play adisruptive rolein
finance's evolution

Financial services becomes
highly personalized and
digitalized everywhere
Robo-advice and its "cyborg”
variants become preferred
style or tool for delivering
investment advice

Different segments—Dy geog-
raphy. generation and social
group—engage in society
differently; a higher baseline for
financial services participation
with wider dispersion; product
preferences for personalization,
simplicity and speed

Major Elements

s Better worldwide education,
healthcare and telecoms
increase societal engagement
Social media carries potency
to bring people together and to
divide, legitimately and
illegitimately
Potential for mass disaf-
fection; consequences in anti-
globalization, populism, and
authoritarian nationalism
New-style financial institu-
tions enabling personalized,
simple. and speedy engage-
ment; trust is also needed
Big data serves customiza-tion
of investment products to
specific segments; more
reflection of personal values
Improvement in financial literacy
and empowerment produce
better financial participation
The "have-nots™act on their
disillusionment with the system
= The trustworthiness of the tech
model with tangible products
and immediate gratification is
tested in investment contexts

New normallow interest rates and
returns become embedded for the
foreseeable future (570 years),
accentuated by lower levels of
global growth and higher levels of
political instability

Major Elements

* Limited success with interest
rate normalization; natural
interest rates stay low

» Growth challenges: indebted-

ness, adverse demography,

excess savings, China/EM,
companies hoard cash

Large gaps in pension

coverage with longevity;

pension poverty

Moves tolower-cost, higher-

tech investment solutions;

premium on innovation;
industry consolidates

Private markets carry growing

weight in capital raising:

issues with opague-ness,
liquidity, agency, overcrowding

Corporate and public pension

costs rise to pay for increased

Iongevity and reduced returns

Disappointment with out-

comes rubs off on trust;

investment skill under pres-
sure to demonstrate its value

Geopolitical instability con-

nects with social instability;

inequality fissures; negative
feelings deepen; job fears;
immigration challenges

Capitalism's way of working
evalves; the investment industry
raisesits game with mare
professional, ethical, and
client-centric organizations
acting in aligned-to-purpose,
lower-cost, and efficient ways

Major Elements

= Governments and firms work
toward a more positive direc-
tion of trave! for capitalism
with more respect for wider
stakeholders

Markets for publicly listed
equity and private equity are
mare fair, efficient, and deep
over time and grow as a result
Firms and investment organi-
zations integrate their wider
purpose alongside their profit
maotivations

Asset owners are more
influential, they add focus to
longer-term value creation and
sustainability

There is an increased atten-
tion to fiduciary responsibiiity
in investment with better
alignment

Fierce competition for leader-
ship talent among investment
organizations; diversity and
culture aredraws

Investment providers need

to have a “clean license

to operate” including ESG
principles

ORGANIZATIONAL GAME CHANGERSZE Game Changer 1: New Skills f
or New Circumstances2 OJ2iE 98t AE29| 7|2 delst Y&Y
Ct. 7|12 &2 H|88 ARS8 Z0| SPECIALIZED FINANCIAL ANALYSIS SKILLS®)
LIC}t. 7|=, ClOjEfOf 28t CIX| & CiMEte] Hut2 Ojsie 4+ USU Tt

W FORCIOs AND PORTFOLIO MANAGERS ™9 FOR CEOs OF ASSET MANAGERS

ABILITY TO ARTICULATE
A COMPELLING VISION
FOR THE INSTITUTION

RELATIONSHIP-
BUILDING SKILLS

SPECIALIZED FINANCIAL
ANALYSIS SKILLS

ABILITY TOINSTILL A
CULTURE OF ETHICAL
DECISION MAKING

UNDERSTANDING OF
CORPORATE GOVERNANCE/
REGULATIONS

SOPHISTICATED
KNOWLEDGE OF IT

KNOWLEDGE OF
SCIENCE, ENGINEERING,
AND MATHEMATICS

0%

The best way to predict the future is to create it

MOST IMPORTANT SKILLS FOR THE FUTURE

FOR CEOs OF ASSET DWNERS
B HARD TO FIND IN LABOR MARKET

10% 20% 30% 40% 50% 60% B TRAINING FOCUS

. ELH

N 4 9%
40%

1 5

I 5%

eee—————— 38 %
34%

I 277

35%
I 20%

1 37

[30 5
—— 38 %

I 12

I 25
I 2%

I, 337

L i
[12%

13%
L Ekij

24%
[10%
10%
L [r:

EIME & 120%0] 0l == YUgUCH = EAMes 29420 AR
HE dA= %M URLS ZZSHAIZ HHEUCEH

° 7|

BMLL Technologies 2| H|Z|L|A 2 &

0= RENAM LSO IV 28 dHQLEAM THIAI 7t = o
gDt 22 AtetA| 2YE GpsUH. S=YE 4E 25 YA O|F
2ol A 5¥A 227t 22 U= ASS Y oh=o YO0l H=At
ofzt AHzARIZE 2F5tn ASLITE

O|ASIAO) Bt M FD+FO Y, 2, FFI| 59 I|EE h2E FAf
2 2ol HYYEYUL AYRENO HYYFE 5 07 NOIOF S 0/AZHY
O AI|7} HE BHE IE HIHOEZ B HFHO Y MBI Ui b
SHME T E9 IO 29E H O/ BAZEE HoA @49 0/0f|E HE
e SAS U L= o FROME 0/F IS0 L} Y2 Y2t 2t
SHAIOf BROME SE0/Lf 3D TE, ZIS 22 LI E0 ofEt 240 2
2 &I} B JpA 2 AO|FL SHO FHIsHs YO hHZ HEIE A
RO 2pI0] HZHOF B HHLE FHSH YFFD T HHE HF
o £20] HE It55 ZE FLY Of0|C/0lE EELTCL. R/ SAIF HHYO|
O} M0N0 JjS0] £C}D 4P IXHOE L3 LAS F £ YLIE I
DIt R/ HOIF HAE HZSHe HFHHH L2 J|E0] OfL H0| EOHT
ST BN D2 IS0/t FHEF IS0 L2 O} GAL FRE 0jep
SAOF L AE O WR0/C). BES EHRE GRUY, B HEAE 5
2310t

TE 32t st QHUESY, 2E0{EH0[4, 2|2 (Payment)E 28 LT,
SEEAM L 24T T3 = 2ESHIO| A E AXY HojyL ot 2
Z= sHs0lM EOojZl= 20| otLet Axst Aeg HHH Es gl &
OlA O|R0{ZAl= Ziez o|siEtL|Ct. 2 ¥= bmll technologies 2| H|Z|
LIARHE2 o3 240 M2 A o 5t ot

Ct.

- Big Data Analytics

- Bayesian Machine Learning
- Limit Order Book Data

Dz HOOlEt & ES FE5H7| 215t Apache Spark, Hadoop, Elastic
searchS 2845t} 1 PostgreSQLE 0|&3dt1l RESTful microserviceZ &

5

The best way to predict the future is to create it

| I/
| Elastic Load -f g
| CorporateCota center | Balancer [EMLL Portal ROSDE
= ? ety LT LT
i -

|

CarporateData conter

Customerl | {”di'
EC2 in sfanca Hadoop, Spark
- I ! Cluster
e lcusume' lzubnet

BMLLAMLInc. LOB

) L ‘\‘ il __.-w Secure
machine learning i =5
APLM ATLAE, R, " |
Python.

Customer
o Buc hats
5 Customar 2 27 customarly*
) .
L0 EC2 in stance Customer2 | customen/
kS Spark Cluster
\ T Customes 23ubnet

CIOIEIS EAStE 92 Bayesian Machine LearningS 2235t
[SUCH 7R =229 0|24 232 AHESIYD T ofLirt
Rebuilding the Limit Order Book: Sequential Bayesian

Inference on Hidden States”® L|C}.

Oz 7ol Hefla0M HAIZE 2 7HHOIELS ZE LT

Time Priority

Price Priority

Buy

BMLL Technologies’t 2822 st =2F Rebuilding the limit order
book: sequential Bayesian inference on hidden states2 3|20t 2A2S

ek 4 d&LCH thAl The Journal of Trading 8 (3), 68-95 (2013)0f|

7|08t Prediction of Hidden Liquidity in the Limit Order Book of GLO
BEX Futures®| 28 ZHF&L .

o A

o2t

Tensorflow2 O|23%t FJIl0|22

ALt 48 18Y TAZO| FZ|ote A2A|ZNTAIAATL AAJSUCH FAHE 4
MDA HACHO| ZHEA|ZHTHEZPO|USLICH HHS 20 3R s &8
=0F & Ate'= Deep Learningg FAHZ St —LIEf g IS 435 E2O|

g 71z olM 2VH5HRAE =20 T2 A2 AGEASLICE

‘S8 USA s 2EE0F L Atd"E ZHS dMY AsEEI|I=dTE ¢

[Eye) =2 = = [=
A= USRI S0 AZE L[S IYE Aol2ks Of7(7F U= A== 5~10
H des 2 IS 01RA| 9= A"0letn ot ofzfet 22 A ets StlE

LI C.

"B (A)O] B2 OFF0/E AOIEY 52 50T B L0 2320, o/g
SELAL g Y LR tfgt ZE0 M MAHCE 0/FAD YUct. 0/ B
2 53 A} HUHO YO FHOE PE NENBE B FE UF 52 O Y
b XD Q= BHE O MBS EH HOF B

A2 SSRNO|LE ARXIVR} 22 =& OI7I0|E AIO|EE ATHEH QISR st
st 202 =22 Y & YSULL ofeils REXE Qe A== Y
Ct.

Leslie N. Smith

Best Practices for Applying Deep Learning to Novel Applications

Martin Zinkevich
Rules of Machine Learning: Best Practices for ML Engineering

Brett Wujek, Patrick Hall, and Funda Gtnes
Best Practices for Machine Learning Applications

TensorFlow & 7|4l &&2t EHefd2 Qo #L20M 2tE 2ELA 20|E2 e
E 7|—7~|- = _T'_}Alo HI-_I %IKE EEAA]IEZ-IIEOIL_ll:l. __rl_:l-ol HFEOF MaCh|ne
Learning with Financial Time Series Data on Google Cloud Platform & 7|A|&&
b 2 A 0= 0| ;%E* = U E BEF= ALt #2320 2ESH 2}
2E 7|22 FII0|20| HE3%H At2A|7t TensorFlow T FA 1) —x LT}

AAE tensorflow-stock-index Ol Al &QISHe 4 USLICEH

0 - Google Y FIaA—F 5E8H L THD

1 - BREPBELNVEECBIDPTHAEL THD

N
1

H H22258Wntk FEERRIF2 7~

w
1

HA3506# %k FEI £

4 - Bz BLESENLIZOLAYIaL—2 a3 L THD

Ul
1

AEL(PR EFRENEEEEFE-THDS Y IaL—V T

6- BTI—2nlEH%Z 7! hEOHAZXH X7 |

7-% 2A%ERTIEFHALLESBEAEVL O ?
8 - Lot EEI I
9 - F#6.79%

TensorflowZE 0|23t L2 All= Quantified Classifier® &350 o229
S0tE ML Quantized classifier in GO:A general purpose, high performance
machine learning classifier® L|C}t. Joe Ellsworth= Bayes Analytice| CTO &!

Algorithms research scientist2 &1 UGLICH F3SH 20| st A&

Stock Price Prediction tutorial
Analyze Predictive value of Features in stock price prediction
How can | use quantized classifier to make money?

o= ot YD AATEE= https://bitbucket.org/joexdobs/ml-classifier-gesture
-recognition/src O || &L|Ct.

0| 22 LinkedinolM A= Classification &2 Classifier2b= 7HE0] AUy
&Lt Machine Learning 2E{C| (8) Classification Introduction (Decision Tr
ee, Naive Bayes, KNN)E HAO{EU7t Classificationg Ch31t 20| dHFL L.

<Training Step>

Training
Data Feature 4
Aceuisition Raw Data Extraction .
- | (Training Set) # Feature Classfier
<Test Step»
Data Feature
Acquisition Raw Data Extraction ; Classification
- | : -
{Test Set) A Feature 3 Classfier : sl

Classification2 Supervised Learning®/ ZZS =, Z/Z0) EXo}= LJO/E/S} category S}

of BHE learningdt0] AE EZ2E GJOIEIQ categoryE EE 5t
EIZ 0= S0/50/23. ~H ZE9 GO/El= 0/0)2 0/, category,
= spamd g 21z 2Bt B oIS
g o/ B 0L learningZ

& o,

=Ao/ct. 28 E

=2 label class

DY 210] © 20| AYLEIE HA AL o)
ME2 GI0jE (52 012)0] inputeE 5

e o ofs 020l ~FAx YE YR EHEotEe 2AE £0/0t, 0/2 24

=

£ classification0/2f1

atet.

data
iku

TOP PREDICTION ALGORITHMS

TYPE NAME

Linear
regression

Logistic
regression

Decision
tree

Random
Forest

=
Q
@
3
L]
o
-

Gradient
Boosting

Neural
networks

Neural networks

DESCRIPTION

The “best fit” line through all data
points. Predictions are numerical.

The adaptation of linear regression to
problems of classification (e.g., yes/no
questions, groups, etc.)

A graph that uses a branching method
to match all possible outcomes of a
decision.

Takes the average of many decision
trees, each of which is made with

a sample of the data. Each tree is
weaker than a full decision tree, but by
combining them we get better overall
performance.

Uses even weaker decision trees, that
are increasingly focused on “hard”
examples.

Mimics the behavior of the brain.
Neural networks are interconnected
neurons that pass messages to each
other. Deep learning uses several
layers of neural networks put one
after the other.

ADVANTAGES

Easy to understand
you clearly see what the
biggest drivers of the
model are.

Also easy to understand.

Easy to understand and
implement.

Asort of “wisdom of the
crowd”. Tends to result
in very high quality
models. Fast to train.

High-performing.

Can handle extremely
complex tasks - no other
algorithm comes close in
image recognition.

X

X

o ©2017 Dataiku, Inc. | www.dataiku.com | contact@dataiku.com | @dataiku

10

DISADVANTAGES

Sometimes too simple to cap-
ture complex relationships
between variables.

Tendency for the model to
“overfit®.

Sometimes too simple to cap-
ture complex relationships
between variables.

Tendency for the model to
“overfit”.

Not often used on its own for
prediction because it’s also often
too simple and not powerful
enough for complex data.

Can be slow to output
predictions relative to other
algorithms.

Not easy to understand
predictions.

A small change in the feature
set or training set can create
radical changes in the model.

Not easy to understand
predictions.

Very, very slow to train,
because they have so many
layers. Require a lot of power.

Almost impossible to
understand predictions.

® S|AF A

o BN

Eyo|UHMEINZ 0|2

E JHel 7| golz|gt Y=t EPE At
! g st= o2 MEHS of
g 7|85tn 2ZI5H= # S5 (Co-Opperative)HAlo 2 MO*% Z gLy,
O SR Af: S22 otA| EEUCH AtMoll gelst A
oF 2 LisUt EAgo[2tn & 5 U= ZeroAOS
= U], SeH0|AE(C++) L BOARIEZL
CEo|Y ALY E 0|30| ot FAHQl U2 ofeh

S
a
it}

Eo|gAMEI Q2 0|20| 5= 2
et = ofefet &Lt
twitter: @smallake

email: smithkim.kr@gmail.com
facebook: www.facebook.com/smallake

11

HT
ro R
>
<2
>
b
=
rok
rr
Ho
10
s}
Ho
njo
oX!
4
ogh
1z
|0
Hu
Y
(0
el
-
jin)
Ho
rin
oX!
4
o
<2
i}
rok
Rl
N

Y .
?;}\\\Ilgl/’ CFA Institute APRIL 2017

FUTURE STATE OF
THE INVESTMENT
PROFESSION

PURSUING BETTER OUTCOMES—FOR THE END
INVESTOR, THE INDUSTRY, AND SOCIETY

Executive Summary

FUTURE STATE OF THE INVESTMENT PROFESSION

PREPARING NOW FOR A
DIFFERENT FUTURE

The future of the investment industry is important for the functioning
of the global economy, for the approximately 2 million workers it
employs, and for the clients and end investors that depend on it to
manage around $100 trillion in assets.

This report, which includes findings from a survey of 1,145 industry
leaders, addresses the issues that keep investment management
executives up at night; they are the same issues that matter for CFA
Institute as the largest association of investment professionals.
Major shifts are underway that will likely result in significant change,
and leaders need a better way to think through the implications of
these shifts in various combinations—for their clients, the health of
the industry overall, and the ongoing sustainability of their own firms.

847%
70%
927%
97%

Relevant megatrends include technological advances, redefined
client preferences, new macroeconomic conditions, different
regulatory regimes reflecting geopolitical changes, and demographic
shifts. The industry's potential future state is further complicated by
important issues that are very specific to investment organizations,
such as trends in digitization and commoditization, downward
pressure on fees, pressures from sustainability, new tech-centric
business models, and other investment innovations. The scenarios
and analysis in the pages that follow offer a road map for leaders in
their strategic decision making as they seek to chart a course for the
future of their firms.

This report also provides insights for professionals interested in
becoming future industry leaders by identifying the traits and
abilities that will be prized by future investment management
organizations. Finally, it suggests ways that the possible future
states of the investment industry could be influenced so that the
actual future state provides the best possible outcomes, by fulfilling
client objectives, serving end investors, and contributing to societal
wealth and well-being.

of investment leaders expect
environmental, social and
governance factors will
become more influential

137%
707%

2 © 2017 CFA INSTITUTE. ALL RIGHTS RESERVED.

997
487

of investment leaders expect
Asian financial centers will
become more influential

of investment leaders
expect consolidation of
the industry

expect investors will increase
their allocations to passive
investment vehicles

of CFA charterholders surveyed
expect substantial or moderate
contraction of profit margins for
asset management firms

expect institutional investors
will look to reduce costs by
insourcing more investment
management activities

of investment leaders expect
globalization will offer new
opportunities for investment
professionals

of investment leaders expect
technology will offer new
opportunities for investment

UNDERSTANDING THE
INDUSTRY'S PURPOSE
THROUGH ITS MANY
MOVING PARTS

The fundamental purpose of finance is to contribute to society
through increases in societal wealth and well-being. Looking at
finance as an ecosystem reveals important interconnections and
points of friction in how finance currently works in relation to this
purpose. The financial ecosystem is:

e Connected: It reflects the multiple diverse participants, people
and organizations and their connections with each other and
with the wider landscape. While the system is served by many
specialists, there is a need to understand the bigger picture.

e Reflexive: It incorporates the two-way nature of those connec-
tions and dependencies. Specifically, it allows for reflexivity,
where landscape changes affect and are affected by participants’
beliefs and actions.

e Non-linear: It allows for the jumps, or tipping points, that
characterize some of the properties of the system and are difficult
to explain with traditional theory. Simply put, crises happen.

The financial ecosystem rests on a singular fundamental transac-
tion: those with a surplus of capital but a deficit of ideas (investors)
provide capital to those with a deficit of capital but a surplus of ideas
(inventors, entrepreneurs, businesses, firms, etc.). When those ideas
are successful, then both the providers and users of capital benefit
by earning investment returns. CFA Institute argues that an invest-
ment industry of enormous value to society has grown from this

EXECUTIVE SUMMARY

kernel; but its sustainability is dependent on the nature of the value
delivered and the quality of trust between the end investor and the
organizations involved.

Uncontrollable forces consistently exert influence (sometimes
extreme influence) in the financial ecosystem, just as they do in

the natural world. The challenges the investment industry will face
in the future are currently being shaped by a number of megatrends
that already have significant momentum: people are living longer
and demographic structure is altering markedly, technology is
empowering individuals and organizations, economic imbalances
continue to grow in markets and society, the regulatory pendulum is
swinging faster, and natural resources are under stress.

Our focus here is on the investment function of finance, which lies
alongside the payment, lending, and insurance functions. More
specifically, the core purposes of the investment industry lie in
two overlapping areas:

e Wealth creation: Mobilizing capital for jobs and growth; the capital
managed in this chain creates wealth and well-being.

e Savings and investments: Deploying investment services for
wealth and risk management; the savings and investments
managed in this chain allow inter-temporal (over time) risk
management and increases in wealth.

THE FINANCIAL ECOSYSTEM

Savings/Capital

RN

Wealth/Well-Being

RN

Organizations
People Asset owners Landscape
Asset managers Macroeconomic
Employees . e
Intermediaries Geopolitical
Savers) ;
Firms Society
Others
SPILLOVERS Governments SPILLOVERS Planet
Regulators \/’
Income/Return License to Operate

WWW.CFAINSTITUTE.ORG/FUTURESTATE 3

FUTURE STATE OF THE INVESTMENT PROFESSION

THE ART AND SCIENCE OF
SCENARIO PLANNING

Even when forecasts are directionally correct in finance, they are usu-
ally specifically wrong. That is because the future of finance is created
by a combination of many moving parts and legions of complex inter-
actions; the result is inherently impossible to predict. Consequently,
we use scenario planning to reveal insights about the future state of
the investment profession, regardless of what future unfolds.

Our scenarios draw on a number of megatrends—large scale changes
in circumstances that are omnipresent in all facets of our world—that
are identified as virtually certain to disrupt the ecosystem regardless
of how the future unfolds.

The megatrends are mixed with finance-specific forces in different
combinations to create unique scenarios in the form of narratives
about the future. These narratives are not forecasts; instead, each
narrative strives to tell a unique story. With these stories in mind,
decision makers are equipped to recognize the narratives as the
future unfolds and act early.

Our time frame is 5-10 years, which is long enough to allow
business models to substantively change in response to the
disruptive megatrends and forces we identify, but not so long as
to be overly futuristic.

MEGATRENDS COMBINE FOR POSSIBLE FUTURES

Megatrends

Big worldview changes not
specific to finance

Aging Demographics

Tech-Empowered Individuals

Tech-Empowered Organizations

Economic Imbalances

Government Footprint

Resource Management

4 © 2017 CFA INSTITUTE. ALL RIGHTS RESERVED.

Forces of
innovation and
disruption specific
to finance

7

<X

X

d

Scenarios

Tools to evaluate industry
changes

Fintech Disruption

Parallel Worlds

KR

Lower for Longer

Purposeful Capitalism

FOUR SCENARIOS FOR
FUTURE STRATEGY

These scenarios represent four ways in which the future of
investment management could unfold.

Fintech
Disruption

New technologies promote new
business models; disruption
and creative destruction

are endemic; challengers do
better than incumbents; major
disruptions to the world of work

Major Elements

e Quickening flow of disrup-
tions from technological
innovation in digitization and
digitalization

® Fintech develops globally with
a particularly strong Asia-
Pacific element

e Regulatory infrastructure in
finance gradually integrates
technology-driven models

e Disruptions to investment

organization business models;

success with technological
advancement is critical

e Traditional active manage-
ment shrinks; some growth in
alternatives, smart betas, and
outcome-oriented solutions

e Smart machines and systems,

data analysis, and inference
play a disruptive role in
finance's evolution

e Financial services becomes
highly personalized and
digitalized everywhere

® Robo-advice and its "cyborg”
variants become preferred
style or tool for delivering
investment advice

Parallel
Worlds

Different segments—by geog-
raphy, generation and social
group—engage in society
differently; a higher baseline for
financial services participation
with wider dispersion; product
preferences for personalization,
simplicity and speed

Major Elements

e Better worldwide education,
healthcare and telecoms
increase societal engagement

e Social media carries potency
to bring people together and to
divide, legitimately and
illegitimately

e Potential for mass disaf-
fection; consequences in anti-
globalization, populism, and
authoritarian nationalism

e New-style financial institu-
tions enabling personalized,
simple, and speedy engage-
ment; trust is also needed

e Big data serves customiza-tion
of investment products to
specific segments; more
reflection of personal values

e Improvement in financial literacy
and empowerment produce
better financial participation

® The "have-nots" act on their
disillusionment with the system

e The trustworthiness of the tech
model with tangible products
and immediate gratification is
tested in investment contexts

Lower for
Longer

New normal low interest rates and
returns become embedded for the
foreseeable future (5-10 years),
accentuated by lower levels of
global growth and higher levels of
political instability

Major Elements

e |imited success with interest
rate normalization; natural
interest rates stay low

e Growth challenges: indebted-
ness, adverse demography,
excess savings, China/EM,
companies hoard cash

e Large gapsin pension
coverage with longevity;
pension poverty

® Moves to lower-cost, higher-
tech investment solutions;
premium on innovation;
industry consolidates

e Private markets carry growing
weight in capital raising;
issues with opaque-ness,
liquidity, agency, overcrowding

e Corporate and public pension
costs rise to pay for increased
longevity and reduced returns

e Disappointment with out-
comes rubs off on trust;
investment skill under pres-
sure to demonstrate its value

e Geopolitical instability con-
nects with social instability;
inequality fissures; negative
feelings deepen; job fears;
immigration challenges

EXECUTIVE SUMMARY

Purposeful
Capitalism

Capitalism's way of working
evolves; the investment industry
raises its game with more
professional, ethical, and
client-centric organizations
acting in aligned-to-purpose,
lower-cost, and efficient ways

Major Elements

e Governments and firms work
toward a more positive direc-
tion of travel for capitalism
with more respect for wider
stakeholders

e Markets for publicly listed
equity and private equity are
more fair, efficient, and deep
over time and grow as a result

e Firms and investment organi-
zations integrate their wider
purpose alongside their profit
motivations

e Asset owners are more
influential; they add focus to
longer-term value creation and
sustainability

e Thereis anincreased atten-
tion to fiduciary responsibility
in investment with better
alignment

e Fierce competition for leader-
ship talent among investment
organizations; diversity and
culture are draws

e |nvestment providers need
to have a "clean license
to operate" including ESG
principles

WWW.CFAINSTITUTE.ORG/FUTURESTATE 5

FUTURE STATE OF THE INVESTMENT PROFESSION

ORGANIZATIONAL
GAME CHANGERS

Investment organizations can be divided into asset owners, asset
managers, and investment intermediaries. These are all "people
businesses," dependent on talented leaders and staff to move
forward. Our survey asked about the most important skills for leaders
in the future, and the results indicate that investment organizations
need to recruit and develop employees along new dimensions.

Investment organizations looking to retool for the future face some
challenges. It is particularly difficult to find people with the ability
to articulate a compelling vision for the institution and to instill an
ethical culture—the two most-valued skills. But financial analysis
skills and ethics rank at the top of the list for training.

Hl FOR CIOs AND PORTFOLIO MANAGERS & FOR CEOs OF ASSET MANAGERS

ABILITY TO ARTICULATE
A COMPELLING VISION
FOR THE INSTITUTION

RELATIONSHIP-
BUILDING SKILLS

SPECIALIZED FINANCIAL
ANALYSIS SKILLS

ABILITY TO INSTILLA
CULTURE OF ETHICAL
DECISION MAKING

UNDERSTANDING OF
CORPORATE GOVERNANCE/
REGULATIONS

SOPHISTICATED
KNOWLEDGE OF IT

KNOWLEDGE OF
SCIENCE, ENGINEERING,
AND MATHEMATICS

0% 10%

Game Changer 1: New Skills for New Circumstances

Increasing need for soft skills, like creative intelligence and
influencing skills, given that technology will replace many
straightforward human processes

Adaptiveness to change is needed for increasingly disrupted
situations, but this skill is in short supply

Training requires attention to ethical and professional orientation
Organizations need to increase their understanding of the
interaction of skills in group settings

There is a critical need for increased diversity both for a
business case and improved cultural strength

MOST IMPORTANT SKILLS FOR THE FUTURE

-12%
13%
I

10%
—

20%

FOR CEOs OF ASSET OWNERS

Il HARD TO FIND IN LABOR MARKET

30% 40% 50% 60% B TRAINING FOCUS
36%
49%
40%
53%
35%
38%
34%
27%
35%
31%
37%
30%
38%
37%
42%
25%
28%
39%
33%
25%
52%
24%
32%

6 © 2017 CFA INSTITUTE. ALL RIGHTS RESERVED.

The Role of Diversity

The other major dimension of workforce capabilities will be the
contribution of improved diversity. Diverse people are most often
identified through surface characteristics (gender, race, national
culture, education, sexual orientation, age, etc.), but the business
case for diversity is linked to intrinsic individual characteristics, such

as values, perspectives, experiences, knowledge, and way of thinking.

Diverse groups benefit from more and different ways of seeing
complex problems and, thus, better ways of solving them. A grow-
ing body of research has shown the link to better performance and
better culture that a gender diverse industry could have. There are
opportunities to benefit from cognitive diversity and overcome the
risks of groupthink.

WHEN IT COMES TO THE GENDER DIVERSITY OF A TEAM
OF INVESTMENT PROFESSIONALS, WHICH ONE OF THE
FOLLOWING BEST DESCRIBES YOUR VIEW?

Bl CFAINSTITUTE MEMBERS I RETAIL INVESTORS
Il INSTITUTIONAL INVESTORS

50%
8%
4% 459
40%
30% "
30% 599, 29
26%
24%
20%
10%
0%
DIVERSITY = DIVERSITY = DIVERSITY
BETTER PREFERRED DOES NOT
PERFORMANCE ENVIRONMENT MATTER

EXECUTIVE SUMMARY

The benefits of gender diversity to improve outcomes are beginning
to be understood by the investment community, as indicated by the
accompanying chart from earlier CFA Institute research.

These issues warrant increasing leadership attention given that the
materiality of behavioral factors to decision outcomes has become
clearer, and is in synch with the thinking and methodologies to make
progress on this front.

Game Changer 2: New Pensions and Lifetime
Savings Models

Private pension markets are barbelled—adapting the mature
markets and developing the immature ones

Best practice is usually found where there are "win-win"
alignments between far-sighted sponsoring firms and well-
governed pension funds

Pension engagement and advice is ripe for disruption—it needs
new models that use technology more efficiently

Increasingly, private pensions will follow the Defined Contribution
(DC) model with a flexible investment platform and behaviorally
smart design

Low levels of contributions and low returns produce inadequate
retirement income; working later in life is necessary

Game Changer 3: Evolving States of Trust

Trust is mediated by the values, competencies, and transparency
of our investment organizations

Trust reflects a particular type of communication model:
communicate early, fully, and often and to fill gaps in
understanding

To build trust, show some societal responsibility; deliver to expec-
tations in competency and ethical practice; add consistent value
Trust will rise in the industry if selection of future talent
emphasizes strong values

Trust will be influenced in future by innovation in technology—for
example, blockchain technology distributes trust

WWW.CFAINSTITUTE.ORG/FUTURESTATE 7

FUTURE STATE OF THE INVESTMENT PROFESSION

THE TRUST EQUATION

Trust from an end investor is the dependency on a service provider in
a situation of risk over a prolonged period.

The type of trust expected by an end investor is far more complex and

tacit than the trust expected by the end user of most any other product,

regardless of its type or business sector of origin. Its importance
grows with the size of risks taken and the length of the term of the
relationship—making it core to investment service delivery.

Trust and value in investment are interconnected. For the end
investor, value will relate to perceptions of outcome relative to
expectations. (In other words, do not think first of performance
versus benchmarks as these do not represent particularly relevant
expectations for most investors.) Value and trust are developed by
an individual or an organization by building credibility and demon-
strating professionalism as captured in the "Trust Equation.”

CREDIBILITY

License to operate:
End investors need experience: Can this
assurance that their individual or organization
investment professional add value? Performance
or organization is pro- track records are impor-
fessionally accredited tant but there are other
to provide the service ancillary elements mostly
needed to succeed. concerned with quality
assurances

|

Track record and

PROFESSIONALISM

The Trust Checklist for Organizations

At a simplistic level, a highly professional firm is filled with
many highly professional individuals. To achieve this across
an entire organization, however, a complex coordination
challenge must be met, and its solutions require good
culture and an appropriate business model to secure
alignment to the necessary attributes of credibility and
professionalism. Trust in the context of the investment
organization spans a spectrum of critical attributes.

Transparency

Organizations should display "glass door transpar-
ency" of all things, including business processes,
limitations of the investment process, risks, perfor-
mance reporting, fees and theirimpact on portfolios,
and potential conflicts of interest. They should be
candid about the mistakes they have made and
explain what steps they are taking to correct them.

Realistic Measures

Firms and their employees need to be realistically
measured in relation to financial and non-financial
goals over relevant time horizons. End investors are
concerned with outcomes.

United Values

Alignment of values between firms and all of their
stakeholders is critical. Organizations build their
strongest trust by being aligned in their purpose,
objectives, and way of working with those they serve.

Sustainable and Fair Rewards

Competency: The mix of
competency attributes
needed for an invest-
ment role varies. Subject
matter knowledge, client
listening skills, and
problem-solving skills
are very critical.

Values: Strong ethics
and client-centric focus,
where empathy and
loyalty in putting clients
first are critical; the
values of a fiduciary are
relevant, prudence and
loyalty in particular.

TRUST AND VALUE

© 2017 CFA INSTITUTE. ALL RIGHTS RESERVED.

Fees and rewards need to be fair and reflect the
value clients receive. Trust will best be secured
when there are incentives for agents to do their
absolute best for their clients.

Time-Tested Relationships

Good relationships develop over time and allow

the client to develop confidence. Research shows
that people are much more trusting when working
with consistent partners—a situation which offers a
chance to build a good reputation through repeated
interactions.

TOWARD GREATER
SOCIETAL BENEFITS

Aspirations Align with Need

Making a consistent and determined contribution to societal wealth
and well-being is not just a nice goal for the investment management
profession—it is quite possibly a matter of existential importance.
The good news: the research shows that investment professionals
aspire to a more positive social contribution.

We offer below a model for creating a healthy investment industry
by looking at the potential outcomes from the interaction of differing
levels of industry versus societal benefit.

EXECUTIVE SUMMARY

Potential for the Industry

o

M%
o217

of investment leaders describe
the impact of the investment
industry as very positive for
society today

of investment leaders expect the
impact of the investment industry
to be very positive for society
contingent on stronger principles

FOUR STATES FOR THE RELATIONSHIP BETWEEN INVESTMENT MANAGEMENT AND SOCIETY

GREATER INDUSTRY BENEFIT

INDUSTRY Less Societal Benefit

e Untrusted and value-unfocused:
unethical and unsustainable industry

e |[nvestment industry does not have
"clean license to operate”

e Investment industry profits but from a
smaller industry base of revenue

4

N

PROFESSIONAL
INDUSTRY

® Trusted and value-focused;
ethical and sustainable industry

e |nvestment industry does have
"clean license to operate”

® |nvestment industry and society

ultimately flourish

More Industry Benefit
More Societal Benefit

\4

ABSENT Less Industry Benefit
|NDUSTRY Less Societal Benefit

e Malfunctioning capital markets;
limited investment opportunities

e Noinvestment industry of any
material size

® No innovation and no growth of any
material size

UNNECESSARY
INDUSTRY

e Traditional industry untrusted;
radical disintermediation
® |ndustry as we know it is displaced

and declines

e Alternative providers/technology

platforms fill the gap

Less Industry Benefit
More Societal Benefit

1143N39 Tv13130S ¥431vIyH

WWW.CFAINSTITUTE.ORG/FUTURESTATE 9

FUTURE STATE OF THE INVESTMENT PROFESSION

IDEAS TO MOVE THE
NEEDLE TO A BETTER
INDUSTRY

The research that underpins this report tells us that change is
coming. We have anticipated how that change might play out in
planning scenarios, and what state the industry could end up in
depending on how well it adapts to change and to what degree it
earns (or does not earn) widespread public trust.

We believe the following "to-do" list and a road map derived from it
can be the first steps in the journey toward a future where a healthy
investment management profession benefits societal wealth and
well-being.

Professional Transformation: Identify What Is Needed
to Go from Industry to Profession

An "industry" is defined by the circumstances of producing
something of value to a consumer. A "profession” is different; it
extends a license to operate to individuals and organizations that

is granted and maintained by containing requirements for entry,
standards of fair practice, disciplinary procedures, and continuing
education for its professionals in conditions of an ongoing relation-
ship. In doing this, the profession combines value and trust. The
trust in this arrangement is of considerable value, not least because
it creates the conditions for growth in wealth and well-being. The
open questions are: How can the investment industry evolve so that
it shares identifiable and key characteristics in the manner of medi-
cine, law, and accounting? What is the current gap? What benefits
could arise from filling this gap?

Fiduciary Implementation: Master the Meaning
of "Fiduciary” in a Way That Can Be Effectively
Implemented Even with Inherent Conflicts

Fiduciary responsibility in most jurisdictions means putting the inter-
ests of beneficiaries first when determining investment strategy,
limiting conflicts of interest, and investing to the standard of care

of a prudent expert. All investment organizations face the practical
issue of balancing these requirements within the context of their
own viability. CFA Institute will be conducting further engagement

on how organizations should be dealing with fiduciary responsibili-
ties and other issues where legal and regulatory framewaorks are at
potential conflict with the ambiguities and uncertainties endemic to
the investment field.

(0] © 2017 CFA INSTITUTE. ALL RIGHTS RESERVED.

Stronger Standards: Specify and Influence Culture and
Practice with Regard to Values and Costs

CFA Institute successfully introduced standards for presentation of
performance records in the form of the GIPS® standards. There may
be other areas of practice that could benefit from such an approach.
We cite standards for the structure and size of fees and costs as
one possible idea. We also believe that the testing of new types of
investment products could be the subject of standards in ways that
draw on practices in other industries and professions.

Work toward Better Diversity

Diversity is desirable for a combination of cultural and financial
values. Research suggests that diverse teams are better at complex
decision making and that surface-level diversity issues, such as
gender, have a first-level impact, but that cognitive diversity is more
deeply impactful. CFA Institute is developing a mix of research, advo-
cacy, and standards to support this developing field.

Leverage the Ecosystem

CFA Institute has more than 146,000 members worldwide, and this
vast group is sometimes tapped to achieve a global view on a wide
spectrum of issues. We are struck by the potential of networks
empowered by new technologies to focus political and social capital
in particular areas. Our membership can speak more powerfully for
society's benefit through such a mechanism, particularly if it speaks
with one bold voice.

A WAY FORWARD

We have put forward a number of steps and ideas by which the invest-
ment industry can realize its fullest potential, and we now encourage
our members and industry leaders to act to make this a reality.

CFA Institute is committed to further consultation with leading
industry figures on the following:

e Creating aroad map for moving our industry to higher standards
of professionalism, with its implications for fiduciary responsibility
and for attaining the status of a profession

e How we can work together on the most pressing industry
issues, particularly business models that capture purpose, trust,
and value; cultural values that are inclusive; and technological
competencies that streamline our industry

® How the CFA Program can maintain its edge in fast-moving
industry conditions

The future is a choice to

be taken by you applying
foresight and coherent
actions...not an outcome given
to you reflecting uncertainty
and compelled reactions

EXECUTIVE SUMMARY

About the Report

In 2016, CFA Institute commissioned the Institutional
Investor Thought Leadership Studio to survey members
of the investment management profession for an over-
view of the current and future state of the profession.

A guestionnaire was distributed to two lists, one drawn
from Institutional Investor's database, the other from
CFA Institute. There were 1,145 responses (644 from CFA
Institute) collected from 8-22 December 2016, with a
margin of error of 2.9%. In addition, Institutional Investor
conducted interviews with 19 executives in the invest-
ment management profession to obtain context and
further details about the collected data.

Authors: Contributors:

Rebecca Fender, CFA Giuseppe Ballocchi, CFA

Robert Stammers, CFA Richard Brandweiner, CFA

Roger Urwin, FSIP Anne Cabot-Alletzhauser

Jason Voss, CFA Margaret Franklin, CFA
Lutfey Siddiqgi, CFA

Steering Committee: Gary Baker, CFA, John Bowman,
CFA, Michael Collins, Bjorn Forfang, Stephen Horan, CFA,
Nick Pollard, Nitin Mehta, CFA, Kurt Schacht, CFA,

Paul Smith, CFA

Additional thanks go to Bristol Voss, Nicole Lee, Tara
Smith, and Melissa Carroll of CFA Institute, and Sam Knox
of Institutional Investor Thought Leadership Studio, as
well as the many industry leaders who participated in
the research.

CALL-TO-ACTION FOR THE INDUSTRY

Start with Build the Plan for Produce Make Trust
Purpose Talent) Disruption the Value Happen
Enlightened Values Foresee the Outcomes versus The biggest
self-interest critical scenarios expectations edge of all

WWW.CFAINSTITUTE.ORG/FUTURESTATE 1

CFA Institute

CFA Institute is the global association of investment professionals
that sets the standard for professional excellence and credentials.

The organization is a champion for ethical behavior in investment
markets and a respected source of knowledge in the global
financial community. The end goal: to create an environment where
investors' interests come first, markets function at their best, and
economies grow.

CFA Institute has more than 146,000 members in 160 countries
and territories, including 140,000 CFA charterholders and
147 member societies.

The CFA Institute Future of Finance initiative is a long-term,
global effort to shape a trustworthy, forward-thinking investment
profession that better serves society.

For more information, visit www.cfainstitute.org/futurefinance or
contact us at FutureFinance@®cfainstitute.org to offer your ideas

about how to shape the industry for the future. We encourage you
to cite this report using the link www.cfainstitute.org/futurestate

Institutional Investor

Institutional Investor is among the world's leading investment
information brands. Its highly regarded content reaches the

world's most influential investors across an array of media platforms,
conferences, capital markets databases and emerging markets
information services. Institutional Investor's Thought Leadership
Studio works closely with its clients to execute independent primary
research, and to create relevant content to amplify the findings.

\"g'/« CFA Institute

~

Ay,

www.cfainstitute.org

The Journal of Trading 2013.8.3:68-95. Downloaded from www.iijournals.com by larry liu on 09/29/14.
Itisillegal to make unauthorized copies of thisarticle, forward to an unauthorized user or to post electronically without Publisher permission.

HucH L.
CHRISTENSEN

is a researcher in the Engi-
neering Department at the
University of Cambridge
in Cambridge, UK.
hle54@cam.ac.uk

ROBERT WOODMANSEY
is the chief executive

of Onix Solutions in
London, UK.
robert.woodmansey @onixs.biz

68 PREDICTION OF HIDDEN LIQUIDITY IN THE LIMIT ORDER BOoOK OF GLOBEX FUTURES

Prediction of Hidden Liquidity
in the Limit Order Book
of GLOBEX Futures

HUGH L. CHRISTENSEN AND ROBERT WOODMANSEY

odern securities exchanges

have the concept of the open

limit order book (LOB), where

any market participant can see
all the orders in the market. Hidden orders are a
variation on this theme, where certain orders
are not visible in the LOB. The LOB can
be considered a store of participants’ future
intentions. The ability to hide information in
this store is detrimental to traders, who use
that information to decide upon their future
actions. In contrast, the owner of the hidden
information benefits by removing the infor-
mational disadvantage associated with having
their intentions publicly known and avoiding
being exploited by subsequent participants
with more timely information.

Hidden volumes in the LOB are
of great interest to both liquidity providers
(market makers) and liguidity takers. Liquidity
providers can use knowledge of hidden vol-
umes both to generate alpha and manage
risk. In terms of risk management, hidden
orders can result in a liquidity provider’s
limit order being “picked off” when the
liquidity provider did not intend to execute
that volume or was unaware of some new
information that had come to the market.
If the liquidity provider knew of the hidden
order, he or she might choose to withdraw
his or her volume from the LOB. A liquidity
provider’s alpha generation can benefit from

knowledge of a hidden order in the LOB,
either directly or indirectly. First, there are
a number of strategies for directly exploiting
the hidden volume: for example, “front run-
ning,”
berg order. An iceberg order is a limit order
where only a fraction of the total order size
is shown in the LOB at any one time (the
peak), with the remainder of volume hidden.
If the iceberg is an order to sell, the strategy

a type of hidden order called an ice-

is to short the market to the estimated size
of the iceberg, causing the price to decrease.
When the volume of the iceberg has been
hit and the price has decreased, the position
is closed at a profit (Durbin [2010]). Second,
and indirectly, some alpha generation strate-
gies use the information content of the LOB
to forecast future returns, and hidden orders
lead to a false picture of the LOB, giving an
erroneous prediction of future returns (Cont
et al. [2010]). Liquidity takers are interested
in using hidden orders to reduce their expo-
sure risk by minimizing the announcement of
their intention to trade, thus decreasing their
market impact. In this way, informed traders
can conceal the fact that they know usetul
information from the rest of the market (De
Winne and D’hondt [2007]).

The motivation behind this article is
to present an online algorithm that can be
used to detect iceberg orders for the major
derivatives exchanges. The emphasis of the

SUMMER 2013

The Journal of Trading 2013.8.3:68-95. Downloaded from www.iijournals.com by larry liu on 09/29/14.
Itisillegal to make unauthorized copies of thisarticle, forward to an unauthorized user or to post electronically without Publisher permission.

article is on the applicability of the research for use both
in academia and in industry.

This article i1s structured as follows: First, we
introduce the market participants to clarifty why hidden
volume is of relevance. In the next section, an overview
of the exchanges is given and the data used in the paper
presented. We then review the LOB, the different sorts
of hidden volume are introduced, and we carry out a
literature review on detecting icebergs. For the article’s
main contribution, we present an algorithm for detecting
iceberg-hidden volume on GLOBEX and outline a low-
latency computational implementation of the algorithm.
The performance of the algorithm on LOB data is then
simulated and results presented. Next, examples of how
the algorithm can be used by the investment community
are given. Finally, we draw conclusions and make sug-
gestions for further work.

MARKET PARTICIPANTS

The application of quantitative approaches to
trading is now a well-established field; however, the
majority of participants do not have the ability to apply
quantitative methods at a micro-structure level. This is
still limited to a small subgroup of ultra-high-frequency
traders. In the futures market, this subgroup is made up
of the Principal Traders Group." Unlike many quanti-
tative hedge funds, this group is largely self-financed,
and as such has a different outlook on risks and regula-
tions. The main aim of this group is to participate in
“low-risk” trading, which is limited to market-making
and arbitrage activities. Given that these activities
take place at very high frequency and result in short
holding periods, the participants are required to trade
very large volumes to generate their required returns.
One such company, RSJ,”> makes public its trading vol-
umes for EUREX, CME GLOBEX,

that 10 high-frequency firms alone are responsible for
16% of the exchange’s volume (Cave [2011]). Given the
dependence of these firms on executing large volumes,
detecting hidden volume is of particular economic rel-
evance, as this is volume which could potentially be
traded against, leading to increased profits.

DERIVATIVES EXCHANGES AND DATA

Algorithmic traders tend to be interested only in
the most liquid, vanilla securities. To this end, we begin
by considering the four leading Western derivatives
exchanges by volume traded: CME GLOBEX, ICE,
EUREX, and NYSE Liffe. These exchanges trade two
main products: futures and options. While the volumes
are similar in both products, there are higher quoting
rates and fewer trades in options relative to the futures
(Bank for International Settlement [2010]). The mech-
anisms by which electronic trading platforms operate
tend to vary widely between exchanges, and we sum-
marize the relevant points from these four exchanges in
Exhibit 1. Due to their dominant market position, we
proceed considering just CME GLOBEX, while noting
that the contents of this article are relevant to the other
exchanges with hidden volume. Descriptive statistics
associated with GLOBEX and high-frequency trading
are shown in Exhibit 2.

In the case of GLOBEX, options do not support
implied pricing or, in some cases, iceberg orders,” and
for this reason this article looks only at futures. Specifi-
cally, we consider the e-mini S&P 500 (ES) future for
the 258 trading days of 2011. We use the CME datamine
product, which is a recording of the real-time GLink ses-
sion, 1s fully public, and can be accessed via the exchange
(Chicago Mercantile Exchange [2012]). Unlike on
many other exchanges, platforms, and dark pools, data

and NYSE Liffe derivatives exchanges,
stating that their total monthly trading
volume “exceeds 20 million lots.” The
data equate to 1.1%, 3.8%, and 4.7%,

ExHIBIT 1
Derivatives Exchanges

respectively, as a percentage of the |

[EUREX | CME | ICE | NYSE Liffe |

total electronic volume traded on these

exchanges in 2010 and 2011. These per-
centages are similar to figures released
by the Scandinavian equities exchange,

Iceberg orders
Implied orders
Second-generation implieds
All implieds broadcast

RENENEN
RENENEN

Cx A%

x NN %

NASDAQ OMX, in 2011, which show

SUMMER 2013

THE JOURNAL OF TRADING 69

The Journal of Trading 2013.8.3:68-95. Downloaded from www.iijournals.com by larry liu on 09/29/14.
Itisillegal to make unauthorized copies of thisarticle, forward to an unauthorized user or to post electronically without Publisher permission.

EXHIBIT 2

CME GLOBEX Total Order Volume and Average Round Trip Time (RTT)

RTT is measured from the time the ilink gateway begins to process a message, processing by the match engine and subsequent outbound

acknowledgement by the ilink gateway. Futures RTT and market data latency can be seen to be decreasing while total order volume is

increasing.

CME GLOBEX: Total Order Volume and Average Round Trip Time

~
[
T

Orders and Quotes (in billions)

Time

- Total Order Entry
Futures RTT
s Market Data Latency

access at CME is transparent and no parties have access
to any special data that is restricted in any way, nor
can “extra information” be purchased or subscribed to.
Historical data were pre-processed from their raw FIX
FAST structure into a structure suitable for analysis in
MATLAB. This structure is shown in Exhibit 3 and
constitutes one row in an ASCII file. For each day, for
each futures contract, the data is parsed into a separate
ASCII file. The final class of data used in this article is
static data, which comprise system parameters that vary
on a future-by-future or contract-by-contract basis, such
as tick-size, implied quoting functionality, number of
price levels in the LOB, and so on. (Chicago Mercantile
Exchange [2013b]).

70 PREDICTION OF HIDDEN LIQUIDITY IN THE LIMIT ORDER BOoOK OF GLOBEX FUTURES

LOB Rebuild

Rebuilding the LOB is the process of taking the
broadcast data and regenerating the multi-dimensional
LOB. Fields 1-9 of Exhibit 3 are required for the basic
rebuild of the LOB, and fields 7 and 10-15 are required
to carry out trade matching. For GLOBEX, the LOB
is reset weekly with the last data sent on Friday and the
LOB being blank at Sunday start-up.

The deterministic rebuild process for GLOBEX is
shown in Algorithm 1, as per Christensen et al. [2013].
The three dimensions of the LOB are side S (bid/ask),
class (price/size/number of orders) and M price levels,
such that m =1, ..., M. dVVis a vector size 1 X T of the

SUMMER 2013

The Journal of Trading 2013.8.3:68-95. Downloaded from www.iijournals.com by larry liu on 09/29/14.
Itisillegal to make unauthorized copies of thisarticle, forward to an unauthorized user or to post electronically without Publisher permission.

EXHIBIT 3

GLOBEX Data Structure
| # | FIX Tag l Name Example Values Description
1 1023 MDPriceLevel 1,2,...,10 Price level of the LOB
2 52 SendingTime HH:MM:SS .FFF Time of message transmission in UTC
3 269 & 270 BidPrice 1342.75 Bid price
4 | 269 &271 BidSize 1 Bid size
5 269 & 270 AskPrice 1343.25 Ask price
6 | 269 & 271 AskSize 9 Ask size
7 279 MDUpdateAction 0,1,2 Type of market data update action. O=new, 1=change, 2=delete.
8 346 NumberOfOrders 500 Number of orders in the LOB at that price level. Supported for explicit orders only.
9 276 QuoteCondition K K=implied, absent=explicit.
10 | 269 & 270 TradePrice 1343.00 Trade price
11 | 269 & 271 TradeSize 3 Trade size
12 277 TradeCondition E,1 E=opening trade, 1=trade causes no price or volume change in the LOB. Broadcast price and
volume are meaningless.
13 5797 AggressorSide 1,2 Indicates which side is aggressor of the trade. 1=buy (trade volume comes out of the ask side of
the LOB), 2=sell (trade volume comes out of the bid side of the LOB), absent=no aggressor (as
per pre-open). Not sent in an implied spread or outright trade message.
14 336 TradingSessionld 0,1,2 Market state identifier. O=pre-opening, 1=opening, 2=continuous trading.
15 5799 MatchEventIndicator| {SP H1-F1;H1;F1} The legs of a strategy trade. Partially parsed from the FIX message structure.

changes in volume at each time step. d” < 0 relates to
either trades, size-reducing order modifications, or order
cancellations.

THE STRUCTURE OF THE GLOBEX LIMIT
ORDER BOOK

On GLOBEX, two types of futures contract exist,
each with their own LOB: single-leg (outright con-
tracts) and multi-leg (strategy contracts). An example of
a double-leg intra-product contract is a calendar spread.
Additionally, on GLOBEX, two types of order exist:
explicit orders and implied orders. Explicit orders are
orders entered into the LOB by market participants.
Implied orders are orders entered into the LOB by the
trading system itself as a result of no-arbitrage arguments
between single-leg contracts and multi-leg contracts.
Implied orders exist to increase the market’s liquidity
and shift the high liquidity found at the front of the for-
ward curve back down toward the less liquid contracts
(Overdahl [2011], Blank [2007]). As implied pricing
depends on an active futures curve, implied functionality
is present on a futures-specific basis (CME [2013a]). For
example, there is no implied functionality in the equity
index or FX sectors, but there is in the interest rates and
agricultural sectors.

The LOB on GLOBEX is a combination of two “sub-
books”—an explicit order book and an implied order
book. The implied book is limited to being up to two
levels deep, while the explicit book is limited to being

SUMMER 2013

up to 10 levels deep, both on a security-specific basis. In
the broadcast exchange data feed, implied and explicit
orders can be distinguished. The process by which the
two sub-books are combined is based on the premise
that the explicit sub-book has higher priority than the
implied sub-book. In the case of ES, there is no implied
pricing, so the LOB is equal to the explicit sub-book.

The process by which the LOB is constructed has
consequences for later analysis of the LOB. The simplest
approach to rebuilding the LOB is a purely deterministic
implementation of exchange rules. On GLOBEX, this
rebuild approach results in volumes being aggregated at
each price level, or the L2H model. Another possible
approach to rebuilding is a probabilistic approach whereby
the unaggregated volumes are inferred, or the L3 model
(Christensen et al. [2013]). By unaggregating volumes,
an extra dimension is introduced into the LOB, giving
side, class, price level, and size level. The ability to see
the detail of individual orders is especially beneficial to
market makers. For example, volume allocation from
pro-rata match engines is conditional on the relative sizes
of the individual orders at a price level, so a liquidity
provider can maximize an allocation by knowing the
L3 structure (Janecek and Kabrhel [2007]). The hidden
volume considered in this article can be thought of as
occupying a new dimension, a hidden level, or the L2ZH
model. L2H shows the hidden volume at the price level
and the aggregated visible volume, with the exception of
the peak of the hidden volume, which is unaggregated
and visible.

THE JOURNAL OF TRADING 71

The Journal of Trading 2013.8.3:68-95. Downloaded from www.iijournals.com by larry liu on 09/29/14.
Itisillegal to make unauthorized copies of thisarticle, forward to an unauthorized user or to post electronically without Publisher permission.

Alg.1 GLOBEX LOB Rebuild

[LOB, dV] = Rebuild(FIX)

1: LOB(side, class, priceLevel) < 0 {Initialize the empty
LOB}

2: dV < 0 {Initialize the vector. dV =dW,,...,dVp}

3: fort=1:T do

4: {Only process orders, not trades}

Algorithm.

5. if order then
6: {Extract price, volume, side, price level and number
of orders}
7 [P,V,5,m,n] = FIX,
8: if (MDUpdateAction == 0) then
9: Insert a new price level
10: avy =V
11: fori=m: M —1do
12: {Shift existing levels down by 1}
13: LOB(S,1,i+1) = LOB(S, 1,1)
14; LOB(S,2,i+1) = LOB(S, 2,1)
15: LOB(S,3,i+1) = LOB(S, 3,1)
16: end for
17: LOB(S,1,m) =P {Assign price}
18: LOB(S,2,m)=V {Assign size}
19: LOB(S,3,m) =n {Assign nu. of orders}
20: else if (MDUpdateAction == 1) then
21: Change an existing price level
22: dV; =V — LOB(S,2,m)
23: LOB(S,1,m) =P {Assign price}
24: LOB(S,2,m) =V {Assign size}
25: LOB(S,3,m) =n {Assign nu. of orders}
26: else if (MDUpdateAction == 2) then
27: Delete an existing price level
28: dVy = -V
29: fori=m: M —1do
30: {Shift existing levels up by 1}
31: LOB(S,1,i) = LOB(S,1,i+1)
32: LOB(S,2,i) = LOB(S,2,i+1)
33: LOB(S,3,i) = LOB(S,3,i+1)
34: end for
35: LOB(S,1, M) = 0 {Nullify last price level}
36: LOB(S,2,M) =0
37: LOB(S,3,M) =0
38: end if
39: end if
40: end for

These three representations of the same LOB are
shown in Exhibit 4. The L2 view shows the aggregated
volume at the price level, as broadcast by GLOBEX. The
L3 view shows the inferred unaggregated volume at the
price level. The L2H view shows the aggregated volume
with an iceberg order present. In this example, the peak
of the iceberg is equal to 25. In all three views the vis-

72 PREDICTION OF HIDDEN LIQUIDITY IN THE LIMIT ORDER BOOK OF GLOBEX FUTURES

ible volume 1s equal to 50 lots. In the L2 and L3 views
the realizable volume is equal to 50 lots, however in the
L2H view the realizable volume is equal to 175 lots due
to the presence of the hidden volume (one visible peak
at 25 lots and six hidden peaks at 25 lots). The order at
bottom of the bar with S =25 has time-priority, however
in the L2H case, all subsequent tranches of the iceberg
order have time priority over the S=15 order.

HIDDEN LIQUIDITY

There are three reasons why the LOB may not
display the “true” liquidity state of the market: iceberg
orders, unbroadcast orders, and phantom orders. All these
order types cause the realizable volume of the LOB to
differ from the displayed volume.

Iceberg Orders

Iceberg orders are an order type supported by
GLOBEX. An iceberg order is a special type of limit
order, where in addition to a price, side, and size, the
user is required to specify a max show value. Max show
is the upper size limit of the fraction of the total order
size that is shown to the market, while the remainder of
the order volume remains hidden. When the displayed
quantity has been filled, another portion less than or equal
fo the displaced quantity is then displayed, with the time
priority of the initial peak and the remaining hidden
volume reduced by the peak size. This is notably dif-
ferent from a trader constructing his or her own iceberg
order system, as a sequential series of limit orders would
not have the time priority of the first order. Hence ice-
berg orders are particularly important for latency, sen-
sitive markets where there is a time component to the
matching algorithm, such as the equity index and FX
sectors (Chicago Mercantile Exchange [2013b]).

Iceberg orders are a way of limiting information
flow, their prime reason for existing being to facilitate
large trade execution. This is done by preventing market
makers from noticing the large incoming order and
changing the price in anticipation of it, thereby reducing
the market impact of the trade. However, iceberg orders
are controversial. They diminish the benefits of trans-
parent, order-driven markets, including price efficiency,
low costs of market monitoring, and less information
asymmetries (Madhavan [2000]). If the iceberg allows a
trader to avoid the informational disadvantage associated

SUMMER 2013

The Journal of Trading 2013.8.3:68-95. Downloaded from www.iijournals.com by larry liu on 09/29/14.
Itisillegal to make unauthorized copies of thisarticle, forward to an unauthorized user or to post electronically without Publisher permission.

EXHIBIT 4

Three Views of the LOB, Each Showing One Price Level

In all three views, the visible volume is equal to 50 lots. In the L2H view the Realizable volume is equal to 175 lots.

y L2 View L3 View L2H View
@\
o
D & 10
g &
.57) S=15 S=25
S =50
25 S=25

with limit orders over market orders, why are icebergs
not always used? The answer might be that liquidity
suppliers sometimes wish to influence the LOB in some
way to their advantage. Approaches such as destabilizing
the LOB, “moving the market,” and phantom orders are
legal gray areas.

GLOBEX refuses to quantify any statistics relating
to iceberg orders, but has said they are “popular” and
that due to icebergs, the “true liquidity in CME Group
markets is generally much superior to displayed liquidity”
CME [2011].

Unbroadcast Orders

Some types of implied orders are eligible to be
filled but are not broadcast in the market data feed CME
[2013b]. This is significant because it means that there
is liquidity in the LOB which cannot be seen, meaning
there is the potential for a fill at a price level in the
LOB where no order was seen to sit. These unbroadcast
orders occur only in the contracts with implied pricing
and then only in the first two price levels of the LOB.
While the implied book is just two levels deep, it has the
potential to have a far greater update rate.

Phantom Orders

A phantom order is one to which a trader is not
committed or indeed which a trader does not intend ever
to execute (Burghardt et al. [2006]). Phantom orders are
generally considered bad for the market, as they give the

SUMMER 2013

impression of more liquidity than there actually is. These
orders can be hit only by being able to act faster than
the trader who placed them, and so are termed “negative
liquidity.” Phantom orders are characterized by rapid-
fire submission followed by cancellation, with quoting
rates of up to 20KHz being observed in highly illiquid
securities (Hunsader [2010]). Borkovec defines phantom
volume as limit orders added and canceled from the
LOB in a period of less than two seconds and finds that
this is 10% of all orders for equities data from NYSE
ARCA in 2005 Borkovec et al. [2012]. GLOBEX limits
this behavior by regulating the message-to-volume
ratio submitted by a particular trader, where a message
includes an order, modification, or cancel. This ratio
ranges from 4 (for ES) to 60 (for less liquid futures).
The messaging policy is an aggregated average over a
24-hour window, and if a trader exceeds the ratio, he
or she is fined (Chicago Mercantile Exchange [2013b]).
The reasons for submitting phantom orders are unclear
but may include manipulating/destabilizing the LOB or
detecting hidden liquidity.

Summary of Hidden Volumes

Phantom orders are not truly realizable volume and
so are not considered further. Realizable hidden volume
on GLOBEX futures takes two forms—iceberg orders
and unbroadcast orders. In order to detect all the hidden
volume in the LOB of GLOBEX futures, the approach
outlined in Exhibit 5 can be applied. As the LOB is built
by combining the sub-books of implied and explicit

THE JOURNAL OF TRADING 73

The Journal of Trading 2013.8.3:68-95. Downloaded from www.iijournals.com by larry liu on 09/29/14.
Itisillegal to make unauthorized copies of thisarticle, forward to an unauthorized user or to post electronically without Publisher permission.

EXHIBIT 5

Schematic of Prediction Algorithms for GLOBEX
Hidden Volume

Conditional on implied pricing, iceberg and unbroadcast algorithms
are run independently or in parallel.

©Overview of Hidden Liquidity Detection Algorithms in GLOBEX Futures

GLOBEX
No Implied Pricing Data Feed Implied Pricing
(e.g. Interest rates, agriculturals)

(e FX cquity index) I\
Explicit sub-book I Explicit sub-book | | Implied sub-book |

Iceberg Inference
Algorithm

!

L2H View of the LOB

||||I | || ||||

Iceberg Inference Unbroadcast
Algorithm Inference Algorithm

L@J

L2H View of the LOB

orders, the iceberg algorithm can be applied to the explicit
sub-book to detect all the hidden liquidity present in
futures which do not support implied orders. For futures
which do support implied pricing, the iceberg algorithm
needs to be run in parallel with an unbroadcast algorithm,
which detects the hidden volume in the implied book. In
this article we just consider the hidden volume resulting
from iceberg orders and plan to publish research on the
unbroadcast hidden volume in a subsequent article.

LITERATURE REVIEW OF ICEBERG
DETECTION

An extensive literature on detection of iceberg
orders exists, which falls into the three categories of
active algorithms, model-based algorithms, and frequen-
tist algorithms. These categories of detection algorithm
are now reviewed.

Active Algorithms

An active algorithm seeks to detect iceberg orders
by “pinging” the LOB with orders that the participant
never intends to be filled. In Hasbrouck and Saar [2001]
the authors note that hidden orders constitute 3% of
all submitted limit orders but account for 12% of all
executions, while more than 25% of all limit orders sub-

74 PREDICTION OF HIDDEN LIQUIDITY IN THE LIMIT ORDER BOOK OF GLOBEX FUTURES

mitted are canceled within two seconds of submission.
They propose that these fleeting orders are likely used
by aggressive traders searching for hidden orders. For
example, a buyer might submit an order priced just short
of the ask quote, hoping to trade against any hidden sell
orders. In this view, a fleeting limit order represents a
liquidity demander, rather than a supplier.

Durbin [2010] suggests detecting icebergs by use
of fill or kill (FOK) limit orders. On GLOBEX, FOK
are canceled if not immediately filled for the specified
minimum quantity at the specified price or better. By
submitting small FOK orders over a range of prices, the
presence of hidden orders can be detected by whether
the order is filled or not.

Model-Based Algorithms

Both De Winne and D’hondt [2007] and Bessem-
binder et al. [2009] use regression models on 20022003
Euronext equities data. This data set allows hidden depth
to be directly observed. De Winne finds that more than
45% of the depth at the top five levels of the LOB is
hidden and that iceberg order size is six times greater
than a normal order. Bessembinder finds that 18% of
incoming orders include some hidden size, 44% of order
volume is hidden, and hidden orders are more common
in illiquid issues and for large trade sizes and when order
arrival rates are low.

Hautsch and Huang [2009] build a Bayesian model
with a Bernoulli likelihood function using logit multiple
regression, where the probability of an order being exe-
cuted with hidden liquidity can be predicted by eight
predictors, including distance from the mid price, the size
of the spread, and the lagged return.

Avellaneda et al. [2011] try to match the empirically
observed LOB mechanics by including an implied hidden
volume term in a stochastic diffusion model. The approach
allows the implied hidden liquidity of different securities
to be compared. For four securities on three exchanges,
the results show differences of more than 220%.

Esser and Monch [2007] consider the case for
exchanges where the iceberg peak loses time priority
after each execution and generate a stochastic model for
the optimal peak size of an iceberg order. The authors
model price by a jump-diffusion process, and when the
diffusion process hits an iceberg order, a jump in price
occurs, leading to a probabilistic model for the peak size.
They conclude that 8% of the LOB volume is hidden.

SUMMER 2013

The Journal of Trading 2013.8.3:68-95. Downloaded from www.iijournals.com by larry liu on 09/29/14.
Itisillegal to make unauthorized copies of thisarticle, forward to an unauthorized user or to post electronically without Publisher permission.

Fleming and Mizrach [2009] consider U.S. Trea-
sury data from the inter-dealer platform BrokerTec, using
amodel for the LOB which incorporates hidden volume
Moinas [2006]. The authors observe that the percentage
of executed hidden volume is low, at 2%, and that this
low figure masks the fact that there is usually no hidden
depth, but when there is hidden depth, it is substan-
tial. The authors also observe that the pattern of hidden
depth differs from that of visible depth, having the largest
volume at the first price level for most maturities, while
the visible volume is greatest a few levels out.

Frequentist Algorithms

In Burghardt et al. [2006], the authors consider the
concept of “sweep to fill,” whereby a large trader clears out
all volume from the LOB. The authors compare the sweep
to fill average price with the observed VWAP market
impact and note that the impact of VWAP tends to be
smaller than sweep to fill measures would suggest, meaning
that the LOB must be more liquid than it seems, with
impact factors differing between 4% and 10%, depending
on the order size. The authors postulate that this extra
liquidity exists in the form of iceberg orders in the LOB.

Borkovec [2012] takes an approach that is based on
estimating the true liquidity environment by generating
joint probability distributions of intraday volume pro-
files and various predictors (for example, spread, vola-
tility, and depth). Hidden volumes are found by trying
to match trades to quotes. Hidden orders are found to
be 53% larger than the visible orders.

Frey and Sandas [2009] develop an empirical fre-
quentist approach for detecting hidden volume using
LOB data, which relies on the fact that the peak size
is constant and that the time stamp for resupply is the
same as the time stamp for the executed volume. On
XETRA, time priority is lost between successive peaks,
so each peak goes to the back of the queue. The authors
apply their approach to XETR A, DAX 30 equities data
from 2004 and find that iceberg orders make up 9%
of all orders and 16% of all executed volume, and that
the average number of tranches is five. In terms of size,
iceberg orders are on average 12 to 20 times larger than
visible limit orders and have a peak size that is 2.5 times
larger than visible limit orders.

Summary of Literature Review

From the literature review, we find a lack of algo-
rithms which could be applied online for hidden volume
prediction on GLOBEX. The literature review is sum-
marized in Exhibit 6.

PREDICTING ICEBERGS ON GLOBEX

In this section we present our model for detecting
and predicting iceberg orders on GLOBEX. In sum-
mary, initially an iceberg order is indistinguishable from
a limit order, with the same price and size. But over time,
the execution of displayed peaks and subsequent display
of new peaks allow market participants to learn about its
existence and predict its size with increasing accuracy.

EXHIBIT 6
Literature Review on Modeling Iceberg Orders

Volume
Reference Exchange/ Platform Data Period Hidden (%)
Burghardt et al.[2006] GLOBEX ES future Jan—Apr 2006 4-10

Avellaneda et al.[2011] NASDAQ, NYSE, BATS 4 ETF’s/equities Jan 2010 Relative
Bessembinder et al.[2009] Euronext Paris 100 equities Apr 2003 44
Esser and Monch [2007] XETRA 1 equity Jan—Mar 2002 8
Moro et al. [2009] Vaglica et al.[2008] SETS, SIBE 97 equities Jan 2001-Dec 2004 52
Tuttle [2005] NASDAQ 97 equities 4 weeks 2001, 2002 25
De Winne and D’hondt [2007] Euronext Paris CAC 40, equities Oct-Dec 2002 45
Borkovec et al.[2012] NYSE ARCA 329 equities Jun-Aug 2005 3
Frey and Sandas [2009] XETRA DAX 30, equities Jan-Mar 2004 16
Fleming and Mizrach [2009] ICAP BrokerTec US Treasuries Jan 2001-Feb 2006 2
Hasbrouck and Saar [2001] Island ECN 300 equities Oct—Dec 1999 12
Hautsch and Huang [2009] NASDAQ 7 equities Jan 2009 14
Yao [2012] NASDAQ 2,390 equities Jan 2010-Nov 2011 16

SUMMER 2013

THE JOURNAL OF TRADING 75

The Journal of Trading 2013.8.3:68-95. Downloaded from www.iijournals.com by larry liu on 09/29/14.
Itisillegal to make unauthorized copies of thisarticle, forward to an unauthorized user or to post electronically without Publisher permission.

Iceberg Mechanics on GLOBEX

The mechanics of how GLOBEX icebergs operate
are now presented. On GLOBEX, when a trader enters
an iceberg order, he or she is required to specify side S,
limit price P, the total order size V] and max show ¥
(a fraction of the total size).* A limit price means that the
order must be filled at a price at least as good as the speci-
fied price. In the data feed, this means that an aggressor
order that fills a resting limit order need not show a trade
price equal to the resting limit order price. Depending
on the side of the LOB, there will be a greater (less) than
or equal to condition % When IVis exactly divisible by
¥, the size of the iceberg peak Y is equal to the max
show size. When Iis not exactly divisible by ‘¥, the final
tranche is equal to the remainder. When the iceberg
order enters the LOB, it displays only a portion of the
order to the marketplace (the peak), while the rest of the
iceberg remains hidden. When the displayed quantity
has been filled, another peak is then displayed, with the
time priority of the initial peak and the remaining hidden
volume reduced by the peak size. While GLOBEX retains
time priority between successive peaks, this is not the
case for all exchanges; for example, XETR A loses time
priority between peaks. Due to this conservation of time
priority, icebergs are most popular on markets that have
a time component in their match algorithm (such as the
FIFO algorithm used by ES), as opposed to markets that
do not have a time component (for example, the pro-rata
algorithm used by eurodollar). When pro-rata matching
does occur, the match algorithm considers only W and
not Vin making its allocation. Iceberg order execution
is shown in Algorithm 2.

In the broadcast data feed, there is no simple way
to distinguish an iceberg order from any other order.
The only way to know if an order is part of an iceberg
is if you had placed the order yourself or had access to
private exchange information. However, a key feature
of the data structure allows us to infer the presence of
iceberg orders in the broadcast data feed. This feature is
that LOB update messages are broadcast post trades hap-
pening, albeit with a time lag due to system latency.

The mechanics associated with broadcast messages
at the point of iceberg order execution are at the center
of this article. In the simplest case, when the peak of an
iceberg order is filled by a trade, three messages are seen
in the data feed: first, a trade message, with associated
size; second, an LOB update message, from which the

76 PREDICTION OF HIDDEN LIQUIDITY IN THE LIMIT ORDER BOOK OF GLOBEX FUTURES

Alg. 2 GLOBEX Iceberg Execution Algorithm
1: Inputs(V,¥)
2: N =["/v]
3: forn=1to N do

{Total order size, max show }
{Number of tranches}

4 if (n == N) then

5 =V { Assign the peak size}

6: else

7 =Y

8 end if

9 v, =Y {Place the order into the LOB}
10: whilev, > 0do

11: v, « trade {Match volume from trade(s)}

12 end while

13: V= V — ¢ {Reduce the hidden volume by the
peak}

14: end for

decrease in volume dI” can be inferred; third, an LOB
update message replenishing the peak.

These mechanics are now illustrated with an
example, as shown in Exhibit 7. An iceberg order is
specified with a total size V' = 100 and a max show
W = 9. The first 11 tranches of the iceberg are of size
¥ = 9 and the final tranche is size Y =1, so N = 12
(where Nis the number of tranches). At time step ¢ = 6,
a trade message for S = 8 is seen in the data feed. This
results in two further messages being sent by GLOBEX,
firstly, a LOB update message dI” = —8, and secondly a
peak replenish message dI7 = 9. The first of these mes-
sages is the trade volume being removed from the LOB.
The second of these messages is the next tranche of the
iceberg order being placed into the LOB. It this peak
replenish message time dt after a trade which allows the
iceberg order to be detected. The rules associated with
what messages are broadcast become more complex than
in Exhibit 7 when the trade size is greater than V. In
summary, in the event of a large trade, not all the peak
replenish messages are broadcast. For example, if there
is an iceberg order to buy (V= 100, ¥ = 10) currently
showing y = 10, and there is a sell side aggressor order of
size 30, there will be three trade messages (3 X 10 lots),
but no peak replenish message, because the displayed
peak quantity will remain the same, Yy = 10. In a second
example, if there is an iceberg order to buy (7= 100;
Y = 10) currently showing y = 10, and there is a sell
side aggressor order of size 32, there will be four trade
messages (3 X 10 lots, 1 X 2 lots), and a peak replenish
message of size 8, which is the displayed peak quantity

SUMMER 2013

The Journal of Trading 2013.8.3:68-95. Downloaded from www.iijournals.com by larry liu on 09/29/14.
Itisillegal to make unauthorized copies of thisarticle, forward to an unauthorized user or to post electronically without Publisher permission.

EXHIBIT 7
Schematic of Iceberg Order Mechanics.

A simplified LOB consisting of just one price level is shown progressing through time. At each step a FIX message is applied to the LOB.

The bottom of stack has the highest time priority. Normal limit orders are shown in light greys, iceberg order in dark grey. Square brackets

around V/ mean the value cannot be seen in the broadcast data.

t=0 Order t=1 lceberg t=2 Trade t=3
dv=+0 V=100 s=5 ol
—~ —~~ LP:Q —~ o)
@) n @) @)
~ Empty LOB —> ~~ —> =" —> = _>
() () () [0}
N N N N
2 2 S=10 2 $=10 2 S=5
Price(P) Price(P) Price(P) Price(P)
t=4 _ t=5 t=6 t=7
Cancellation Trade
dv=-5 S=8
@ @ @
0] — o o)
N N N
n n %)
S=5
Price(P) Price(P) Price(P) Price(P)

Yy = 8. These two examples can be explained by the
fact that the GLOBEX incremental LOB management
rules send out update messages only when the external
characteristics of the LOB change. This means that the
presence of iceberg orders can result in the LOB volume
not changing after trades have been executed.’

As for any limit order, iceberg orders can be modi-
fied after submission. If W is modified by being increased
in size after being submitted, then the order currently
shown retains the old max show, and once that has been
filled, thereafter shows the new value, while the time
priority of the iceberg is maintained. However, if the
modification is a decrease in ‘¥, then the iceberg order
loses its time priority.

Trade Size Descriptive Statistics

The variations in the message broadcast rules mean
that our approach needs to be conditional on trade
size. In Exhibit 8, descriptive statistics for trade size in
the front month ES contract for the period January 1,
2011, through December 31, 2011, are presented. For
this period, the mean number of trades per day was

SUMMER 2013

EXHIBIT 8
ES Trade Size Statistics (lots)

Statistic Value Statistic Value
Mean 5 Maximum 1,069
Mode 1 95th Percentile 21
Median 2 97.5th Percentile 34
Minimum 1 99th Percentile 53

0.5 million, while the mean volume per day was 2.2
million lots. Trade size approximately follows an expo-
nential distribution, with most trades being small and
a few being very large. This prior distribution of trade
sizes leads to a way of classifying a trade as “normal” or
“large,” based on the 99th percentile. If an order at time
t — 1 meets the conditions to be a viable iceberg order,
and at time ¢ a large trade occurs, then the large trade
may lead to more complex iceberg mechanics.

Prediction Algorithm Overview

Our algorithm has two phases, a learning phase
and an online inference phase. While the learning phase

THE JOURNAL OF TRADING 77

The Journal of Trading 2013.8.3:68-95. Downloaded from www.iijournals.com by larry liu on 09/29/14.
Itisillegal to make unauthorized copies of thisarticle, forward to an unauthorized user or to post electronically without Publisher permission.

could be online, we set it to be offline for reasons of
simplicity and computational latency.

1. Offline learning. The algorithm carries out a for-
ward pass to identify likely icebergs. The resulting
identified orders are then used to generate the dis-
tributional parameter @. This is done ex post, using
the previous H days of historical data.

2. Online inference. This phase uses the output ©
from the learning phase during a forward pass. The
output I' is an online estimate for the existence of
icebergs.

The forward pass algorithm is so called as it proceeds
forwards in time.

Variables Used in the Algorithm

In this section, the variables used in the algorithm
are defined. The latent variables in the problem are max
show W and total order size 12 The set of K icebergs is

denoted by ® = {®, ..., ®,, ..., ® }, where K is the
total number of iceberg orders seen in one trading day.
®, denotes a single iceberg order such that @, = {9, , ...,
O, - @). IV is the number of tranches within a
single iceberg order. The variables are summarized in
Exhibit 9.

The inference stage outputs the variables shown
in Exhibit 10. The variable I" dynamically updates over
time and can be examined at any point in time to see
the parameters of the estimated icebergs in the LOB. I’
is the final output of the algorithm.

Detection Algorithm

In this section, the logic behind how the algorithm
works is described. The algorithm applies a pattern rec-
ognition approach which seeks out a certain combination
of events that allows an iceberg order to be identified
and tracked, and thus predicted.

The only way an iceberg order can be distinguished
from a normal limit order is when a trade causes the peak

EXHIBIT 9
Learning Phase Variables

| Variable | Description

S
=

Limit price of the iceberg order.

L& RUI W

k The number of iceberg orders seen in one trading day for a given security. k = {1, ..., K}.
Unique identifier for this iceberg order. ®; = {5 PP, a}.

The side of the LOB. Is the iceberg a buy or sell order?

Price level inthe LOB.m=1,..., M.

Is the iceberg currently active or not? O=false, 1=true.
If the iceberg is inactive, was it cancelled or filled? O=cancelled, 1=filled.
Max show. The upper size limit of the iceberg peak.

RSy

D~ I F

=

The n™ tranche of iceberg order ®x. ¢y,
The number of tranches of an iceberg order. n = {1, ..., N}.

Peak size of tranche. The final tranche peak size is a special case and denoted by .
Time of tranche (HH:MM:SS.FFF).t=1,...,T.

Time between the trade and the publication of the refresh message. In milliseconds.
Time between tranches. 6 = ¢ ,(f) — ¢ n—1(2). In milliseconds.

={y,t,1,0}.

ExHIBIT 10
Inference Phase Outputs

| Variable | Description

Vi The estimated total size of the k™ iceberg (in lots).
¥, The set of peak sizes of the k™ iceberg (in lots). ¥ = {z/?l yeesWnsenns &N}.
r The set of the inference phase outputs. I' = {V, ‘i’}.

78 PREDICTION OF HIDDEN LIQUIDITY IN THE LIMIT ORDER BOOK OF GLOBEX FUTURES

SUMMER 2013

The Journal of Trading 2013.8.3:68-95. Downloaded from www.iijournals.com by larry liu on 09/29/14.
Itisillegal to make unauthorized copies of thisarticle, forward to an unauthorized user or to post electronically without Publisher permission.

of an iceberg order to be filled, and then GLOBEX auto-
matically refreshes the peak in the LOB. This automatic
refresh is indistinguishable from a new order submission.
The initial detection signal is defined as an order placed
after a trade that satisfies a list of conditions:

* The order must be submitted within dt of the trade
occurring, due to internal latency of the GLOBEX
system. dt is set equal to 300 milliseconds. If df is
too large, it is likely that non-iceberg orders will
fall inside the window. If too small, iceberg orders
may be missed.

* The trade price must satisty the limit order price.
* The change in order size must be positive (i.e., not
a size reducing modification or a cancellation).

* An implied order can never be an iceberg.

* Asthe trade volume must have been taken from the
first price level m = 1, the order must add volume
back to the first price level.

e The side of the trade must be equal to the side of
the order update. For example, when the aggressor
trade is a buy, the trade volume comes out of the
ask side of the LOB.

The inference is that an order that meets these
criteria might be the peak of an iceberg. This method-
ology cannot detect iceberg orders in the depth levels,
as by definition trades occur only at the first price level
m=1. An exception to this is when an iceberg has been
partially executed and the price moves away, leaving the
iceberg in a depth position in the LOB.

The next step of the algorithm is to check whether
this is the first tranche of a new iceberg, or an additional
tranche of an existing iceberg. This is complicated by the
ability of the refresh message to change in size, condi-
tional on the trade size. Four cases can occur:

o Ifthe trade size is less than ¥, the refresh order size
must be greater than or equal to the trade size.

o Ifthe trade size is equal to ¥, or multiples thereof,
then no refresh order is seen.

* Ifthe trade size is greater than ‘¥, then the refresh
order size is equal to the modulus after division. If
a large trade occurs and the refresh message is the
first peak @, seen for that iceberg, then a special
case occurs. It is assumed that the iceberg order
peak refresh message is not equal to the max show
vy, # ¥, as would be the case for a normal trade

SUMMER 2013

size, as the large trade size will be greater than the
max show. Instead, it is assumed that y, <'¥. This
is incorporated by not setting the max show for the
iceberg equal to the first peak seen.

* The final tranche of the iceberg order is a special
case, as it may be less than or equal to the max
show, yy <W. This occurs when I7is not exactly
divisible by ‘Y.

The binary indicator variable o denotes whether
an iceberg is currently active by tracking the cumulative
volume traded at each specific side/price (i.e. ®,) since
the last tranche was seen. If the cumulative volume at
@ exceeds the max show (plus df to allow for system
latency) and no refresh message has appeared, o0 = 0.
This allows the algorithm to detect multiple iceberg
orders with the same price/side/max show combina-
tions. The approach is made possible by the fact that on
GLOBEX, time priority is retained between tranches. If
the activity test comes back with o = 0, there are three
possibilities:

* The suspected iceberg was not really an iceberg
to begin with (a false positive). This is defined as:
if when o0 = 0, (l)k,ﬂ has n =1, then @, is removed
from @, i.e., if only one tranche of a possible ice-
berg order was seen and then the iceberg was not
seen again, we say it was coincidence that an order
was submitted in time window df that met assorted
criteria. If @ was not deleted from ®, then the
parameter set would be distorted by the presence
of non-iceberg limit orders.

* The iceberg order was canceled. As with any limit
order, cancellation of an iceberg order can occur
at any time before being fully filled. The cancel-
lation message is seen to apply to just the displayed
tranche, |dV| £W; however, it actually applies to the
remaining volume of the iceberg. Search the time
between ¢, and the cumulative volume exceeding
W at the price/side of interest. Set ® = 0.

* The iceberg order was filled in its entirety. If nei-
ther of the other possibilities are true, this is taken
to be the case. Set @ = 1.

Initial detection of an iceberg order occurs by first
looking for an order within a window df and with cer-
tain size constraints. The subsequent tranches are further
constrained by P, S, and ®@; however, there is still the

THE JOURNAL OF TRADING 79

The Journal of Trading 2013.8.3:68-95. Downloaded from www.iijournals.com by larry liu on 09/29/14.
Itisillegal to make unauthorized copies of thisarticle, forward to an unauthorized user or to post electronically without Publisher permission.

possibility that n sequential orders could have been seen
which meet the classification requirements. The prob-
ability that ¢, , is not really an iceberg order is reason-
ably high, while the probability that ¢, , is not really an
iceberg order is lower, and so on. The probability of
sequential false detections is mutually independent. This
compounding of probabilities is shown in Equation (1)

p@,)=1-| T plo,.)

= [1 - ef(BX")], B>0 W

The detection algorithm assumes that for @, once
n > 1, the order is an iceberg. Hence, our criteria of
n > 1 is an approximation. This is shown graphically
in Exhibit 11. Subplot one shows the probability of
detection conditional on the number of tranches seen,
according to Equation (1). Subplot two shows this prob-

ability according to Algorithm 6. Both examples use an
iceberg with ten tranches.

A summary of the forward pass is shown in Algo-
rithm 6. This algorithm is run in offline (learning) and
online (inference) modes. The variable “data” is the
data structure from Exhibit 3, and dV/is the change in
volume output by Algorithm 1. Only for online mode
is ©® required.

We are now at the stage where we have generated
®. In the next two sections, the details of generating ©
from learning and I'" from inference are presented.

Learning Phase: Generating ©

In this section, we describe the process of gener-
ating © from ®. Our main interest in iceberg orders is
being able to predict the existence of hidden volume.
To do this, information on the prior behavior of ice-
berg orders is used. It is hypothesized that participants

ExHIBIT 11

Graphical Representation of the Probability of Detection

p(®,) is the probability that the order @, is an iceberg. p(®,) = 1 [0] means it is [is not] an iceberg.

Probability of Detection: Theoretical

e 05f ;
St :
0® ‘ i i i i i i i i i
0 1 2 3 4 5 6 7 8 9 N
Tranches of the Iceberg Order (n)

Probability of Detection: Implemented
e " . o g ®. o o
@;‘ ...
Y :
i i i i i i i i
3 4 5 6 7 8 9 N

Tranches of the Iceberg Order (n)

80 PREDICTION OF HIDDEN LIQUIDITY IN THE LIMIT ORDER BOOK OF GLOBEX FUTURES

SUMMER 2013

The Journal of Trading 2013.8.3:68-95. Downloaded from www.iijournals.com by larry liu on 09/29/14.
Itisillegal to make unauthorized copies of thisarticle, forward to an unauthorized user or to post electronically without Publisher permission.

who submit icebergs do not do so randomly, but display
repetitive behavior when they submit these orders, par-
ticularly in terms of the ratio V’/'¥. The learning phase
captures these statistically significant relationships from
historical data, allowing prediction of the remaining
iceberg order once it has been detected.

In order to carry out learning, we have to solve
a multidimensional mass estimation problem (Hastie et al.
[2001]). In our problem, the dimensions are max show
Y and total order size V. As both 77 and ¥ are dis-
crete integers (as the minimum size that can be traded
is one lot), we are interested in finding the bivariate
probability mass function. A probability mass function is
a function that describes a discrete probability distribu-
tion. Estimating probability mass functions with dis-
crete variables can be straightforward. As there is only
a finite number of values, the simple relative frequency
of occurrence can be found. For the case of a bivariate
joint distribution, a separate density could be found for
each value of the first variable, while holding the second
variable constant. However, this approach is practically
awkward if the number of levels for the discrete variable
is large compared to the number of samples. Moreover,
the joint distribution problem has us estimating com-
pletely separate distributions for the second variable for
every value of the first variable, without any sharing
of information between them. A better solution is to
smooth those distributions toward each other, allowing
for interpolation over sparse (missing) data, while taking
into account any nearby observations, or lack of them.
Many methodologies exist that allow for density esti-
mation including splines, wavelets, Fourier series, and
parametric approaches. We opt to use nonparametric
kernel estimation Scott [1992]. While kernels for dis-
crete variables do exist, for example Aitchison and
Aitken [1976]; Rajagopalan and Lall [1995], we use the
Gaussian kernel on the basis of simplicity, and then, at the
point of sampling the distribution, round the output to
the nearest integer Haddad and Akansu [1991]. Carrying
out this estimation on a large data set is computationally
demanding, though as this is done off-line it does not
affect trading.

Learning is carried out before the start of each
trading day, using the previous H days worth of data,
excluding any icebergs @, that were not filled ® = 0.
The learning phase is summarized in Algorithm 3.
Bivariate Gaussian kernel density estimation is shown
in Algorithm 4, where n is the number of observations

SUMMER 2013

Alg. 3 Iceberg Off-line Learning Algorithm.
® = offline_learning(®)

1: [V, ¥] « O {Initialize empty vector}

2. forh=1:Hdo

3 Consider iceberg orders from past H days
4. fork=1:Kdo

5: Consider the K iceberg orders that day
6 if ®;(w) == 1 then

7 Consider iceberg orders which were filled
8 [V, ¥] = extract(Dy)

9 end if

10: end for

11: end for

122 ®@ = KDE(V, ¥)

Alg. 4 Bivariate Gaussian Kernel Density Estimation.

f(x,y) = KDE(x, y)
I oy = L%median (Jx = &)

2 oy = —rmedian (ly - 1)

3 f6y) = 2 SN e DN G; y, 072)

in each vector and ot is a Gaussian confidence limit. The
output distribution @ is shown in Exhibit 12.

Inference Phase: Generating I'

In this section, we describe the process of evalu-
ating @ to give the prediction I'. For each iceberg ®, in
the LOB, an update rule is used to update the estimated
remaining volume, given the volume seen so far. This is
done by a five-step process:

1. We wish to evaluate © for @ (¥), the marginal
distribution. This has the effect of reducing the
dimensionality of the distribution by 1, such that
f=G(V) where G is some non-linear function that
captures the relationship.

2. We are interested in finding the most likely value
for I for this order, given a known max show ¥
and the knowledge that some of the volume of the
iceberg order has already been filled. The filled
volume is denoted by I/, and the unfilled volume
by V so V=V _+ T

n+1:N? 0:n n+1:N"
space is constrained in this manner.

. Hence the search

THE JOURNAL OF TRADING 81

The Journal of Trading 2013.8.3:68-95. Downloaded from www.iijournals.com by larry liu on 09/29/14.
Itisillegal to make unauthorized copies of thisarticle, forward to an unauthorized user or to post electronically without Publisher permission.

ExHIBIT 12

The Output from the Learning Phase, ® from One Trading Day

It is this distribution which is evaluated during the inference phase. The distribution is generated by nonparametric kernel mass estimation,
which acts to smooth the data set and separate the latent signal from the background noise. Data shown is for ES, January 10-15, 2011.

Scatter Plot of V and ¥

Total Order Size, V

FS
o

60 80 100 120 140
Max Show, 'V

Learning Phase Output ®

—— 150

1000 e
_— 100

. 0 ¢
Total Order Size, V 0 Max Show, ¥

3. 1, 1s found by maximizing the distribution
p(I} |'¥,1/,) which is equal to maximizing the
functionff GV .,.»-

4. Knowing I/ allows us to calculate the volume of the

. N-1 _
subsequent tranches, such th?t V= Zn:1 L0 S VTN
giving s, such that I' = {I”,¥}.

5. The forecast is updated on one of two events:

* every time a new tranche is received, I changes,
and so the maximization is reevaluated, or
* if @ () changes to become inactive.

This is a discrete empirical probabilistic update
scheme, where the prior distribution is estimated from
the data. The conditional probability is updated in
light of the volume filled so far G(V/). The scheme
is summarized in Algorithm 5 An example output
shown in Exhibit 13. In this example ¥ = 10, V| =
20, so only the distribution = 21 is searched and volume
which has already been executed is excluded from
the search. The result of the search is 7, = 52, giving

\ilk = {WL...S =10, \T/o = 2}'

COMPUTATIONAL IMPLEMENTATION

A full discussion of the details of the compu-
tational implementation is beyond the scope of this

82 PREDICTION OF HIDDEN LIQUIDITY IN THE LIMIT ORDER BOOK OF GLOBEX FUTURES

article; however, we wish to give the reader a flavor of
the issues involved. The CME matching engines are
physically located at the CME data center (the “colo”)
in Aurora, [llinois.® At this data center, market par-
ticipants can buy “rack space” to connect to GLOBEX
via GLink, the order routing interface. What hardware
is inserted into the rack space is up to the individual
participant.

Computation of the algorithm can be split into two
distinct phases: offline learning and online inference.
Offline learning does not need to happen at the colo,
where resources are expensive, but can take place at any
server farm anywhere in the world. The learning phase
is run as a daily batch process, and each day before the
markets open, the latest parameter set is uploaded to the
colo servers for use during inference.

Alg. 5 Iceberg On-line Inference Algorithm.
I'" = online_inference(®, ®)

1: fork=1:Kdo

2: G = 0O(Y) {Evaluate O for Oy(¥)}

3V =max (G(V,11.8)) {Maximize constrained G}

4: I, = {‘7, \,P}
5: end for

SUMMER 2013

The Journal of Trading 2013.8.3:68-95. Downloaded from www.iijournals.com by larry liu on 09/29/14.
Itisillegal to make unauthorized copies of thisarticle, forward to an unauthorized user or to post electronically without Publisher permission.

ExHIBIT 13

Inference by Evaluating the Distribution ©. The Distribution is Reduced in Dimensionality to 2D
as ¥ Is Known. " Is then Found by Maximizing the Constrained Distribution.

Evaluating © at V. For the e-mini S&P500.

4
=2l
2
R
3
2
1
. S S S R —
0 20 40 60 80 100 120 140 160 180 200
Total Order Size, V
—— O (V)
s Maxima
V (excluded)
Data Storage Learning

Before any learning can take place, the raw FIX/
FAST data must be processed, as per Exhibit 3, and
added to a data depository. On GLOBEX, we estimate
that there are approximately 70 futures over seven asset
classes which trade on average once a minute and can be
deemed “liquid.” The data storage requirements from
these are large but manageable, with the unprocessed,
compressed data for the 70 futures at 12 GB per day
and the processed uncompressed data at 36 GB per day.
A cost-efficient way of managing such data is a cloud-
based solution, which includes backups: for example, the
Amazon Simple Storage Service (S3) file system.

SUMMER 2013

Once data processing is done, learning is then car-
ried out in batch mode using the last H days worth of
data to generate the following day’s parameters. For each
futures contract, the parameter @ is learned. To run the
learning phase on these 70 futures within a 24-hour
window, we estimate needing a server farm consisting
of 25 nodes, each node being a quad core machine with
16GB RAM. Again, a cloud solution allows a high
degree of flexibility with low costs: for example, the
Amazon Elastic Compute Cloud (EC2).

Batch learning requires the use of a parallelized
distributed framework, such as Condor. Condor is open-
source software which optimally allocates CPU from

THE JOURNAL OF TRADING 83

The Journal of Trading 2013.8.3:68-95. Downloaded from www.iijournals.com by larry liu on 09/29/14.
Itisillegal to make unauthorized copies of thisarticle, forward to an unauthorized user or to post electronically without Publisher permission.

the cluster of worker nodes to process jobs as and when
the nodes become free (Thain et al. [2005]). While,
in theory, learning could be done with MATLAB,
MATLAB would need to be licensed on every worker
node in the cluster, and so for this reason Java executables
are suggested.

Inference

The online inference code is run by hardware sit-
ting in the rack space at the colo and is latency sensitive.
Even during peak market events (approximately 15,000
orders/second), GLOBEX market data is disseminated
externally within 15 milliseconds of being generated.
This market data then takes 5 microseconds from the
GLOBEX server to a colo rack, while a subsequent
order then takes 5 microseconds from a colo rack to the
FALCON match engine. The inference software must
be quick enough to operate in this time space if exploita-
tion of detected icebergs is to be achieved.

A Java-based architecture running on Unix blade
servers (one per asset class) is suggested to carry out
the online LOB rebuilds and subsequent inference. One
possible development solution would be to use content-
addressable memory (CAM). CAM is a special type of
computer memory used in certain very high-speed
searching applications. JavaSpaces are a Java implemen-
tation of this memory paradigm for parallel computing.
JavaSpace is shared memory, which, in addition to simple
object caching, can use a “master-worker” software pat-
tern, where the master hands out jobs to generic workers
Setzkorn and Paton [2004]. This pattern has analogies
with the distributed Condor framework used in the
learning phase; however, rather than being across dif-
ferent machines as in the case of Condor, we are sug-
gesting implementing JavaSpaces on a single server with
multiple cores. This framework negates the need for
complex scheduling algorithms, while at the same time
achieving low latency. The hidden order problem is par-
ticularly well suited to such parallelization, as the indi-
vidual LOBs are independent and can each be treated
as a Java object.

Summary of Implementation

The barriers to entry for this type of algorithmic
trading are high: specifically, costs associated with rack

84 PREDICTION OF HIDDEN LIQUIDITY IN THE LIMIT ORDER BOOK OF GLOBEX FUTURES

space, server farms, hardware, and the specialized devel-
opment expertise required to implement the research. A
schematic of the implementation is shown in Exhibit 14.
The schematic shows one physical location, the CME
colo data center in Aurora, IL, where the GLOBEX
matching engines are based and the inference phase of
our algorithm occurs and two cloud locations, where
data storage, processing and subsequent learning occurs.
The server farm is shown as being Amazon EC2 and the
persistent storage as Amazon S3, both popular solutions
with financial developers. Learning at the server farm
takes place on a daily basis and then pretrading the latest
set of parameters are uploaded to the colo for the infer-
ence algorithm to use during that trading day.

SIMULATION AND RESULTS

As the values of the latent variables 17 and W are
never known, the frue performance of the algorithm
cannot be directly tested. There are two exceptions to
this, however:

1. Using a generative model to create synthetic data
where some of the orders are iceberg orders.

2. Testing in a “live” setting by submitting iceberg
orders using a small amount of capital, and then
immediately closing the positions.

ExHIiBIT 14

Computational Implementation of the Hidden
Liquidity Detection Algorithm

Learning Phase Inference Phase

(__AmmnEC N 7 cvpaue)

S GLOBEX]
Mark

Customer rack

>}
8

K | Data processing I /
e [\

Amazon S3

Energies

Metals

Treasuries complex

Equity indices

Agriculturals

Processed data Unprocessed data

N\ Y2RN

FX

i

7/

SUMMER 2013

The Journal of Trading 2013.8.3:68-95. Downloaded from www.iijournals.com by larry liu on 09/29/14.
Itisillegal to make unauthorized copies of thisarticle, forward to an unauthorized user or to post electronically without Publisher permission.

Due to space and monetary constraints, neither
of these approaches is implemented. The algorithm is
evaluated on real data in the following section.

Real Data

The results from running our algorithm on the ES
future are now presented. While the ES future does have
strategy contracts, these are limited to calender spreads,
and quoting and trading activity in them is extremely
limited, to the extent that they can be ignored. Nearly
100% of activity is in the front month outright contract,
so only these orders are considered. The mean number
of limit orders per day over the period from January 1,
2011, to December 31, 2011, was 4.4 million. The mean
number of iceberg orders per day, K, was seen to be
0.14 million, meaning that 3.2% of all limit orders are
iceberg orders.

From the iceberg orders detected by Algorithm
6, the latency of inserting the iceberg refresh messages
can be inspected. The insertion time delay is due to
computational latency. The latency is not constant due
to the varying load in the trading engine at any point in
time. By setting df =), + 30, in the algorithm, unneces-
sary searching for refresh messages can be minimized.
The distribution of this latency is shown in Exhibit
15. The data shows the refresh messages are broadcast
according to an exponential distribution with a mean
W, of 76 milliseconds and standard deviation G, of 98
milliseconds. This allows us to set dt = 369 in Algo-
rithm 6 so that orders are searched up to 369 milliseconds
after trade messages.

The joint distribution of total order volumes and
peak sizes is shown in Exhibit 12. Related to this dis-
tribution is the number of tranches of iceberg orders
N =V/¥, as shown in Exhibit 16. It is noteworthy that

ExHIBIT 15

The Distribution of the Latency of Iceberg Refresh Messages A

When a trade fills the tranche of an iceberg order, a new tranche is inserted into the LOB by GLOBEX.

R EREREREEE SERRRRRRRR RRRRPRRRES e

Frequency

0 50 100 150
Latency A (milliseconds)

SUMMER 2013

e e e e e e g ey

200 250 300 350 400

THE JOURNAL OF TRADING 85

Alg.6 Iceberg Detection Forward Algorithm. [T, ®] = IDFA(data, dV, dt, ©)
1: fort=1:T do

2: if trade then
3: [tPrice,tSide, tSize] = trade; {Extract trade price, side and size}
4: fori=1t:t+dt do
5: if order then
6: [P, S, m] = order; {Extract order price, side and price level}
7 if (S == ask) then
8: pCo;Ld = P < tPrice {The limit price on the ask. The lowest price at which a seller is willing to
sell.
9 else if (S == bid) then
10 pCond = tPrice < P
11 end if
12 if ((m ==1) & (pCond) & (S == tSide) & (dV; > 0) & (isImplied # true)) then
o 13 ¢ =dv;
S 14: if @ (largeTrade) then
B 15: if 1) > @5, (T¥) then
£ 16: B (V) = ¢
g 17 &y (largeTrade) = 0
5 18 sizeCond = 1
= 19 else
= 20: if tSize > largeOrder then
< '§ 21: sizeCond = 1
o 22: else
ch g 23: sizeCond = 0
g < 24: end if
c = 25: end if
© > 26: else
2 E 27: if tSize == 1 then
> 28: expectedRe fresh = @, (V)
® O 29: sizeCond = (expectedRe fresh == 1)
=8 30: else
L35 31: if ¢tSize > 1) then
g % 32: expectedRe fresh = rem(tSize, @y (V))
S 8 33: else if tSize < v then
B2 34: expectedRe fresh = @ (V) — tSize
c - 35: end if
32 36: sizeCond = (expectedRe fresh < 1)
= 2 3T7: end if
38: end if
% § 39: if sizeCond then
5 40: Dy, = testIfActive(Py)
g2 41: if ((exists(®y)) & (k(a) == 1)) then
< 3 42: {®}, exists and is active
35 43 A=i—t
%z 41: 6=i— unlt)
_g o 45: Srnt+1 = {9, t,A,0} {Add a new tranche to an existing iceberg order}
% - 46: else if ((exists(®y)) & (Pr () =!1)) then
A8 47: @), might have existed and is no longer active.}
5 2 48: How many tranches of ®j, have been seen so far?}
o2 49: if (n ==1) then
U 50: {®}, turned out not to be an iceberg order. Delete it.}
Sz 51: o, =]
o & 52: else if (n > 1) then
Qe 53: ®), existed and is no longer active.}
] = 54: Search for cancelled orders at ¢ > ¢, x(¢) which match ®; parameters.}
81“6 55: if (Cancelled) then
= 8 56: Pp(w)=0
-@ 'gl 57: else
-0 58: {®}, was filled}
T3 59: Pp(w) =1
RS 60: end if
58 61: end if
S ‘%‘ 62: else
oc 63: {This is a new iceberg order}
[3 64: v =1
é 65: By, = {S. P, ‘Il,a}
e 66: A=i—t
= 67: Ortr1,n = {0, t, A}
2 68: end if
= 69: if (Inference phase) then
K 70: T = online_ inference(®, @) {Use @ from the learning phase. Return I'.}
= 71: end if
2 end if
73: end if
74: end if
75: end for
76: end if
i if rem(tradeSize, ®;,(¥)) == 0 then
78: {An existing iceberg active order has a peak size equal to integer multiples of the the max show.}
79: Ornt+1 = {¥,t, X, 0} {Add a new tranche to an existing iceberg order. Set ®(largeTrade) = 1}
80: end if
81: end for

82: if (Learning phase) then

83: {Run at the end of each trading day. offline learning loads the previous H trading days worth of & and
concatenates with the current version.}

84: © = offline_learning(®) {Return ©.}

85: end if

86 PREDICTION OF HIDDEN LIQUIDITY IN THE LIMIT ORDER BOOK OF GLOBEX FUTURES SUMMER 2013

The Journal of Trading 2013.8.3:68-95. Downloaded from www.iijournals.com by larry liu on 09/29/14.
Itisillegal to make unauthorized copies of thisarticle, forward to an unauthorized user or to post electronically without Publisher permission.

ExHIBIT 16

Distribution of the Number of Tranches of an Iceberg Order

The kernel density plot shows visible spikes around round numbers, suggesting human bias.

x 10* Distribution of Number of Tranches

3 ! !

Number of Observations

, , 0.03

Frequency

Number of Tranches

local maxima can be seen in the distribution at multiples
of 5 and 10, suggesting a human bias in selecting these
numbers. In particular, the following values of N are
popular: 10, 25, 40, 55, 70, 80, 90, and 110. This is in
agreement with earlier studies where the icebergs are
known from private data, which show that values of
N =5 and N = 10 account for 17% and 37%, respec-
tively, of all the icebergs in the sample (Esser and Monch
[2007]). The mean value of the distribution is 29, with
the minimum and maximum values of 2 and 113 respec-
tively. Our mean is notably larger than the the findings
of Frey, who finds that on average an iceberg consists
of seven tranches, of which five are executed and the
remaining two canceled (Frey and Sandas [2009]). By
definition the algorithm does not consider an order with
only one tranche to be an iceberg order, introducing a
known bias to the results.

Distributions of total order size for normal limit
orders, total order size for iceberg orders, and peak size
for iceberg orders are shown in Exhibit 17. It can be seen

SUMMER 2013

that the mean iceberg order is 12 times bigger than the
mean limit order (5 lots versus 62 lots), while the peak
size 1s approximately equal to the mean limit order size.
This is in close agreement with the findings of Frey,
who finds that iceberg orders are 16 times bigger than
average limit orders and that the peak size of these limit
orders 1s 2.5 times bigger than the average limit order.
This statistically significant increase in size suggests
that the requirement to use iceberg orders comes from
wishing to minimize market impact. The large size of
iceberg orders is also good reason for liquidity providers
to attempt to detect to detect this hidden volume.

The cumulative traded volume is shown against
the cumulative traded volume from iceberg orders for
a single trading day in Exhibit 18. It can be seen that
iceberg orders are filled as per the trading profile of the
regular market. When the whole data set is used, iceberg
orders account for 12% of the total volume executed.

The number of orders present at each price is
broadcast by GLOBEX. In Exhibit 19, this figure is

THE JOURNAL OF TRADING 87

The Journal of Trading 2013.8.3:68-95. Downloaded from www.iijournals.com by larry liu on 09/29/14.
Itisillegal to make unauthorized copies of thisarticle, forward to an unauthorized user or to post electronically without Publisher permission.

EXHIBIT 17
Distribution of Order Sizes

Kernel density estimates are shown for three classes of order—non-iceberg orders, iceberg orders and iceberg peak sizes.

Distributions of Limit Order Sizes

Frequency

0 10 20 30 40

50 60 70 80 90 100

Order Size (lots)

s Normal Orders

e [ceberg Orders

Tip Sizes

compared against the number of iceberg orders at each
price level for a single trading day. Data is bucketed into
one-hour samples and the number of orders averaged. As
iceberg orders in depth levels can only ever be detected
if the price moves away from the inside price level, it
is likely that the number of iceberg orders is underesti-
mated for the depth price levels. The results show that
on this trading day, iceberg orders comprise of 1.7%
of limit orders by number and 5.6% of limit orders by
volume, with nearly 100% of these occurring at the best
price level. Both figures are below the data set averages
of 3.2% and 9% respectively.

The predictive ability of Algorithm 5 is inspected
by tracking the error term in the prediction of the total
iceberg volume 17 over the course of an iceberg order
being filled. Three experiments are carried out, each of

which looks at IV being tracked for each iceberg on the
trading day of January 13-14, 2011, for ESH1, using @
generated from the previous trading day. Each experi-
ment uses a different way of generating 7, allowing
the performance of our approach to be benchmarked.

1. The iceberg total volume 7, is generated by the
online inference Algorithm 5.

2. The iceberg total volume is randomly selected
from a uniform distribution. Constraints are 7
larger than the current volume and smaller than
the largest iceberg seen.

3. The iceberg total volume is equal to the current
volume. The iceberg is finished or canceled.

88 PREDICTION OF HIDDEN LIQUIDITY IN THE LIMIT ORDER BOOK OF GLOBEX FUTURES SUMMER 2013

The Journal of Trading 2013.8.3:68-95. Downloaded from www.iijournals.com by larry liu on 09/29/14.
Itisillegal to make unauthorized copies of thisarticle, forward to an unauthorized user or to post electronically without Publisher permission.

ExHIBIT 18

Cumulative Traded Volume from Displayed and Hidden Orders

The intraday profile of hidden order fills appear visually different from that of displayed volume.

x 106 Cumulative Traded Volume x 10°

2 T T T T T T T T T T 1T

Cumulative Traded Volume (All Orders)

T T T T T T T T T T T 4

Cumulative Traded Volume (Iceberg Orders)

i i i i i i i i i i i 0

N TR S

BSOS OSSO SIS SO S LSS SSS S \6
2 N NN A N N N S N N NN N N NN NI B NI

Time (UTC)

e All Orders

Iceberg Orders

The results are expressed as root-mean-square
deviation (RMSD) prediction errors by comparing
7., to the realized iceberg order volume V| , using

RMSD, _AZ) S

gression of each iceberg order is normalized by linear
interpolation, so that each iceberg order has an equal
number of tranches, N = 10. Bootstrapping is a resam-
pling methodology that allows a sampling distribution
to be estimated from limited data. Bootstrapping enables
the differences between the performance of the three
experiments to be inspected for statistical significance.
Using bootstrapping, for each experiment, the mean [
of the population of the means and standard deviation
O of the means are calculated. The results are shown in
Exhibit 20 and Exhibit 21. Exhibit 20 shows Experiment
[is seen to have the lowest L and G, suggesting that Algo-

For each experiment, the pro-

SUMMER 2013

rithm 5 gives the best predictions. Experiment II is the
worst performing, as expected, with both experiment I
and III showing several factors of improvement. While
the performance of experiment I and III is similar, the
difference can be seen to statistically significant at the
95% confidence level. Exhibit 21 shows the sampling
distribution of the means of each experiment, along with
the mean of means and the 2.5% tail confidence inter-
vals. For the case of experiments I and III which gave
similar results, the distribution of means can be seen to
be statistically significant as the mass of the distributions
do not overlap.

Using ESH1 data for 13-14 January 2011 Exhibit
22 inspects the degree of sequential updates. A flat curve
means that the first prediction was accurate, while a steep
or non-linear curve means that the estimated volume

THE JOURNAL OF TRADING 89

The Journal of Trading 2013.8.3:68-95. Downloaded from www.iijournals.com by larry liu on 09/29/14.
Itisillegal to make unauthorized copies of thisarticle, forward to an unauthorized user or to post electronically without Publisher permission.

EXHIBIT 19
Number of Iceberg Orders at Price Levels

Price levels 1-10 are shown for the ESH1 future. Bid and ask are combined. January 13-14, 2011.

Total Number of Orders at Each Price Level.

Number of Orders

PSS OSSO OSEE LSO S OSSO
N NN AN N N N N N N N N N GG B N R NN

Time (UTC)

Number of Iceberg Order as Pecentage of each Price Level.

Percentage Icebergs (%)

04
bb@@@uq@@u SO SO S S S, SO QQQQQQ.\S
f{,‘ffﬁ’@@@@’@‘@%b Q°°Q°’ \\\”’\“’\ NSNS BN

Time (UTC)

Percentage of the Order Book Volume which is Hidden.

Nl

(=]
1
f

Hidden Volume (%)
=)

0 T S S S S S SO S S SO S S SN S S S S S SN N S
H SELOESOEOESEOES OSSO SS S0
D S S P I B G S I A TN B S S N

Time (UTC)
Price level 1 Price level 6
Price level 2 ——— Price level 7

Price level 3 ———— Price level 8
Price level 4 ——k—— Price level 9
Price level 5 ——k—— Price level 10

changes dramatically throughout the trading day. The linear and having a steep gradient. In subplot two, the
information from this gradient dV/dn is captured by the mean curve is shown and this can be seen to be rea-
RMSD. In subplot one, all the trajectories are shown, sonably flat, suggesting that once an iceberg has been
with some have a flat gradient and a few being non- detected the predicted volume is accurate.

90 PREDICTION OF HIDDEN LIQUIDITY IN THE LIMIT ORDER BOOK OF GLOBEX FUTURES SUMMER 2013

The Journal of Trading 2013.8.3:68-95. Downloaded from www.iijournals.com by larry liu on 09/29/14.
Itisillegal to make unauthorized copies of thisarticle, forward to an unauthorized user or to post electronically without Publisher permission.

EXHIBIT 20
Quality of Iceberg Predictions

Experiment pRMSD o,
I 23.57 0.017
I 1,502.34 0.144
11 24.61 0.018

Applications for the Investment Community

Hidden liquidity detection and prediction has a
range of applications, from smart order routing (Almgren
and Harts [2008]) to front-running (Harris [1996]). In
this section, we present specific examples of how our

algorithm can be used for liquidity providers and for
liquidity takers.

Market makers can use a weighted bid-ask ratio
as a proxy for supply and demand (see, for example,
Kim et al. [2007]). An example of such a proxy is the
distance of a quote from the mid, weighted by its order
size, = % The presence of hidden volume
can cause this proxy to be wrongly estimated. Exhibit
23 shows the ratio of this proxy using hidden volume,
by Algorithm 5, to the displayed volume. ESH1 data for
13-14 January 2011 was used. Only the best price levels
of the LOB were used in the calculation. The ratio of
the metrics was calculated as a percentage error v = L
where 7, is the ratio including the iceberg volume and

ExHIBIT 21

Bootstrap Sampling of RMSDs from Iceberg Predictions

For each of the three experiments, this graphic shows the sampling distribution of the population of the means.

Bootstrap Distributions of RMSD Mean at 95% CI from ¥ Predictions

2.5

22.5 23 23.5

24 24.5 25 25.5

RMSD

Experiment I

Experiment 11

Experiment I1T

SUMMER 2013

THE JOURNAL OF TRADING 91

The Journal of Trading 2013.8.3:68-95. Downloaded from www.iijournals.com by larry liu on 09/29/14.
Itisillegal to make unauthorized copies of thisarticle, forward to an unauthorized user or to post electronically without Publisher permission.

EXHIBIT 22
Quality of Iceberg Predictions from Experiment I

For all the iceberg orders on one trading day, the value of V' was tracked and normalized to N = 10.

Predictive Ability

Number of Tranches

Mean Predictive Ability

600 T T T

400

200

5 6 7 8 9 10

Number of Tranches

ExHIBIT 23

Time-Varying Percentage Difference for a Weighted
Bid-Ask Metric, Using the LOB Volume Predicted by
the Algorithm Against the Displayed LOB Volume

Pecentage Error of Ratio of Supply—Demand Proxies.

Percentage Difference (%)

Ny
SO .AQQ\..QQ »

P LRSS LSS
PILCELILSELEI LSO EL LSO
LN NNV i RN SR RN NN A AN N IO

PSS S

Time (UTC)

= Percentage Error

s Mean Percentage Error 1.42 %

92 PREDICTION OF HIDDEN LIQUIDITY IN THE LIMIT ORDER BOoOK OF GLOBEX FUTURES

r, s the ratio excluding the iceberg volume. The results
show that an error greater than 1% exists when hidden
volume is considered, which could be enough to affect
liquidity provision based on r.

In a second liquidity supplier example, an order
could be placed on the opposite side of the LOB to
the detected iceberg in size equal to 17, to try and gain
the bid-ask spread. The time until IV is filled could
be estimated using an order arrival rate model (see,
for example, Easley et al. [2008], Wolft [1982]). The
higher the arrival rate, the shorter the waiting time.
The practical benefit of such a prediction would be to
let the user know how long he had left to “act” on the
iceberg information. In a time-priority market such as
ES, joining the bottom of the queue on the other side of
the LOB from @ could mean that the time delay causes
the iceberg to be missed and hence the liquidity supplier
would be “penalized” via the exchanges quote-to-trade
ratio. Such volume “targeting” strategies would increase
market makers’ executed volume in proportion to the
volume in the LOB.

SUMMER 2013

The Journal of Trading 2013.8.3:68-95. Downloaded from www.iijournals.com by larry liu on 09/29/14.
Itisillegal to make unauthorized copies of thisarticle, forward to an unauthorized user or to post electronically without Publisher permission.

A liquidity taker uses iceberg orders to minimize
market impact. When an iceberg order submitted by
a liquidity taker is detected by the market, the market
will stop filling it and move the price away, causing the
liquidity taker to incur slippage, behavior that can be
explained by the market realizing that the order imbalance
has changed (Esser and Monch [2007]). It is suggested
that market impact resulting from iceberg orders being
detected on GLOBEX can be minimized by canceling
an iceberg after the second tranche of the iceberg order
has been filled. This strategy would make the prediction
algorithm presented in this article redundant, because the
first tranche of an iceberg is used for the initial detection,
and only after the second tranche is the order positively
confirmed as an iceberg, as per Exhibit 11. By applying
this strategy to a series of iceberg orders, the disadvan-
tages associated with detection could be avoided.

CONCLUSIONS AND FURTHER WORK
Conclusions

Iceberg orders on GLOBEX are detectable and pre-
dictable. The presented approach can be used by liquidity
suppliers to exploit iceberg orders, while liquidity takers
can use it to submit iceberg orders in a way that inferring
the true hidden volume is most difficult. The average
iceberg order for the ES has total size 62 with a peak size
of 5, meaning that its order size is 12 times larger than
the average order size. In our ES data sample, iceberg
order peaks account for 3% of all limit orders submitted
by number, and iceberg orders match against 12% of all
traded volume. Iceberg orders constitute 9% by volume
and 1.5% by number of all resting orders in the LOB.

The gaming behavior presented in this article could
be countered by GLOBEX supporting an optional FIX
tag to allow randomization of certain parts of the ice-
berg order, such as ‘¥, while constraining I/ = Z”\ v
Not to support such functionality may be unfair to less
sophisticated investors, who may not realize the potential
consequences of using iceberg orders. Having markets
which are fair and transparent is central to the integrity
of the global financial system.

Further Work

By applying the algorithm across the seven major
asset sectors (equity index, STIRs, bonds, FX, agricul-

SUMMER 2013

turals, energies, metals) traded on GLOBEX, iceberg
orders may be seen to play a more important role in
some sectors than others it is speculated that this might
be related to the matching algorithm used in the sector,
specifically if that algorithm has a time component.

An additional modification to the learning step
presented in this article could be to carry out estimation
of © conditional on various factors which could affect
either IV or W¥: for example, the distance between the
limit price and the mid-price, the size of the bid-ask
spread, or market volatility.

The empirical model presented in this article can
be reformulated as a probabilistic Bayesian model, and
we plan to publish on such a model in the future. By
defining the state variables as the peak size and the total
size, the process can be represented as a Markov chain
with some deterministic transition probabilities.

A variety of patterns exists in the LOB. Some of
these patterns are generated by system effects, such as
order types and latencies, and some patterns are gener-
ated by repetitive human behavior, such as order sizes
and support levels. An exciting area of future work
will be further automating pattern recognition in the
LOB using expectation maximization algorithms, such
as Baum-Welch, to learn latent structure (Baum et al.

[1970]).

ENDNOTES

We would like to thank www.cmegroup.com for
allowing us to use their data in this research. We would also
like to thank www.onixs.biz for allowing us to use their
C# FAST decoder.

'www. futuresindustry.org/ptg/membership.asp

*‘www.rsj.com/en/algorithmic-trading/current-
volumes

*Only interest rate options do not support icebergs on
GLOBEX.

*FIX tag 210

*When FIX tag 277=1, trade volume is also not removed
from the book.

*www.cmegroup.com/colo

"http://aws.amazon.com

REFERENCES
Aitchison, J., and C. Aitken. “Multivariate Binary Discrimi-

nation by the Kernel Method.” Riguigéiild, Vol. 63, No. 3
(1976), pp. 413-420.

THE JOURNAL OF TRADING 93

http://www.iijournals.com/action/showLinks?crossref=10.1093%2Fbiomet%2F63.3.413

The Journal of Trading 2013.8.3:68-95. Downloaded from www.iijournals.com by larry liu on 09/29/14.
Itisillegal to make unauthorized copies of thisarticle, forward to an unauthorized user or to post electronically without Publisher permission.

Almgren, R, and B. Harts. “A Dynamic Algorithm for Smart
Order Routing.” White paper, StreamBase, 2008.

Avellaneda, M., J. Reed, and S. Stoikov. “Forecasting Prices
from Level-I Quotes in the Presence of Hidden Liquidity.”
Algorithmic Finance, Vol. 1, No. 1 (2011), pp. 35-43.

Bank for International Settlement. “Triennial Central Bank
Survey of Foreign Exchange and Derivatives Market Activity in
2010.” 2010.

Baum, L., T. Petrie, G. Soules, and N. Weiss. “A Maxi-
mization Technique Occurring in the Statistical Analysis of
Probabilistic Functions of Markov Chains.” i
I Vol 41, No. 1 (1970), pp. 164-171.

Bessembinder, H., M. Panayides, and K. Venkataraman.

“Hidden Liquidity: An Analysis of Order Exposure Strategies
in Blectronic Stock Marker.” [N ENEEN

Vol. 94, No. 3 (2009), pp. 361-383.

Blank, J. “Implied Trading in Energy Futures.” gisahtiiis(
aimbigdiigg, Vol. 2, No. 3 (2007), pp. 45-48.

Borkovec, M. “Algorithmic Trading System and Method.”
Ieitaiai 8,140,416, 2012.

Burghardt, G., J. Hanweck, and L. Lei. “Measuring Market

Impact and Liquidity.” | N j . Vo!. 1, No. 4
(2006), pp. 70-84.

Cave, T. “Europe’s Top 10 High-Frequency Kingmakers (in
Scandinavia, at Least).” Dow Jones, October 2011.

Christensen, H., R. Turner, S. Hill, and S. Godsill.
“Rebuilding the Limit Order Book: Sequential Bayesian
Inference on Hidden States.” Quantitative Finance (2013),
submitted.

Chicago Mercantile Exchange. First Quarter Liquidity
Monitor. www.cmegroup.com/education/files/Liquidity-
Monitor-Q1-2011.pdf, 2011.

——. CME Data Mine. Market Data Platform FIX/FAST.
Core Functionality. Version 3.2, 2012.

—— GCC Product Reference Sheet. www.cme-
group.com/confluence/display/EPICSANDBOX/
GCC+Product+Reference+Sheet, 2013a.

94 PREDICTION OF HIDDEN LIQUIDITY IN THE LIMIT ORDER BOOK OF GLOBEX FUTURES

——. Product Specific Information. www.cme-
group.com/confluence/display/EPICSANDBOX/
Product+Specific+Information, 2013b.

Cont, R, S. Stoikov, and R. Talreja. “A Stochastic Model for

Order Book Dynamics.” || j . Vo!. 58, No. 3
(2010), pp. 549-563.

De Winne, R., and C. D’hondt. “Hide-and-Seek in the
Market: Placing and Detecting Hidden Orders.” ikl
Llwguee, Vol. 11, No. 4 (2007), pp. 663-692.

Durbin, M. All About High Frequency Trading, 1st ed. McGraw-
Hill Professional, 2010.

Easley, D., R. Engle, M. O’Hara, and L. Wu. “Time-Varying
Arrival Rates of Informed and Uninformed Trades.” Jouggabel

. Vo!. 6, No. 2 (2008), pp. 171-207.

Esser, A., and B. Monch. “The Navigation of an Iceberg: The

Optimal Use of Hidden Orders.” | N RN Vo!.
4, No. 2 (2007), pp. 68-81.

Fleming, M., and B. Mizrach. “The Microstructure of a U.S.
Treasury ECN: The Brokertec Platform.” Federal Reserve
Bank of New York, 2009.

Frey, S., and P. Sandas. “The Impact of Iceberg Orders in
Limit Order Books.” American Finance Association San
Francisco Meetings Papers, 2009.

Haddad, R., and A. Akansu. “A Class of Fast Gaussian Bino-

mial Filters for Speech and Image Processing.” i
. Vol. 39, No. 3 (1991), pp. 723-727.

Harris, L.“Does a Large Minimum Price Variation Encourage
Order Exposure?” New York Stock Exchange, 1996.

Hasbrouck, J., and G. Saar. “Limit Orders and Volatility in
a Hybrid Market: The Island ECN.” New York University,
Working Paper, No. FIN-01-025, 2001.

Hastie, T., R. Tibshirani, and J. Friedman. The Elements of
Statistical Learning: Data Mining, Inference, and Prediction, 2nd
ed. Springer, 2001.

Hautsch, N., and R. Huang. “A Statistical Model for Detecting

Hidden Liquidity.” Quantitative Products Laboratory, Berlin,
20009.

SUMMER 2013

http://www.iijournals.com/action/showLinks?crossref=10.1093%2Fjjfinec%2Fnbn003
http://www.iijournals.com/action/showLinks?crossref=10.1093%2Fjjfinec%2Fnbn003
http://www.iijournals.com/action/showLinks?crossref=10.1214%2Faoms%2F1177697196
http://www.iijournals.com/action/showLinks?crossref=10.1109%2F78.80892
http://www.iijournals.com/action/showLinks?crossref=10.1214%2Faoms%2F1177697196
http://www.iijournals.com/action/showLinks?crossref=10.1109%2F78.80892
http://www.iijournals.com/action/showLinks?system=10.3905%2Fjot.2006.654303
http://www.iijournals.com/action/showLinks?crossref=10.1287%2Fopre.1090.0780
http://www.iijournals.com/action/showLinks?crossref=10.1016%2Fj.frl.2006.12.003
http://www.iijournals.com/action/showLinks?crossref=10.1016%2Fj.jfineco.2009.02.001
http://www.iijournals.com/action/showLinks?crossref=10.1093%2Frof%2Frfm0016
http://www.iijournals.com/action/showLinks?crossref=10.1093%2Frof%2Frfm0016
http://www.iijournals.com/action/showLinks?system=10.3905%2Fjot.2007.688948
http://www.iijournals.com/action/showLinks?system=10.3905%2Fjot.2007.688948
http://www.iijournals.com/action/showLinks?crossref=10.1097%2FPTS.0b013e3182627b89

The Journal of Trading 2013.8.3:68-95. Downloaded from www.iijournals.com by larry liu on 09/29/14.
Itisillegal to make unauthorized copies of thisarticle, forward to an unauthorized user or to post electronically without Publisher permission.

Hunsader, S. “Analysis of the Flash Crash.” NANEX, 2010.

Janecek, K., and M. Kabrhel. “Matching Algorithms of Inter-
national Exchanges.” 2007.

Kim, A., J.D. Farmer, and A. Lo. “Market Making by
Learning Liquidity Imbalance.” MIT, 2007.

Madhavan, A. “Market Microstructure: A Survey.” Jouegbal
. Vol. 3, No. 3 (2000), pp. 205-258.

Moinas, S. “Hidden Limit Orders and Liquidity in Limit
Order Markets.” Toulouse Business School, 2006.

Moro, E., J. Vicente, L. Moyano, A. Gerig, J. Farmer, G.
Vaglica, F. Lillo, and R. Mantegna. “Market Impact and
Trading Profile of Hidden Orders in Stock Markets.” Rhsical
gk, Vol. 80, No 6 (2009), pp. 0661021-0661028.

Overdahl, J. “Implied Matching Functionality in Futures
Markets.” Futures Industry (November 2011), pp. 37-41.

Rajagopalan, B., and U. Lall. “A Kernel Estimator for Dis-

crete Distributions.” , Vol. 4,

No. 4 (1995), pp. 409-426.

Scott, D. Multivariate Density Estimation. Wiley, 1992.

SUMMER 2013

Setzkorn, C., and R. Paton. “Javaspaces: An Affordable Tech-
nology for the Simple Implementation of Reusable Parallel
Evolutionary Algorithms.” In Knowledge Exploration in Life
Science Informatics, edited by W. Dubitzky, Springer, 2004,
pp- 151-160.

Thain, D., T. Tannenbaum, and M. Livny. “Distributed

Computing in Practice: The Condor Experience.” adeis
T i —,

323-356.

Tuttle, L. “Hidden Orders, Trading Costs and Information.”
2005.

Vaglica, G., F. Lillo, E. Moro, and R. Mantegna. “Scaling
Laws of Strategic Behavior and Size Heterogeneity in Agent

Dynamics.” Physical Review E, Vol. 77, No. 3 (2008).

Wolff, R. “Poisson Arrivals See Time Averages.” ioiigibiois
Rasegids. Vol. 30, No. 2 (1982), pp. 223-231.

Yao, C. “Hidden Agendas: A Study of the Impact of Con-
cealed Orders.” University of Illinois, 2012.

To order reprints of this article, please contact Dewey Palmieri
at dpalmieri @iijournals.com or 212-224-3675.

THE JOURNAL OF TRADING 95

http://www.iijournals.com/action/showLinks?crossref=10.1002%2Fcpe.938
http://www.iijournals.com/action/showLinks?crossref=10.1002%2Fcpe.938
http://www.iijournals.com/action/showLinks?crossref=10.1016%2FS1386-4181%2800%2900007-0
http://www.iijournals.com/action/showLinks?crossref=10.1016%2FS1386-4181%2800%2900007-0
http://www.iijournals.com/action/showLinks?crossref=10.1080%2F10485259508832629
http://www.iijournals.com/action/showLinks?crossref=10.1103%2FPhysRevE.80.066102
http://www.iijournals.com/action/showLinks?crossref=10.1103%2FPhysRevE.80.066102
http://www.iijournals.com/action/showLinks?crossref=10.1287%2Fopre.30.2.223
http://www.iijournals.com/action/showLinks?crossref=10.1287%2Fopre.30.2.223

The Journal of Trading 2013.8.3:68-95. Downloaded from www.iijournals.com by larry liu on 09/29/14.
Itisillegal to make unauthorized copies of this article, forward to an unauthorized user or to post electronically without Publisher permission.

Erratum: Prediction of Hidden Liquidity in the Limit Order Book of GLOBEX
Futures

Hugh L. Christensen®*, Robert Woodmansey"®

“4Signal Processing and Communications Laboratory, Engineering Department, Cambridge University, CB2 1PZ, UK
b Onix Solutions, Alpha House, 100 Borough High Street, London, SE1 1LB, UK

n our recent article we describe an iceberg pre-

diction algorithm for limit order books (LOB) on

CME GLOBEX (Christensen and Woodmansey,

2013). In the article successive peaks of an ice-
berg orders are described as retaining time priority. This
is incorrect. Successive peaks of an iceberg order do
not retain time priority. Each time a peak is filled, the
refresh peak is inserted into the LOB at the back of the
queue. CME Group have updated their public documen-
tation to reflect this (CME, 2013)).

These mechanics are now illustrated with an exam-
ple, as shown in a revised Exhibit 7. An iceberg order
is specified with a total size V = 100 and a max show
Y = 9. The first 11 tranches of the iceberg are of size
W = 9 and the final tranche is size y = 1, so N = 12
(where N is the number of tranches). At time t = 2
the first peak of the iceberg can be seen in the LOB,
behind a normal limit order for § = 10 (S is size).
At this point in time, the hidden volume in the LOB
is Vg = 91. At time step t = 6, a trade message for
S = 8 is seen in the data feed. This results in two fur-
ther messages being sent by GLOBEX, firstly, a LOB
update message dV = —8, and secondly a peak replen-
ish message dV = 9. The first of these messages is the
trade volume being removed from the LOB. The second
of these messages is the next tranche of the iceberg or-
der being placed into the LOB behind the normal limit
order of S = 3 (i.e. the normal limit order has higher
time priority than the peak replenish order). It this peak
replenish message time dt after a trade which allows the
iceberg order to be detected.

As time-priority is lost between each peak, in essence
an iceberg order is equivalent to a series of sequential

*Corresponding author.
Email addresses: h1c54@cam.ac.uk (Hugh L. Christensen),
robert.woodmansey@onixs.biz (Robert Woodmansey)

Preprint submitted to Journal of Trading.

limit orders entered by the trader. In reality, given the
time it takes for a fill to be relayed back to the customer,
iceberg orders are significantly quicker to be inserted
into the LOB and also more convenient.

How does this change in system mechanics affect the
prediction algorithm? The loss of time priority between
tranches does not significantly affect the prediction al-
gorithm. In the algorithm, orders which enter the LOB
within df seconds of a trade are considered viable candi-
dates for peak refresh orders. We had initially reported
that these peak refresh orders went to the front of the
queue (having retained time priority). It is now known
they go to the back of the queue having lost time prior-
ity. The only change to the algorithm requires a mod-
ification to the way in which the cumulative volume is
tracked (page 79). Originally @ = 0 is set when the
tracked cumulative volume exceeds the max show, plus
dt to allow for system latency effects. Setting @ = 0
means that the iceberg order is no longer active (i.e. it
has either been filled or cancelled). Now, in light of the
loss of time priority between peaks, the « is set to zero
when the tracked cumulative volume exceeds the max
show plus the sum observable volume at the price level
plus dt.

Does this change to the algorithm affect the presented
results? Having re-run the algorithm using the updated
methodology, the answer is no, hardly at all. The in-
side price level of ES contains significantly less volume
than the depth price levels. For the year 2011, the vol-
ume of the inside price level (averaged over bid and ask)
is approximately 750 lots. The differences between the
old and new implementation of the algorithm were in-
spected. It was seen that the previous choice of dt, used
to allow for system latency, was essentially acting as a
buffer term. This meant significantly more volume was
received than was present in the max show Y. Search-
ing over this extended period allowed us to detect the re-
fresh peak entering the LOB. In other words, by setting

July 26, 2013

The Journal of Trading 2013.8.3:68-95. Downloaded from www.iijournals.com by larry liu on 09/29/14.
Itisillegal to make unauthorized copies of this article, forward to an unauthorized user or to post electronically without Publisher permission.

t=0 t=1 t=2 t=3
Order Iceberg Trade Order
dv=+10 V=100 $=5 dV=+3
w=9
%) .G .G %) _
) Empty LOB o P o
N N N N
n n n n
S=10 S=10 S=5
Price (P) Price (P) Price (P) Price (P)
t= t=5 t=6 t=7
Cancellation Trade Trade
dv=-5 §=1 $=8
n n a 0
& & & &
) 7 5=3 7 5=3 7
S=3
Price (P) Price (P) Price (P) Price (P)

Exhibit 7: Schematic of iceberg order mechanics. A simplified LOB consisting of just one price level is shown progressing through time. At each
step a FIX message is applied to the LOB. The bottom of stack has the highest time priority. Normal limit orders are shown in light greys, iceberg
order in dark grey. Vy denotes hidden volume which can not be seen in the LOB.

dt to be large, it had the same effect as summing volume
over the price level. This is in agreement with Exhibit
15, the distribution of the latency of iceberg refresh mes-
sages, which shows a maximum at 8 milliseconds and a
tail extending out to 400 milliseconds. The maximum
corresponds to either high number of lots per second
being traded, or to when the price level contained little
volume. The long tail corresponds to the opposite case,
when it took some time to trade through the whole price
level and the new peak replenish message appear.

References

Christensen, Hugh, R.Woodmansey. “Prediction of Hidden Liquidity
in the Limit Order Book of GLOBEX Futures.” The Journal of

Trading, 8 (3) (1976), pp. 68-95.

Chicago Mecantile

Exchange. “Order

Qualifiers.”

cmegroup. com/confluence/display/EPICSANDBOX/

Order+Qualifiers.

WWW .

www.cmegroup.com/confluence/display/EPICSANDBOX/Order+Qualifiers
www.cmegroup.com/confluence/display/EPICSANDBOX/Order+Qualifiers
www.cmegroup.com/confluence/display/EPICSANDBOX/Order+Qualifiers

Rules of Machine Learning:

Best Practices for ML Engineering

Martin Zinkevich

This document is intended to help those with a basic knowledge of machine learning get the
benefit of best practices in machine learning from around Google. It presents a style for machine
learning, similar to the Google C++ Style Guide and other popular guides to practical
programming. If you have taken a class in machine learning, or built or worked on a
machine-learned model, then you have the necessary background to read this document.

Terminology
Overview

Before Machine Learning
Rule #1: Don’t be afraid to launch a product without machine learning.
Rule #2: Make metrics design and implementation a priority.
Rule #3: Choose machine learning over a complex heuristic.

ML Phase |: Your First Pipeline
Rule #4: Keep the first model simple and get the infrastructure right.
Rule #5: Test the infrastructure independently from the machine learning.
Rule #6: Be careful about dropped data when copying pipelines.
Rule #7: Turn heuristics into features, or handle them externally.

Monitoring
Rule #8: Know the freshness requirements of your system.
Rule #9: Detect problems before exporting models.
Rule #10: Watch for silent failures.
Rule #11: Give feature sets owners and documentation.
Your First Objective

Rule #12: Don’t overthink which objective you choose to directly optimize.
Rule #13: Choose a simple, observable and attributable metric for your first
objective.
Rule #14: Starting with an interpretable model makes debugging easier.
Rule #15: Separate Spam Filtering and Quality Ranking in a Policy Layer.

ML Phase |I: Feature Engineering
Rule #16: Plan to launch and iterate.
Rule #17: Start with directly observed and reported features as opposed to learned
features.

Rule #18: Explore with features of content that generalize across contexts.
Rule #19: Use very specific features when you can.
Rule #20: Combine and modify existing features to create new features in
human-understandable ways.
Rule #21: The number of feature weights you can learn in a linear model is roughly
proportional to the amount of data you have.
Rule #22: Clean up features you are no longer using.

Human Analysis of the System
Rule #23: You are not a typical end user.
Rule #24: Measure the delta between models.
Rule #25: When choosing models, utilitarian performance trumps predictive power.
Rule #26: Look for patterns in the measured errors, and create new features.
Rule #27: Try to quantify observed undesirable behavior.
Rule #28: Be aware that identical short-term behavior does not imply identical
long-term behavior.

Training-Serving Skew
Rule #29: The best way to make sure that you train like you serve is to save the set
of features used at serving time, and then pipe those features to a log to use them at
training time.
Rule #30: Importance weight sampled data, don’t arbitrarily drop it!
Rule #31: Beware that if you join data from a table at training and serving time, the
data in the table may change.
Rule #32: Re-use code between your training pipeline and your serving pipeline
whenever possible.
Rule #33: If you produce a model based on the data until January 5th, test the model
on the data from January 6th and after.
Rule #34: In binary classification for filtering (such as spam detection or determining
interesting e-mails), make small short-term sacrifices in performance for very clean
data.
Rule #35: Beware of the inherent skew in ranking problems.
Rule #36: Avoid feedback loops with positional features.
Rule #37: Measure Training/Serving Skew.

ML Phase llI: Slowed Growth, Optimization Refinement, and Complex Models

Rule #38: Don’t waste time on new features if unaligned objectives have become the
issue.
Rule #39: Launch decisions will depend upon more than one metric.
Rule #40: Keep ensembles simple.
Rule #41: When performance plateaus, look for qualitatively new sources of
information to add rather than refining existing signals.
Rule #42: Don’t expect diversity, personalization, or relevance to be as correlated
with popularity as you think they are.
Rule #43: Your friends tend to be the same across different products. Your interests
tend not to be.

Related Work
Acknowledgements
Appendix
YouTube Overview
Google Play Overview
Google Plus Overview

Terminology

The following terms will come up repeatedly in our discussion of effective machine learning:

Instance: The thing about which you want to make a prediction. For example, the instance
might be a web page that you want to classify as either "about cats" or "not about cats".
Label: An answer for a prediction task -- either the answer produced by a machine learning
system, or the right answer supplied in training data. For example, the label for a web page
might be "about cats".

Feature: A property of an instance used in a prediction task. For example, a web page might
have a feature "contains the word 'cat™.

Feature Column’: A set of related features, such as the set of all possible countries in which
users might live. An example may have one or more features present in a feature column. A
feature column is referred to as a “namespace” in the VW system (at Yahoo/Microsoft), or a
field.

Example: An instance (with its features) and a label.

Model: A statistical representation of a prediction task. You frain a model on examples then use
the model to make predictions.

Metric: A number that you care about. May or may not be directly optimized.

Objective: A metric that your algorithm is trying to optimize.

Pipeline: The infrastructure surrounding a machine learning algorithm. Includes gathering the
data from the front end, putting it into training data files, training one or more models, and
exporting the models to production.

Overview

To make great products:
do machine learning like the great engineer you are, not like the great machine learning
expert you aren’t.

' Google-specific terminology.

https://www.csie.ntu.edu.tw/~cjlin/libffm/

Most of the problems you will face are, in fact, engineering problems. Even with all the
resources of a great machine learning expert, most of the gains come from great features, not
great machine learning algorithms. So, the basic approach is:

1. make sure your pipeline is solid end to end

2. start with a reasonable objective

3. add common-sense features in a simple way

4. make sure that your pipeline stays solid.
This approach will make lots of money and/or make lots of people happy for a long period of
time. Diverge from this approach only when there are no more simple tricks to get you any
farther. Adding complexity slows future releases.

Once you've exhausted the simple tricks, cutting-edge machine learning might indeed be in your
future. See the section on Phase lll machine learning projects.

This document is arranged in four parts:

1. The first part should help you understand whether the time is right for building a machine
learning system.

2. The second part is about deploying your first pipeline.

3. The third part is about launching and iterating while adding new features to your pipeline,
how to evaluate models and training-serving skew.

4. The final part is about what to do when you reach a plateau.

5. Afterwards, there is a list of related work and an appendix with some background on the
systems commonly used as examples in this document.

Before Machine Learning

Rule #1: Don’t be afraid to launch a product without machine learning.

Machine learning is cool, but it requires data. Theoretically, you can take data from a different
problem and then tweak the model for a new product, but this will likely underperform basic
heuristics. If you think that machine learning will give you a 100% boost, then a heuristic will get
you 50% of the way there.

For instance, if you are ranking apps in an app marketplace, you could use the install rate or
number of installs. If you are detecting spam, filter out publishers that have sent spam before.
Don’t be afraid to use human editing either. If you need to rank contacts, rank the most recently
used highest (or even rank alphabetically). If machine learning is not absolutely required for your
product, don't use it until you have data.

Rule #2: First, design and implement metrics.
Before formalizing what your machine learning system will do, track as much as possible in your
current system. Do this for the following reasons:

1. ltis easier to gain permission from the system’s users earlier on.

2. If you think that something might be a concern in the future, it is better to get historical
data now.

3. If you design your system with metric instrumentation in mind, things will go better for
you in the future. Specifically, you don’t want to find yourself grepping for strings in logs
to instrument your metrics!

4. You will notice what things change and what stays the same. For instance, suppose you
want to directly optimize one-day active users. However, during your early manipulations
of the system, you may notice that dramatic alterations of the user experience don’t
noticeably change this metric.

Google Plus team measures expands per read, reshares per read, plus-ones per read,
comments/read, comments per user, reshares per user, etc. which they use in computing the
goodness of a post at serving time. Also, note that an experiment framework, where you
can group users into buckets and aggregate statistics by experiment, is important. See
Rule #12.

By being more liberal about gathering metrics, you can gain a broader picture of your system.
Notice a problem? Add a metric to track it! Excited about some quantitative change on the last
release? Add a metric to track it!

Rule #3: Choose machine learning over a complex heuristic.

A simple heuristic can get your product out the door. A complex heuristic is unmaintainable.
Once you have data and a basic idea of what you are trying to accomplish, move on to machine
learning. As in most software engineering tasks, you will want to be constantly updating your
approach, whether it is a heuristic or a machine-learned model, and you will find that the
machine-learned model is easier to update and maintain (see Rule #16).

ML Phase I: Your First Pipeline

Focus on your system infrastructure for your first pipeline. While it is fun to think about all the
imaginative machine learning you are going to do, it will be hard to figure out what is happening
if you don’t first trust your pipeline.

Rule #4: Keep the first model simple and get the infrastructure right.

The first model provides the biggest boost to your product, so it doesn't need to be fancy. But
you will run into many more infrastructure issues than you expect. Before anyone can use your
fancy new machine learning system, you have to determine:

1. How to get examples to your learning algorithm.

2. Afirst cut as to what “good” and “bad” mean to your system.

3. How to integrate your model into your application. You can either apply the model live, or
pre-compute the model on examples offline and store the results in a table. For example,
you might want to pre-classify web pages and store the results in a table, but you might
want to classify chat messages live.

Choosing simple features makes it easier to ensure that:

1. The features reach your learning algorithm correctly.

2. The model learns reasonable weights.

3. The features reach your model in the server correctly.
Once you have a system that does these three things reliably, you have done most of the work.
Your simple model provides you with baseline metrics and a baseline behavior that you can use
to test more complex models. Some teams aim for a “neutral” first launch: a first launch that
explicitly de-prioritizes machine learning gains, to avoid getting distracted.

Rule #5: Test the infrastructure independently from the machine learning.
Make sure that the infrastructure is testable, and that the learning parts of the system are
encapsulated so that you can test everything around it. Specifically:

1. Test getting data into the algorithm. Check that feature columns that should be populated
are populated. Where privacy permits, manually inspect the input to your training
algorithm. If possible, check statistics in your pipeline in comparison to elsewhere, such
as RASTA.

2. Test getting models out of the training algorithm. Make sure that the model in your
training environment gives the same score as the model in your serving environment
(see Rule #37).

Machine learning has an element of unpredictability, so make sure that you have tests for the
code for creating examples in training and serving, and that you can load and use a fixed model
during serving. Also, it is important to understand your data: see Practical Advice for Analysis of
Large, Complex Data Sets.

Rule #6: Be careful about dropped data when copying pipelines.

Often we create a pipeline by copying an existing pipeline (i.e. cargo cult programming), and the
old pipeline drops data that we need for the new pipeline. For example, the pipeline for Google
Plus What's Hot drops older posts (because it is trying to rank fresh posts). This pipeline was
copied to use for Google Plus Stream, where older posts are still meaningful, but the pipeline
was still dropping old posts. Another common pattern is to only log data that was seen by the
user. Thus, this data is useless if we want to model why a particular post was not seen by the
user, because all the negative examples have been dropped. A similar issue occurred in Play.
While working on Play Apps Home, a new pipeline was created that also contained examples
from two other landing pages (Play Games Home and Play Home Home) without any feature to
disambiguate where each example came from.

http://www.unofficialgoogledatascience.com/2016/10/practical-advice-for-analysis-of-large.html
http://www.unofficialgoogledatascience.com/2016/10/practical-advice-for-analysis-of-large.html

Rule #7: Turn heuristics into features, or handle them externally.

Usually the problems that machine learning is trying to solve are not completely new. There is
an existing system for ranking, or classifying, or whatever problem you are trying to solve. This
means that there are a bunch of rules and heuristics. These same heuristics can give you a
lift when tweaked with machine learning. Your heuristics should be mined for whatever
information they have, for two reasons. First, the transition to a machine learned system will be
smoother. Second, usually those rules contain a lot of the intuition about the system you don’t
want to throw away. There are four ways you can use an existing heuristic:

1. Preprocess using the heuristic. If the feature is incredibly awesome, then this is an
option. For example, if, in a spam filter, the sender has already been blacklisted, don’t try
to relearn what “blacklisted” means. Block the message. This approach makes the most
sense in binary classification tasks.

2. Create a feature. Directly creating a feature from the heuristic is great. For example, if
you use a heuristic to compute a relevance score for a query result, you can include the
score as the value of a feature. Later on you may want to use machine learning
techniques to massage the value (for example, converting the value into one of a finite
set of discrete values, or combining it with other features) but start by using the raw
value produced by the heuristic.

3. Mine the raw inputs of the heuristic. If there is a heuristic for apps that combines the
number of installs, the number of characters in the text, and the day of the week, then
consider pulling these pieces apart, and feeding these inputs into the learning
separately. Some techniques that apply to ensembles apply here (see Rule #40).

4. Modify the label. This is an option when you feel that the heuristic captures information
not currently contained in the label. For example, if you are trying to maximize the
number of downloads, but you also want quality content, then maybe the solution is to
multiply the label by the average number of stars the app received. There is a lot of
space here for leeway. See the section on “Your First Objective”.

Do be mindful of the added complexity when using heuristics in an ML system. Using old
heuristics in your new machine learning algorithm can help to create a smooth transition, but
think about whether there is a simpler way to accomplish the same effect.

Monitoring

In general, practice good alerting hygiene, such as making alerts actionable and having a
dashboard page.

Rule #8: Know the freshness requirements of your system.

How much does performance degrade if you have a model that is a day old? A week old? A
quarter old? This information can help you to understand the priorities of your monitoring. If you
lose 10% of your revenue if the model is not updated for a day, it makes sense to have an
engineer watching it continuously. Most ad serving systems have new advertisements to handle

every day, and must update daily. For instance, if the ML model for Google Play Search is not
updated, it can have an impact on revenue in under a month. Some models for What's Hot in
Google Plus have no post identifier in their model so they can export these models infrequently.
Other models that have post identifiers are updated much more frequently. Also notice that
freshness can change over time, especially when feature columns are added or removed from
your model.

Rule #9: Detect problems before exporting models.

Many machine learning systems have a stage where you export the model to serving. If there is
an issue with an exported model, it is a user-facing issue. If there is an issue before, then itis a
training issue, and users will not notice.

Do sanity checks right before you export the model. Specifically, make sure that the model’s
performance is reasonable on held out data. Or, if you have lingering concerns with the data,
don’t export a model. Many teams continuously deploying models check the area under the
ROC curve (or AUC) before exporting. Issues about models that haven’t been exported
require an e-mail alert, but issues on a user-facing model may require a page. So better to
wait and be sure before impacting users.

Rule #10: Watch for silent failures.

This is a problem that occurs more for machine learning systems than for other kinds of
systems. Suppose that a particular table that is being joined is no longer being updated. The
machine learning system will adjust, and behavior will continue to be reasonably good, decaying
gradually. Sometimes tables are found that were months out of date, and a simple refresh
improved performance more than any other launch that quarter! For example, the coverage of a
feature may change due to implementation changes: for example a feature column could be
populated in 90% of the examples, and suddenly drop to 60% of the examples. Play once had a
table that was stale for 6 months, and refreshing the table alone gave a boost of 2% in install
rate. If you track statistics of the data, as well as manually inspect the data on occassion, you
can reduce these kinds of failures.

Rule #11: Give feature column owners and documentation.

If the system is large, and there are many feature columns, know who created or is maintaining
each feature column. If you find that the person who understands a feature column is leaving,
make sure that someone has the information. Although many feature columns have descriptive
names, it's good to have a more detailed description of what the feature is, where it came from,
and how it is expected to help.

Your First Objective

You have many metrics, or measurements about the system that you care about, but your
machine learning algorithm will often require a single objective, a number that your algorithm

https://en.wikipedia.org/wiki/Receiver_operating_characteristic
https://en.wikipedia.org/wiki/Receiver_operating_characteristic

is “trying” to optimize. | distinguish here between objectives and metrics: a metric is any
number that your system reports, which may or may not be important. See also Rule #2.

Rule #12: Don’t overthink which objective you choose to directly optimize.

You want to make money, make your users happy, and make the world a better place. There are
tons of metrics that you care about, and you should measure them all (see Rule #2). However,
early in the machine learning process, you will notice them all going up, even those that you do
not directly optimize. For instance, suppose you care about number of clicks, time spent on the
site, and daily active users. If you optimize for number of clicks, you are likely to see the time
spent increase.

So, keep it simple and don’t think too hard about balancing different metrics when you can still
easily increase all the metrics. Don’t take this rule too far though: do not confuse your objective
with the ultimate health of the system (see Rule #39). And, if you find yourself increasing the
directly optimized metric, but deciding not to launch, some objective revision may be
required.

Rule #13: Choose a simple, observable and attributable metric for your first objective.
Often you don't know what the true objective is. You think you do but then you as you stare at
the data and side-by-side analysis of your old system and new ML system, you realize you want
to tweak it. Further, different team members often can't agree on the true objective. The ML
objective should be something that is easy to measure and is a proxy for the “true”
objective?. So train on the simple ML objective, and consider having a "policy layer" on top that
allows you to add additional logic (hopefully very simple logic) to do the final ranking.

The easiest thing to model is a user behavior that is directly observed and attributable to an
action of the system:

1. Was this ranked link clicked?

2. Was this ranked object downloaded?

3. Was this ranked object forwarded/replied to/e-mailed?

4. Was this ranked object rated?

5. Was this shown object marked as spam/pornography/offensive?
Avoid modeling indirect effects at first:

1. Did the user visit the next day?

2. How long did the user visit the site?

3. What were the daily active users?
Indirect effects make great metrics, and can be used during A/B testing and during launch
decisions.
Finally, don’t try to get the machine learning to figure out:

1. Is the user happy using the product?

2. Is the user satisfied with the experience?

3. s the product improving the user’s overall well-being?

2 There is often no “true” objective. See Rule #39.

4. How will this affect the company’s overall health?
These are all important, but also incredibly hard. Instead, use proxies: if the user is happy, they
will stay on the site longer. If the user is satisfied, they will visit again tomorrow. Insofar as
well-being and company health is concerned, human judgement is required to connect any
machine learned objective to the nature of the product you are selling and your business plan,
so we don’t end up here.

Rule #14: Starting with an interpretable model makes debugging easier.

Linear regression, logistic regression, and Poisson regression are directly motivated by a
probabilistic model. Each prediction is interpretable as a probability or an expected value. This
makes them easier to debug than models that use objectives (zero-one loss, various hinge
losses, et cetera) that try to directly optimize classification accuracy or ranking performance. For
example, if probabilities in training deviate from probabilities predicted in side-by-sides or by
inspecting the production system, this deviation could reveal a problem.

For example, in linear, logistic, or Poisson regression, there are subsets of the data where the
average predicted expectation equals the average label (1-moment calibrated, or just
calibrated). If you have a feature which is either 1 or 0 for each example, then the set of
examples where that feature is 1 is calibrated. Also, if you have a feature that is 1 for every
example, then the set of all examples is calibrated.

With simple models, it is easier to deal with feedback loops (see Rule #36).

Often, we use these probabilistic predictions to make a decision: e.g. rank posts in decreasing
expected value (i.e. probability of click/download/etc.). However, remember when it comes
time to choose which model to use, the decision matters more than the likelihood of the
data given the model (see Rule #27).

Rule #15: Separate Spam Filtering and Quality Ranking in a Policy Layer.

Quality ranking is a fine art, but spam filtering is a war. The signals that you use to determine
high quality posts will become obvious to those who use your system, and they will tweak their
posts to have these properties. Thus, your quality ranking should focus on ranking content that
is posted in good faith. You should not discount the quality ranking learner for ranking spam
highly. Similarly, “racy” content should be handled separately from Quality Ranking.
Spam filtering is a different story. You have to expect that the features that you need to generate
will be constantly changing. Often, there will be obvious rules that you put into the system (if a
post has more than three spam votes, don’t retrieve it, et cetera). Any learned model will have to
be updated daily, if not faster. The reputation of the creator of the content will play a great role.

At some level, the output of these two systems will have to be integrated. Keep in mind, filtering
spam in search results should probably be more aggressive than filtering spam in email

3 This is true assuming that you have no regularization and that your algorithm has converged. It is
approximately true in general.

https://www.youtube.com/watch?v=bq2_wSsDwkQ

messages. Also, it is a standard practice to remove spam from the training data for the quality
classifier.

ML Phase |l: Feature Engineering

In the first phase of the lifecycle of a machine learning system, the important issue is to get the
training data into the learning system, get any metrics of interest instrumented, and create a
serving infrastructure. After you have a working end to end system with unit and system
tests instrumented, Phase Il begins.

In the second phase, there is a lot of low-hanging fruit. There are a variety of obvious features
that could be pulled into the system. Thus, the second phase of machine learning involves
pulling in as many features as possible and combining them in intuitive ways. During this phase,
all of the metrics should still be rising. There will be lots of launches, and it is a great time to pull
in lots of engineers that can join up all the data that you need to create a truly awesome learning
system.

Rule #16: Plan to launch and iterate.
Don’t expect that the model you are working on now will be the last one that you will launch, or
even that you will ever stop launching models. Thus consider whether the complexity you are
adding with this launch will slow down future launches. Many teams have launched a model per
quarter or more for years. There are three basic reasons to launch new models:

1. you are coming up with new features,

2. you are tuning regularization and combining old features in new ways, and/or

3. you are tuning the objective.

Regardless, giving a model a bit of love can be good: looking over the data feeding into the
example can help find new signals as well as old, broken ones. So, as you build your model,
think about how easy it is to add or remove or recombine features. Think about how easy it is to
create a fresh copy of the pipeline and verify its correctness. Think about whether it is possible
to have two or three copies running in parallel. Finally, don’t worry about whether feature 16 of
35 makes it into this version of the pipeline. You'll get it next quarter.

Rule #17: Start with directly observed and reported features as opposed to learned
features.

This might be a controversial point, but it avoids a lot of pitfalls. First of all, let's describe what a
learned feature is. A learned feature is a feature generated either by an external system (such
as an unsupervised clustering system) or by the learner itself (e.g. via a factored model or deep

learning). Both of these can be useful, but they can have a lot of issues, so they should not be in
the first model.

If you use an external system to create a feature, remember that the system has its own
objective. The external system's objective may be only weakly correlated with your current
objective. If you grab a snapshot of the external system, then it can become out of date. If you
update the features from the external system, then the meanings may change. If you use an
external system to provide a feature, be aware that they require a great deal of care.

The primary issue with factored models and deep models is that they are non-convex. Thus,
there is no guarantee that an optimal solution can be approximated or found, and the local
minima found on each iteration can be different. This variation makes it hard to judge whether
the impact of a change to your system is meaningful or random. By creating a model without
deep features, you can get an excellent baseline performance. After this baseline is achieved,
you can try more esoteric approaches.

Rule #18: Explore with features of content that generalize across contexts.

Often a machine learning system is a small part of a much bigger picture. For example, if you
imagine a post that might be used in What's Hot, many people will plus-one, re-share, or
comment on a post before it is ever shown in What’s Hot. If you provide those statistics to the
learner, it can promote new posts that it has no data for in the context it is optimizing. YouTube
Watch Next could use number of watches, or co-watches (counts of how many times one video
was watched after another was watched) from YouTube search. You can also use explicit user
ratings. Finally, if you have a user action that you are using as a label, seeing that action on the
document in a different context can be a great feature. All of these features allow you to bring
new content into the context. Note that this is not about personalization: figure out if someone
likes the content in this context first, then figure out who likes it more or less.

Rule #19: Use very specific features when you can.

With tons of data, it is simpler to learn millions of simple features than a few complex features.
Identifiers of documents being retrieved and canonicalized queries do not provide much
generalization, but align your ranking with your labels on head queries.. Thus, don’t be afraid of
groups of features where each feature applies to a very small fraction of your data, but overall
coverage is above 90%. You can use regularization to eliminate the features that apply to too
few examples.

Rule #20: Combine and modify existing features to create new features in
human-understandable ways.

There are a variety of ways to combine and modify features. Machine learning systems such as
TensorFlow allow you to pre-process your data through transformations. The two most standard
approaches are “discretizations” and “crosses” .

https://www.tensorflow.org/tutorials/linear/overview.html#feature-columns-and-transformations

Discretization consists of taking a continuous feature and creating many discrete features from
it. Consider a continuous feature such as age. You can create a feature which is 1 when age is
less than 18, another feature which is 1 when age is between 18 and 35, et cetera. Don't

overthink the boundaries of these histograms: basic quantiles will give you most of the impact.

Crosses combine two or more feature columns. A feature column, in TensorFlow's terminology,
is a set of homogenous features, (e.g. {male, female}, {US, Canada, Mexico}, et cetera). A cross
is a new feature column with features in, for example, {male,female} x {US,Canada,M exico} .
This new feature column will contain the feature (male, Canada). If you are using TensorFlow
and you tell TensorFlow to create this cross for you, this (male, Canada) feature will be present
in examples representing male Canadians. Note that it takes massive amounts of data to learn
models with crosses of three, four, or more base feature columns.

Crosses that produce very large feature columns may overfit. For instance, imagine that you are
doing some sort of search, and you have a feature column with words in the query, and you
have a feature column with words in the document. You can combine these with a cross, but
you will end up with a lot of features (see Rule #21). When working with text there are two
alternatives. The most draconian is a dot product. A dot product in its simplest form simply
counts the number of common words between the query and the document. This feature can
then be discretized. Another approach is an intersection: thus, we will have a feature which is
present if and only if the word “pony” is in the document and the query, and another feature
which is present if and only if the word “the” is in the document and the query.

Rule #21: The number of feature weights you can learn in a linear model is roughly
proportional to the amount of data you have.

There are fascinating statistical learning theory results concerning the appropriate level of
complexity for a model, but this rule is basically all you need to know. | have had conversations
in which people were doubtful that anything can be learned from one thousand examples, or
that you would ever need more than 1 million examples, because they get stuck in a certain
method of learning. The key is to scale your learning to the size of your data:

1. If you are working on a search ranking system, and there are millions of different words
in the documents and the query and you have 1000 labeled examples, then you should
use a dot product between document and query features, TE-IDF, and a half-dozen
other highly human-engineered features. 1000 examples, a dozen features.

2. If you have a million examples, then intersect the document and query feature columns,
using regularization and possibly feature selection. This will give you millions of features,
but with regularization you will have fewer. Ten million examples, maybe a hundred
thousand features.

3. If you have billions or hundreds of billions of examples, you can cross the feature
columns with document and query tokens, using feature selection and regularization.
You will have a billion examples, and 10 million features.

Statistical learning theory rarely gives tight bounds, but gives great guidance for a starting point.
In the end, use Rule #28 to decide what features to use.

https://en.wikipedia.org/wiki/Tf%E2%80%93idf

Rule #22: Clean up features you are no longer using.

Unused features create technical debt. If you find that you are not using a feature, and that
combining it with other features is not working, then drop it out of your infrastructure. You want
to keep your infrastructure clean so that the most promising features can be tried as fast as
possible. If necessary, someone can always add back your feature.

Keep coverage in mind when considering what features to add or keep. How many examples
are covered by the feature? For example, if you have some personalization features, but only
8% of your users have any personalization features, it is not going to be very effective.

At the same time, some features may punch above their weight. For example, if you have a
feature which covers only 1% of the data, but 90% of the examples that have the feature are
positive, then it will be a great feature to add.

Human Analysis of the System

Before going on to the third phase of machine learning, it is important to focus on something that
is not taught in any machine learning class: how to look at an existing model, and improve it.
This is more of an art than a science, and yet there are several anti-patterns that it helps to
avoid.

Rule #23: You are not a typical end user.

This is perhaps the easiest way for a team to get bogged down. While there are a lot of benefits
to fishfooding (using a prototype within your team) and dogfooding (using a prototype within
your company), employees should look at whether the performance is correct. While a change
which is obviously bad should not be used, anything that looks reasonably near production
should be tested further, either by paying laypeople to answer questions on a crowdsourcing
platform, or through a live experiment on real users.

There are two reasons for this. The first is that you are too close to the code. You may be
looking for a particular aspect of the posts, or you are simply too emotionally involved (e.g.
confirmation bias). The second is that your time is too valuable. Consider the cost of 9
engineers sitting in a one hour meeting, and think of how many contracted human labels that
buys on a crowdsourcing platform.

If you really want to have user feedback, use user experience methodologies. Create user
personas (one description is in Bill Buxton’s Designing User Experiences) early in a process and
do usability testing (one description is in Steve Krug’s Don’t Make Me Think) later. User
personas involve creating a hypothetical user. For instance, if your team is all male, it might help
to design a 35-year old female user persona (complete with user features), and look at the
results it generates rather than 10 results for 25-40 year old males. Bringing in actual people to

watch their reaction to your site (locally or remotely) in usability testing can also get you a fresh
perspective.

Rule #24: Measure the delta between models.

One of the easiest, and sometimes most useful measurements you can make before any users
have looked at your new model is to calculate just how different the new results are from
production. For instance, if you have a ranking problem, run both models on a sample of queries
through the entire system, and look at the size of the symmetric difference of the results
(weighted by ranking position). If the difference is very small, then you can tell without running
an experiment that there will be little change. If the difference is very large, then you want to
make sure that the change is good. Looking over queries where the symmetric difference is high
can help you to understand qualitatively what the change was like. Make sure, however, that the
system is stable. Make sure that a model when compared with itself has a low (ideally zero)
symmetric difference.

Rule #25: When choosing models, utilitarian performance trumps predictive power.
Your model may try to predict click-through-rate. However, in the end, the key question is what
you do with that prediction. If you are using it to rank documents, then the quality of the final
ranking matters more than the prediction itself. If you predict the probability that a document is
spam and then have a cutoff on what is blocked, then the precision of what is allowed through
matters more. Most of the time, these two things should be in agreement: when they do not
agree, it will likely be on a small gain. Thus, if there is some change that improves log loss but
degrades the performance of the system, look for another feature. When this starts happening
more often, it is time to revisit the objective of your model.

Rule #26: Look for patterns in the measured errors, and create new features.

Suppose that you see a training example that the model got “wrong”. In a classification task, this
could be a false positive or a false negative. In a ranking task, it could be a pair where a positive
was ranked lower than a negative. The most important point is that this is an example that the
machine learning system knows it got wrong and would like to fix if given the opportunity. If you
give the model a feature that allows it to fix the error, the model will try to use it.

On the other hand, if you try to create a feature based upon examples the system doesn’t see
as mistakes, the feature will be ignored. For instance, suppose that in Play Apps Search,
someone searches for “free games”. Suppose one of the top results is a less relevant gag app.
So you create a feature for “gag apps”. However, if you are maximizing number of installs, and
people install a gag app when they search for free games, the “gag apps” feature won't have the
effect you want.

Once you have examples that the model got wrong, look for trends that are outside your current
feature set. For instance, if the system seems to be demoting longer posts, then add post
length. Don’t be too specific about the features you add. If you are going to add post length,

don’t try to guess what long means, just add a dozen features and the let model figure out what
to do with them (see Rule #21). That is the easiest way to get what you want.

Rule #27: Try to quantify observed undesirable behavior.

Some members of your team will start to be frustrated with properties of the system they don't
like which aren’t captured by the existing loss function. At this point, they should do whatever it
takes to turn their gripes into solid numbers. For example, if they think that too many “gag apps”
are being shown in Play Search, they could have human raters identify gag apps. (You can
feasibly use human-labelled data in this case because a relatively small fraction of the queries
account for a large fraction of the traffic.) If your issues are measurable, then you can start using
them as features, objectives, or metrics. The general rule is “measure first, optimize second”.

Rule #28: Be aware that identical short-term behavior does not imply identical long-term
behavior.

Imagine that you have a new system that looks at every doc_id and exact_query, and then
calculates the probability of click for every doc for every query. You find that its behavior is
nearly identical to your current system in both side by sides and A/B testing, so given its
simplicity, you launch it. However, you notice that no new apps are being shown. Why? Well,
since your system only shows a doc based on its own history with that query, there is no way to
learn that a new doc should be shown.

The only way to understand how such a system would work long-term is to have it train only on
data acquired when the model was live. This is very difficult.

Training-Serving Skew

Training-serving skew is a difference between performance during training and performance
during serving. This skew can be caused by:

e a discrepancy between how you handle data in the training and serving pipelines, or

e achange in the data between when you train and when you serve, or

e a feedback loop between your model and your algorithm.
We have observed production machine learning systems at Google with training-serving skew
that negatively impacts performance. The best solution is to explicitly monitor it so that system
and data changes don’t introduce skew unnoticed.

Rule #29: The best way to make sure that you train like you serve is to save the set of
features used at serving time, and then pipe those features to a log to use them at
training time.

Even if you can’t do this for every example, do it for a small fraction, such that you can verify the
consistency between serving and training (see Rule #37). Teams that have made this
measurement at Google were sometimes surprised by the results. YouTube home page

switched to logging features at serving time with significant quality improvements and a
reduction in code complexity, and many teams are switching their infrastructure as we speak.

Rule #30: Importance weight sampled data, don’t arbitrarily drop it!

When you have too much data, there is a temptation to take files 1-12, and ignore files 13-99.
This is a mistake: dropping data in training has caused issues in the past for several teams (see
Rule #6). Although data that was never shown to the user can be dropped, importance
weighting is best for the rest. Importance weighting means that if you decide that you are going
to sample example X with a 30% probability, then give it a weight of 10/3. With importance
weighting, all of the calibration properties discussed in Rule #14 still hold.

Rule #31: Beware that if you join data from a table at training and serving time, the data in
the table may change.

Say you join doc ids with a table containing features for those docs (such as number of
comments or clicks). Between training and serving time, features in the table may be changed.
Your model's prediction for the same document may then differ between training and serving.
The easiest way to avoid this sort of problem is to log features at serving time (see Rule #32). If
the table is changing only slowly, you can also snapshot the table hourly or daily to get
reasonably close data. Note that this still doesn’t completely resolve the issue.

Rule #32: Re-use code between your training pipeline and your serving pipeline
whenever possible.

Batch processing is different than online processing. In online processing, you must handle
each request as it arrives (e.g. you must do a separate lookup for each query), whereas in batch
processing, you can combine tasks (e.g. making a join). At serving time, you are doing online
processing, whereas training is a batch processing task. However, there are some things that
you can do to re-use code. For example, you can create an object that is particular to your
system where the result of any queries or joins can be stored in a very human readable way,
and errors can be tested easily. Then, once you have gathered all the information, during
serving or training, you run a common method to bridge between the human-readable object
that is specific to your system, and whatever format the machine learning system expects. This
eliminates a source of training-serving skew. As a corollary, try not to use two different
programming languages between training and serving - that decision will make it nearly
impossible for you to share code.

Rule #33: If you produce a model based on the data until January 5th, test the model on
the data from January 6th and after.

In general, measure performance of a model on the data gathered after the data you trained the
model on, as this better reflects what your system will do in production. If you produce a model
based on the data until January 5th, test the model on the data from January 6th. You will
expect that the performance will not be as good on the new data, but it shouldn’t be radically
worse. Since there might be daily effects, you might not predict the average click rate or

conversion rate, but the area under the curve, which represents the likelihood of giving the
positive example a score higher than a negative example, should be reasonably close.

Rule #34: In binary classification for filtering (such as spam detection or determining
interesting e-mails), make small short-term sacrifices in performance for very clean data.
In a filtering task, examples which are marked as negative are not shown to the user. Suppose
you have a filter that blocks 75% of the negative examples at serving. You might be tempted to
draw additional training data from the instances shown to users. For example, if a user marks an
email as spam that your filter let through, you might want to learn from that.

But this approach introduces sampling bias. You can gather cleaner data if instead during
serving you label 1% of all traffic as “held out”, and send all held out examples to the user. Now
your filter is blocking at least 74% of the negative examples. These held out examples can
become your training data.

Note that if your filter is blocking 95% of the negative examples or more, this becomes less
viable. Even so, if you wish to measure serving performance, you can make an even tinier
sample (say 0.1% or 0.001%). Ten thousand examples is enough to estimate performance quite
accurately.

Rule #35: Beware of the inherent skew in ranking problems.

When you switch your ranking algorithm radically enough that different results show up, you
have effectively changed the data that your algorithm is going to see in the future. This kind of
skew will show up, and you should design your model around it. There are multiple different
approaches. These approaches are all ways to favor data that your model has already seen.

1. Have higher regularization on features that cover more queries as opposed to those
features that are on for only one query. This way, the model will favor features that are
specific to one or a few queries over features that generalize to all queries. This
approach can help prevent very popular results from leaking into irrelevant queries. Note
that this is opposite the more conventional advice of having more regularization on
feature columns with more unique values.

2. Only allow features to have positive weights. Thus, any good feature will be better than a
feature that is “unknown”.

3. Don’t have document-only features. This is an extreme version of #1. For example, even
if a given app is a popular download regardless of what the query was, you don’'t want to
show it everywhere*. Not having document-only features keeps that simple.

4 The reason you don’t want to show a specific popular app everywhere has to do with the importance of
making all the desired apps reachable. For instance, if someone searches for “bird watching app”, they
might download “angry birds”, but that certainly wasn’t their intent. Showing such an app might improve
download rate, but leave the user’s needs ultimately unsatisfied.

Rule #36: Avoid feedback loops with positional features.

The position of content dramatically affects how likely the user is to interact with it. If you put an
app in the first position it will be clicked more often, and you will be convinced it is more likely to
be clicked. One way to deal with this is to add positional features, i.e. features about the position
of the content in the page. You train your model with positional features, and it learns to weight,
for example, the feature "1st-position" heavily. Your model thus gives less weight to other factors
for examples with "1st-position=true". Then at serving you don't give any instances the
positional feature, or you give them all the same default feature, because you are scoring
candidates before you have decided the order in which to display them.

Note that it is important to keep any positional features somewhat separate from the rest of the
model because of this asymmetry between training and testing. Having the model be the sum of
a function of the positional features and a function of the rest of the features is ideal. For
example, don’t cross the positional features with any document feature.

Rule #37: Measure Training/Serving Skew.
There are several things that can cause skew in the most general sense. Moreover, you can
divide it into several parts:

1. The difference between the performance on the training data and the holdout data. In
general, this will always exist, and it is not always bad.

2. The difference between the performance on the holdout data and the “next-day” data.
Again, this will always exist. You should tune your regularization to maximize the
next-day performance. However, large drops in performance between holdout and
next-day data may indicate that some features are time-sensitive and possibly degrading
model performance.

3. The difference between the performance on the “next-day” data and the live data. If you
apply a model to an example in the training data and the same example at serving, it
should give you exactly the same result (see Rule #5). Thus, a discrepancy here
probably indicates an engineering error.

ML Phase lll: Slowed Growth, Optimization
Refinement, and Complex Models

There will be certain indications that the second phase is reaching a close. First of all, your
monthly gains will start to diminish. You will start to have tradeoffs between metrics: you will see
some rise and others fall in some experiments. This is where it gets interesting. Since the gains
are harder to achieve, the machine learning has to get more sophisticated.

A caveat: this section has more blue-sky rules than earlier sections. We have seen many teams
go through the happy times of Phase | and Phase Il machine learning. Once Phase Ill has been
reached, teams have to find their own path.

Rule #38: Don’t waste time on new features if unaligned objectives have become the
issue.

As your measurements plateau, your team will start to look at issues that are outside the scope
of the objectives of your current machine learning system. As stated before, if the product goals
are not covered by the existing algorithmic objective, you need to change either your objective
or your product goals. For instance, you may optimize clicks, plus-ones, or downloads, but make
launch decisions based in part on human raters.

Rule #39: Launch decisions are a proxy for long-term product goals.

Alice has an idea about reducing the logistic loss of predicting installs. She adds a feature. The
logistic loss drops. When she does a live experiment, she sees the install rate increase.
However, when she goes to a launch review meeting, someone points out that the number of
daily active users drops by 5%. The team decides not to launch the model. Alice is
disappointed, but now realizes that launch decisions depend on multiple criteria, only some of
which can be directly optimized using ML.

The truth is that the real world is not dungeons and dragons: there are no “hit points” identifying
the health of your product. The team has to use the statistics it gathers to try to effectively
predict how good the system will be in the future. They need to care about engagement, 1 day
active users (DAU), 30 DAU, revenue, and advertiser’s return on investment. These metrics that
are measureable in A/B tests in themselves are only a proxy for more long-term goals: satisfying
users, increasing users, satisfying partners, and profit, which even then you could consider
proxies for having a useful, high quality product and a thriving company five years from now.

The only easy launch decisions are when all metrics get better (or at least do not get
worse). If the team has a choice between a sophisticated machine learning algorithm, and a
simple heuristic, if the simple heuristic does a better job on all these metrics, it should choose
the heuristic. Moreover, there is no explicit ranking of all possible metric values. Specifically,
consider the following two scenarios:

Experiment Daily Active Users Revenue/Day
A 1 million $4 million
B 2 million $2 million

If the current system is A, then the team would be unlikely to switch to B. If the current system is
B, then the team would be unlikely to switch to A. This seems in conflict with rational behavior:
however, predictions of changing metrics may or may not pan out, and thus there is a large risk
involved with either change. Each metric covers some risk with which the team is concerned.

Moreover, no metric covers the team'’s ultimate concern, “where is my product going to be five
years from now”?

Individuals, on the other hand, tend to favor one objective that they can directly optimize.
Most machine learning tools favor such an environment. An engineer banging out new features
can get a steady stream of launches in such an environment. There is a type of machine
learning, multi-objective learning, which starts to address this problem. For instance, one can
formulate a constraint satisfaction problem that has lower bounds on each metric, and optimizes
some linear combination of metrics. However, even then, not all metrics are easily framed as
machine learning objectives: if a document is clicked on or an app is installed, it is because that
the content was shown. But it is far harder to figure out why a user visits your site. How to
predict the future success of a site as a whole is Al-complete, as hard as computer vision or
natural language processing.

Rule #40: Keep ensembles simple.

Unified models that take in raw features and directly rank content are the easiest models to
debug and understand. However, an ensemble of models (a “model” which combines the scores
of other models) can work better. To keep things simple, each model should either be an
ensemble only taking the input of other models, or a base model taking many features,
but not both. If you have models on top of other models that are trained separately, then
combining them can result in bad behavior.

Use a simple model for ensembling that takes only the output of your “base” models as inputs.
You also want to enforce properties on these ensemble models. For example, an increase in the
score produced by a base model should not decrease the score of the ensemble. Also, it is best
if the incoming models are semantically interpretable (for example, calibrated) so that changes
of the underlying models do not confuse the ensemble model. Also, enforce that an increase
in the predicted probability of an underlying classifier does not decrease the predicted
probability of the ensemble.

Rule #41: When performance plateaus, look for qualitatively new sources of information
to add rather than refining existing signals.

You've added some demographic information about the user. You've added some information
about the words in the document. You have gone through template exploration, and tuned the
regularization. You haven’t seen a launch with more than a 1% improvement in your key metrics
in a few quarters. Now what?

It is time to start building the infrastructure for radically different features, such as the history of
documents that this user has accessed in the last day, week, or year, or data from a different
property. Use wikidata entities or something internal to your company (such as Google’s
knowledge graph). Use deep learning. Start to adjust your expectations on how much return you

https://en.wikipedia.org/wiki/AI-complete
https://en.wikipedia.org/wiki/Wikidata
https://en.wikipedia.org/wiki/Knowledge_Graph

expect on investment, and expand your efforts accordingly. As in any engineering project, you
have to weigh the benefit of adding new features against the cost of increased complexity.

Rule #42: Don’t expect diversity, personalization, or relevance to be as correlated with
popularity as you think they are.

Diversity in a set of content can mean many things, with the diversity of the source of the
content being one of the most common. Personalization implies each user gets their own
results. Relevance implies that the results for a particular query are more appropriate for that
query than any other. Thus all three of these properties are defined as being different from the
ordinary.

The problem is that the ordinary tends to be hard to beat.

Note that if your system is measuring clicks, time spent, watches, +1s, reshares, et cetera, you
are measuring the popularity of the content. Teams sometimes try to learn a personal model
with diversity. To personalize, they add features that would allow the system to personalize
(some features representing the user’s interest) or diversify (features indicating if this document
has any features in common with other documents returned, such as author or content), and
find that those features get less weight (or sometimes a different sign) than they expect.

This doesn’t mean that diversity, personalization, or relevance aren’t valuable. As pointed out in
the previous rule, you can do post-processing to increase diversity or relevance. If you see
longer term objectives increase, then you can declare that diversity/relevance is valuable, aside
from popularity. You can then either continue to use your post-processing, or directly modify the
objective based upon diversity or relevance.

Rule #43: Your friends tend to be the same across different products. Your interests tend
not to be.

Teams at Google have gotten a lot of traction from taking a model predicting the closeness of a
connection in one product, and having it work well on another. Your friends are who they are. On
the other hand, | have watched several teams struggle with personalization features across
product divides. Yes, it seems like it should work. For now, it doesn’t seem like it does. What has
sometimes worked is using raw data from one property to predict behavior on another. Also,
keep in mind that even knowing that a user has a history on another property can help. For
instance, the presence of user activity on two products may be indicative in and of itself.

Related Work

There are many documents on machine learning at Google as well as externally.
e Machine Learning Crash Course: an introduction to applied machine learning

http://go/ml
https://developers.google.com/machine-learning/crash-course

e Machine Learning: A Probabilistic Approach by Kevin Murphy for an understanding of
the field of machine learning

e Practical Advice for the Analysis of Large, Complex Data Sets: a data science approach
to thinking about data sets.

Deep Learning by lan Goodfellow et al for learning nonlinear models
Google paper on_technical debt, which has a lot of general advice.
Tensorflow Documentation

Acknowledgements

Thanks to David Westbrook, Peter Brandt, Samuel leong, Chenyu Zhao, Li Wei, Michalis
Potamias, Evan Rosen, Barry Rosenberg, Christine Robson, James Pine, Tal Shaked, Tushar
Chandra, Mustafa Ispir, Jeremiah Harmsen, Konstantinos Katsiapis, Glen Anderson, Dan
Duckworth, Shishir Birmiwal, Gal Elidan, Su Lin Wu, Jaihui Liu, Fernando Pereira, and
Hrishikesh Aradhye for many corrections, suggestions, and helpful examples for this document.
Also, thanks to Kristen Lefevre, Suddha Basu, and Chris Berg who helped with an earlier
version. Any errors, omissions, or (gasp!) unpopular opinions are my own.

Appendix

There are a variety of references to Google products in this document. To provide more context,
| give a short description of the most common examples below.

YouTube Overview

YouTube is a streaming video service. Both YouTube Watch Next and YouTube Home Page
teams use ML models to rank video recommendations. Watch Next recommends videos to
watch after the currently playing one, while Home Page recommends videos to users browsing
the home page.

Google Play Overview

Google Play has many models solving a variety of problems. Play Search, Play Home Page
Personalized Recommendations, and ‘Users Also Installed’ apps all use machine learning.

Google Plus Overview

Google Plus uses machine learning in a variety of situations: ranking posts in the “stream” of
posts being seen by the user, ranking “What's Hot” posts (posts that are very popular now),
ranking people you know, et cetera.

https://www.cs.ubc.ca/~murphyk/MLbook/
http://www.unofficialgoogledatascience.com/2016/10/practical-advice-for-analysis-of-large.html
http://www.iro.umontreal.ca/~bengioy/dlbook/
http://research.google.com/pubs/pub43146.html
https://www.tensorflow.org/

Paper SAS2360-2016

Best Practices for Machine Learning Applications
Brett Wujek, Patrick Hall, and Funda Glines

SAS Institute Inc.

ABSTRACT

Building representative machine learning models that generalize well on future data requires careful
consideration both of the data at hand and of assumptions about the various available training algorithms.
Data are rarely in an ideal form that enables algorithms to train effectively. Some algorithms are designed
to account for important considerations such as variable selection and handling of missing values,
whereas other algorithms require additional preprocessing of the data or appropriate tweaking of the
algorithm options. Ultimate evaluation of a model’s quality requires appropriate selection and
interpretation of an assessment criterion that is meaningful for the given problem. This paper discusses
many of the most common issues faced by machine learning practitioners and provides guidance for
using these powerful algorithms to build effective models.

INTRODUCTION

The study of machine learning algorithms often focuses on minimizing the error over an unknown data-
generating distribution (a significant departure from classical statistics), quantifying the complexity of such
algorithms, and establishing the bounds of their error (Vapnik 1996). This paper seeks to make no
comment on the mathematical and statistical study of algorithms, but rather to guide the machine learning
practitioner through the common steps of data preparation, model training, and model deployment.

When applied judiciously, machine learning solutions deliver significant value to a business by extracting
previously hidden knowledge from stored or streaming data. Consider the data to be a stockpile of
building material and supplies, and machine learning algorithms to be the powerful tools that can help
construct a valuable structure from that stockpile. When you extend this analogy to incorporate skilled
craftsmen operating these tools, the final product still depends heavily on the existence of a well-defined
plan, adherence to sound building practices, and avoidance of mistakes at critical junctures in the
process.

Using machine learning effectively and successfully boils down to a combination of knowledge,
awareness, and ultimately taking a scientific approach to the overall process. Machine learning is a
fundamental element of data science. In that regard, there exists an implied commitment to taking a
scientific approach when establishing and executing a machine learning solution (Donoho 2015). Blindly
supplying data to these powerful algorithms with little forethought given to the nature of the data, the
strengths/weaknesses and training options of the algorithms, appropriate assessment, and deployment
desires will likely result in models that do not adequately address your business problem. Quite simply,
better modeling practices lead to better business decisions.

This paper examines best practices and highlights common mistakes and oversights that are often
witnessed in the various phases of devising a machine learning application: data preparation, training,
and deployment. Table 1 outlines some of the most common challenges faced during implementation of a
machine learning application along with corresponding suggested best practices. The remainder of this
paper provides detailed descriptions and explanations for each of these issues.

Topic Common Challenges
Data Preparation

Suggested Best Practice

* Biased data
* |Incomplete data
The curse of dimensionality

« Sparsity

Data collection

+ Take time to understand the business problem and its

context
« [Enrich the data
+ Dimension-reduction techniques
+ Change representation of data (e.g., COD)

Value ranges as columns

Restructure the data to be “tidy” by using the mel and

High-cardinality

Unknown categorical values in holdout data

“Untidy” data * Multiple variables in the same column cast process
* Variables in both rows and columns
* Qut-of-range numeric values and unknown + Robust methods (e.g., Huber loss function)
. categorical values in score data + Discretization (binning)
Qutliers * Undue influence on squared loss functions + Winsorizing
(e.qg., regression, GBM, k-means)
= Low primary event occurrence rate + Proportional oversampling
Spa_rse EREEL * Owerwhelming preponderance of zero or + Inverse prior probabilities
variables . - -
missing values in target + Mpdure models
. . * Misleading variable importance Standardization
:2:;2:5‘;:; disparate | Dista_nce mea_sure imbalance
= Gradient dominance
« Owerfitling + Discretization (binning)

+ Weight of evidence

e + Leave-one-out event rate
= |nformation loss + Discretization (binning)
Missing data * Bias + Imputation
+ Tree-based modeling techniques
Strong Unstable parameter estimates + Regularization
multicollinearity + Dimension reduction
Training
High-variance and low-bias models that fail fo + Regularization
Overfitting generalize well + Noise injection
+ [Pariitioning or cross validation
Combinatorial explosion of hyperparameters in + Local search optimization, including genetic
Hyp.erparameler conventional algorithms (e.g., deep neural algorithms
tuning networks, super leamers) + Grid search, random search

» Single models that fail to provide adequate
accuracy

= High-variance and low-bias models that fail fo
generalize well

Ensemble models

+ Established ensemble methods (e.g., bagaing,
boosting, stacking)
+ Custom or manual combinations of predictions

Large number of parameters, rules, or other

complexity obscures model interpretation
Model Interpretation plexity P

. Single-threaded algorithim implementations

Computational * Heavy reliance on interpreted languages

+ Variable selection by regulanzation (e.g., L1)

+ Burrogate models

+ [Pariial dependency plots, variable importance
measures

+ Train many single-threaded models in parallel
+ Hardware acceleration (e.g. 33D, GFU)

resou_rce_ + Low-level, native libraries
exploitation + Distributed computing, when appropriate
Deployment

Trained model logic must be transferred from a
development environment to an operational
computing system fo assist in organizational
decision-making processes

Model deployment

+ Poriable scoring code or scoring executables
+ In-database scoring
+ Web service scoring

* Business problem or market conditions have
changed since the model was created
Model decay = New observations fall outside domain of
training data

+ Monitor models for decreasing accuracy
+ Updatefretrain models regularly

+ Champion-challenger tests

+ Online updates

Table 1. Best Practices for Common Machine Learning Challenges

PREPARATION

Effective machine learning models are built on a foundation of well-prepared data. The importance of this
phase cannot be overstated. In fact, it is commonly proclaimed that 80% of the time spent in devising a
successful machine learning application is spent in data preparation (Dasu and Johnson 2003). Data
preparation is not strictly about appropriately transforming and cleaning existing data; it also includes a
good understanding of the features that need to be considered and ensuring that the data at hand are
appropriate in the first place. Shortcuts in data preparation will shortchange your models. As they say,
“garbage in, garbage out.” Take the time to cultivate your data, and be wary of the common challenges
described in this section.

ENSURING SUFFICIENT AND APPROPRIATE DATA
Do You Have the Right Data?

Before you simply throw your data into a modeling algorithm, before you even start to perform
transformations to clean and shape your data to a form more suitable for modeling, start by asking
yourself “do | have the right data to answer the business question being asked?” Just because you have
a lot of data doesn’t mean you have the right data. Ensure that the data are representative of the entire
domain of interest—that the observations cover the anticipated range of values when this model is used
in production. Beware of the perils of extrapolation, and understand that machine learning algorithms
build models that are representative of the available training samples. The algorithms can be very
inaccurate outside of that subspace, as shown in the example of various neural networks that are trained
to the data shown in Figure 1 from Lohninger (1999). If you can collect more data to account for the
domain of anticipated application of your model, your resulting model will probably be more effective. In
addition to understanding the domain of the input variables, make certain that the target values you
observe in the data set to be used for training include values representative of what you expect when you
deploy the model. In particular, if your target is nominal, then the trained model will only be able to predict
the specific values in your training set.

Network response

30
MWet Structure: 1 /10 /1

data range of
training set

Figure 1. Highly Inaccurate Model Predictions from Extrapolation (Lohninger 1999)

Data Partitioning and Leakage

In typical machine learning tasks, data are divided into different sets (partitions): some data for training
the model and some data for evaluating the model. It is critical that all transformations that are used to
prepare the training data are applied to any validation, test, or other holdout data. It is also critically
important that information from holdout data does not leak into the training data. Information leakage can
occur in many ways and can potentially lead to overfitting or overly optimistic error measurements. For
example, think of taking a mean or median across your data before partitioning and then later using this
mean or median to impute missing values across all partitions of your data. In this case, your training data
would be aware of information from your validation, test, or holdout partitions. To avoid this type of
leakage, values for imputation and other basic transformations should be generated from only the training
data or within each partition independently. Feature extraction can also lead to leakage. Consider
principal component analysis (PCA), where features are created by decomposing a covariance or
correlation matrix. If that covariance or correlation matrix is generated from all your data and then the
derived principal component features or scores are used across all partitions of your data, your training
data will be contaminated by information from other partitions. For more complex transformations such as
feature extraction and binning, it is best to develop formulas or rules from the training data that can be
applied to other partitions of data in order to generate the required features.

Accounting for Rare Events

It is also important to be mindful of your target of interest and understand whether it can be characterized
as a rare event relative to your total number of samples. Applications such as detecting fraudulent activity
must take special steps to ensure that the data used to train the model include a representative number
of fraudulent samples in in order to capture the event sufficiently (for example, 1 out of every 1,000 credit
card transactions is fraudulent). Fitting a model to such data without accounting for the extreme
imbalance in the occurrence of the event will provide you with a model that is extremely accurate at telling
you absolutely nothing of value. Special sampling methods that modify an imbalanced data set are
commonly used in order to provide a more balanced distribution when modeling rare events (He and
Garcia 2009). These techniques include oversampling and undersampling methods.

In oversampling, the instances of the rare event class are increased by adding randomly selected
instances from the existing rare events to achieve a more balanced overall distribution (usually close to
50%). This enables your model to more easily detect and express the relationship between features and
the target of interest. Just realize that doing so requires you to adjust your model predictions to account
for the unnatural bias you have introduced to the rare event, and that the predicted event probabilities and
the false positive and false negative rates will not be accurate. In SAS® Enterprise Miner™ you can adjust
your model predictions by defining a target profile and using weighting or offset methods that incorporate
the probability of the event as observed in the complete population (the prior probabilities) versus the
proportion of the event actually witnessed in the training set—that is, the posterior probabilities in the
oversampled data set (Wielenga 2007). Oversampling has the additional benefit of enabling you to train
on a more reasonably sized sample rather than requiring a very large sample simply to ensure that more
rare event observations are included. A more reasonably sized sample results in faster training, allowing
more time to experiment with different models. One problem with oversampling is that it can lead to
overfitting because an excessive amount of replicated data for the rare class is used (Mease, Wyner, and
Buja 2007).

In contrast to oversampling, undersampling removes instances from the majority class in order to adjust
the balance of the original data set. For undersampling, the problem is relatively obvious—removing
examples from the majority class might cause the classifier to miss important information from that class.
To overcome this problem, you can use informed undersampling algorithms such as EasyEnsemble and
BalanceCascade. Both of these techniques are very straightforward. The EasyEnsemble method
independently samples several subsets from the majority class and develops multiple classifiers that are
trained on the combination of each subset with the minority class data. In this way, EasyEnsemble can be
considered to be an unsupervised learning algorithm that explores the majority class data by using
independent random sampling with replacement. On the other hand, the BalanceCascade algorithm takes
a supervised learning approach that develops an ensemble of classifiers to systematically select which
majority class examples to undersample (Zhang and Mani 2003).

Another way to deal with rare events is to fit zero-inflated regression models, which are special cases of
finite mixture models. Zero-inflated models view data as a mixture of a constant distribution (which always
generates zero counts) and another distribution (which always generates nonzero counts), such as a
Poisson, binomial, or multinomial distribution. Using zero-inflated models to model rare events enables
you to generate a mixing probability that tells what percentage of data comes from a constant distribution
and what percentage comes from the other distribution. You can also use these models for clustering rare
events by assigning each observation to a component that has the highest posterior probability. In
addition, handling rare events in the regression modeling framework is advantageous because it
generates interpretable models.

TENDING TO THE DATA STRUCTURE AND FEATURE CONTENT

Assuming you have the right data, it is important to examine and understand the values of the features,
both within each individual feature and across the set of features. After you ensure that the structure of
your data is appropriate for your machine learning application, you should look for large discrepancies in
magnitude among interval variables, high cardinality among nominal variables, and outliers and missing
values within the values of each feature.

Data Structure

The original data set presented to you might be in a form that is ill-suited for applying machine learning
algorithms to build models or identify patterns. If the data are unstructured or semi-structured (such as
text from logs or information in XML format), you need to transform the data set in some way to produce a
structured data set that is more suitable for modeling. But even if you have structured data, you should
ensure that the rows represent what you consider to be observations and that the columns represent
feature or target variables. This type of representation is referred to as “tidy data” in (Wickham 2014).

Take the time to transform your data set into a tidy data set so that you start the machine learning
application with “a standardized way to link the structure of a dataset (its physical layout) with its
semantics (its meaning)” (Wickham 2014). Wickham defines the tidying process to include the following
techniques:

e Melting: When column headers contain values rather than true variables, melt (stack) those columns
into two columns that are represented across multiple rows: one column for the original column
header (which is really a value) and the other for the value from the original column (often a
frequency). For example, if a data set has columns for income ranges such as <$10k, $10k—-$30k,
and so on, with the values in those columns being the frequency of that income range for each
observation (such as incomes within states), melt all these columns into two columns for Income
Range and Frequency (such that you have multiple rows for each state).

e String-splitting: When a column actually contains multiple pieces of information, split it into multiple
columns. For example, a column that contains M-20, F-35, M-42, and so on should be split into
gender and age variables in two separate columns. Note that the melting process might result in such
a column, so you might need to split after melting.

e Casting: When a column actually contains names of variables instead of values, cast (unstack) the
column into multiple columns for each of the values (which are actually variables). Casting is the
inverse of the melting process.

The ability of a machine learning algorithm to train an effective model for your business problem is highly
dependent on the structure of your data set and on ensuring that features and observations are properly
defined. Tidying your data set by melting, string-splitting, and casting can help you obtain more
informative features and therefore increase model accuracy.

Standardization

Your data set most likely has features whose values are significantly different in magnitude and range.
This disparity can degrade the performance of many machine learning algorithms, particularly those that
distinguish observations and feature effectiveness based on a distance measurement (such as k-means
clustering or nearest neighbor approaches), those that use numerical gradient information in their solution
(such as neural networks and support vector machines), those that depend on a measure of the variance
(such as principal component analysis), and those that penalize variables based on the size of their
corresponding parameters (such as penalized regression techniques). The objective functions used for
solving many of these machine learning algorithms can be dominated by the features that have large
variance relative to other input features, preventing the model from being able to learn the relationship
with the other features. For example, penalized regression techniques (which penalize the objective
based on the magnitudes of the coefficients) disproportionately penalize the higher magnitude terms.
However, some algorithms are scale invariant; for example, decision trees might bin inputs before splitting
or make splitting decisions based on feature values independently of other features. But in general you
need to account for the disparity in the magnitudes and ranges of values.

To mitigate the detrimental effect of widely varying magnitudes and ranges, you should transform your
interval feature values to be on a similar scale, commonly standardizing to have mean 0 and variance 1
(z-scoring). Note that if your data set is sparse (that is, it contains a high percentage of 0 values),
standardizing in this manner would destroy this sparseness and thus lose the ability to use methods that
process sparse data very efficiently. In that case, a good alternative would be to simply scale the data
based on the range or maximum absolute value of each feature. Also, if you have extreme outliers (in the
far tails of the distribution) or nonnormally distributed features, z-scoring might not bring all values into
scale. For extreme outliers, range standardization could compact all the other values into a very small
percentage of the range and render them ineffectual in modeling; you might need to address outliers
before standardizing. However you choose to scale your data, realize that you need to apply this same
scaling process to new observations that are scored with any subsequently generated model in the future.

Standardization serves to put all variables on a level playing field, so to speak. However, it does not
account for other issues within a set of individual variable values that must be considered. Some of the
more common issues are covered in the following sections.

Managing Outliers

When you build models to predict future behavior or identify patterns, ideally you have a data set whose
feature values are representative of typical observations. However, you will often find outliers in your
data—observations that are very distinct from the others in one or more of the feature values. This can be
true of interval variables that have values that occur in the extreme tails or as abnormal spikes in the
distribution, and of nominal variables that have values that occur only in an extremely small percentage of
the observations. Although outliers can certainly be very informative and can identify anomalies that
deserve special attention, they can be quite detrimental to training an effective generalizable model.
Some algorithms are more robust at dealing with outliers, as described in the following list:

e Supervised learning algorithms that use a squared-loss function to determine the parameters that
best fit the training data are heavily influenced by outliers. For example, gradient boosting algorithms
add large weights to observations that are considered to be hard cases.

e If you are clustering your data, the effect of outliers depends on the clustering method. For example:

o k-means clustering can be quite sensitive to outliers because it tries to minimize the sum of
squared distances from cluster member points to the cluster means; a large deviation caused by
an outlier receives a lot of weight.

o Density-based clustering (such as DBSCAN) tends to be less sensitive to outliers, usually
identifying them as individual outlying clusters.

o Hierarchical clustering simply assigns outliers to their own clusters.

In general, outliers drag clusters artificially toward the outside of your feature space, either as
individual clusters or by morphing clusters to incorporate the outliers.

Fortunately, outliers can usually be detected by some simple initial data exploration. You should make
outlier management a standard part of your data exploration and preparation process before modeling.
First, determine whether an outlying value is simply an invalid or erroneous entry that can be disregarded.
If you have determined that an outlier provides no valuable information, it is acceptable to simply filter it
out. However, if you determine that outliers might represent some real but rare relationship or if you think
that the information from the other features in those observations is too valuable to discard, then include
them in your model only after dealing with them appropriately by using one of the following techniques:

e For categorical variables, you can bin the values into an “Other” category. For more information, see
the next section.

e For interval variables, you can winsorize the values, setting them to the lowest or highest non-outlier
value (depending on which side of the distribution the outlier lies) or forcing them to be no greater
than three standard deviations from the mean. Either of these approaches retains the observation,
which might contain other valuable information from other features.

e For algorithms that incorporate a loss function to direct the training process, you can use a Huber loss
function (Huber 1964), which greatly reduces the impact of outliers on the calculation of the loss.

Binning

Binning is the process of discretizing numerical variables into fewer categorical counterparts. For
example, “age” variables are often binned into categories such as 20-39, 40-59, and 60-79. Building a
model against each individual age probably does not provide any more information for a model than
building it against age groups; binning reduces the complexity of mapping the feature values to the
response. Binning tends to generate a more effective predictive model and can make the model easier to
interpret. On the other hand, binning can also cause issues such as loss of power, because binning
increases the number of model parameters to estimate. However, if you have big data, binning can be
very beneficial, especially in difficult predictive modeling problems where many algorithms fail.

In particular, binning can simplify and improve accuracy of predictive models by doing the following:

decreasing the impact of outliers

enabling you to incorporate missing values

managing high-cardinality variables (those with too many overall levels)
reducing the noise or nonlinearity

Binning is known to work well to reduce noise (increase signal-to-noise ratio) and hence helps produce
better predictive models for “messy” data that have many missing values, outliers, high-cardinality
variables, nonlinearities between the input variables and the target, and skewed distributions of numeric
input variables.

Missing Values

Missing values can be theoretically and practically problematic for many machine learning tasks,
especially when missing values are present in the target variable. This section addresses only the more
common scenario of missing values in input variables. When faced with missing values in input variables,
practitioners must consider whether missing values are distributed randomly or whether missingness is
somehow predictive of the target. If missing values appear at random in the input data, the input rows that
contain missing values can be dropped from the analysis without introducing bias into the model.
However, such a complete case analysis can remove a tremendous amount of information from the
training data and reduce the predictive accuracy of the model. Missingness can actually be predictive:
retaining information that is associated with missing values, including the missing values themselves, can
actually increase the predictive accuracy of a model. The following list describes practices for accounting
for missingness in training a machine learning model and describes how missing values must also be
handled when scoring new data.

Naive Bayes: Naive Bayes models elegantly handle missing values for training and scoring by
computing the likelihood based on the observed features. Because of conditional independence
between the features, naive Bayes ignores a feature only when its value is missing. Thus, you don’t
need to handle missing values before fitting a naive Bayes model unless you believe the missingness
is not at random. For efficiency reasons, some implementations of naive Bayes remove entire rows
from the training process whenever a missing value is encountered. When missing is treated as a
categorical level, infrequent missing values in new data can be problematic when they are not present
in training data, because the missing level will have had no probability associated with it during
training. You can solve this problem by ignoring the offending feature in the likelihood computation
when scoring.

Decision trees: In general, imputation, missing markers, binning, and special scoring considerations
are not required for missing values when you use a decision tree. Decision trees allow for the elegant
and direct use of missing values in two common ways:

o When a splitting rule is determined, missing can be considered to be a valid input value, and
missing values can either be placed on the side of the splitting rule that makes the best training
prediction or be assigned to a separate branch in a split.

o Surrogate rules can be defined to allow the tree to split on a surrogate variable when a missing
value is encountered. For example, a surrogate rule could be defined that allows a decision tree
to split on the state variable when the zip code variable is missing.

Missing markers: Missing markers are binary variables that record whether the value of another
variable is missing. They are used to preserve information about missingness so that missingness
can be modeled. Missing markers can be used in a model to replace the original corresponding
variable with missing values, or they can be used in a model alongside an imputed version of the
original variable.

Imputation: Imputation refers to replacing a missing value with information that is derived from
nonmissing values in the training data. Simple imputation schemes include replacing a missing value
in a particular input variable with the mean or mode of that variable’s nonmissing values. For
nonnormally distributed variables or variables that have a high proportion of missing values, simple
mean or mode imputation can drastically alter a variable’s distribution and negatively impact
predictive accuracy. Even when variables are normally distributed and contain a low proportion of
missing values, creating missing markers and using them in the model alongside the new, imputed
variables is a suggested practice. Decision trees can also be used to derive imputed values. A
decision tree can be trained using a variable that has missing values as its target and all the other
variables in the data set as inputs. In this way, the decision tree can learn plausible replacement
values for the missing values in the temporary target variable. This approach requires one decision
tree for every input variable that has missing values, so it can become computationally expensive for
large, dirty training sets. More sophisticated imputation approaches, including multiple imputation
(MI), should be considered for small data sets (Rubin 1987).

Binning: Interval input variables that have missing values can be discretized into a number of bins
according to their original numeric values in order to create new categorical, nominal variables.
Missing values in the original variable can simply be added to an additional bin in the new variable.
Categorical input variables that have missing values can be assigned to new categorical nominal
variables that have the same categorical levels as the corresponding original variables plus one new
level for missing values. Because binning introduces additional nonlinearity into a predictive model
and can be less damaging to an input variable’s original distribution than imputation, binning is
generally considered acceptable, if not beneficial, until the binning process begins to contribute to
overfitting. However, you might not want to use binning if the ordering of the values in a particular
input variable is important, because the ordering information is changed or erased by introducing a
missing bin into the otherwise ordered values.

e Scoring missing data: If a decision tree or decision tree ensemble is used in training, missing values
in new data will probably be scored automatically according to the splitting rules or the surrogate rules
of the trained tree (or trees). If another type of algorithm was trained, then missing values in new data
must be processed in the exact manner in which they were processed in the training data before the
model was trained.

DIMENSIONALITY
Falling Prey to the Curse of Dimensionality

A common sentiment is that having more information will enable you to make better decisions. However,
this belief is based on the assumption that you will be able to easily discern the meaningful information
from the trivial and efficiently process the information. In reality, the more items of independent
information you have, the more complex and costly your decision-making process becomes.

Although high dimensionality can result from the seemingly innocent desire to incorporate more features
into your model, sometimes high dimensionality is simply the nature of the problem, such as in
bioinformatics (DNA microarrays that are used to analyze tens of thousands of genes), multimedia data
analysis with millions of pixels, and text documents that are represented by high-dimensional frequency
count vectors.

The challenges that arise as you attempt to incorporate more features into your model are best described
through a phenomenon known as the curse of dimensionality (Bellman 1957). Increasing the number of
features increases the volume of the feature space exponentially; in turn, this higher-dimensional space
requires exponentially more data points to sufficiently fill that space in order to ensure that combinations
of feature values are accounted for. Figure 2 depicts the increased sparsity of the data with a very simple
example of eight observations in one, two, and three dimensions. In one dimension, the observations
sufficiently cover the domain, in two dimensions they still cover it fairly reasonably, but in three
dimensions you start to see the sparsity of the data in the overall domain.

A A A ’

X—————==saa==

<00-0—0-00-00—> > >
Figure 2. Increased Data Sparsity as Dimensions (Features) Are Added

It is difficult to imagine beyond three dimensions, but as the dimensionality further increases, a greater
percentage of the available data reside in the “corners” of the feature space, which are much more
difficult to classify than observations in the ever-shrinking “center” of the feature space. An illustrative
example of this is provided in Spruyt (2014).

Consider k-means clustering as an example of the adverse effect of higher dimensionality. High
dimensionality makes clustering difficult because having many dimensions means that all the
observations are relatively "far away" from each other. It is difficult to know what a cluster is when all of
the observations within a cluster are distant from one another. Generally, observations within a cluster are
assumed to be close to one another; but in a high-dimensional space a cluster might be more like a
dispersed cloud of loosely related points.

In general, higher dimensionality tends to stimulate overfitting, can lead to greater confounding among the
feature effects, and renders visualization of the original problem domain impractical. Also, the amount of
time and memory required to process additional dimensions generally diminishes the efficiency of the
modeling algorithm.

Dimension Reduction

For the most efficient and effective predictive model, it is best to reduce the set of features (inputs to the
model) to include those that are most relevant and have a nontrivial impact on the target. This is referred
to as feature selection. The first course of action, if feasible, should be to directly inspect and evaluate the
features to ensure that the values corresponding to that feature are reasonable, and to possibly identify
an obvious subset of features for modeling, or at least determine features that can be excluded. If you
have some domain knowledge, you might be able to use common sense to filter out some of the features
in an ad-hoc manner.

Beyond initial manual filtering, the common approach to reducing dimensionality is to perform feature
engineering, which can be categorized as either feature selection or feature extraction:

Feature selection is the process of determining which features have the greatest impact on your
model and downselecting to include only those features as inputs. This can be accomplished through
one of the following types of techniques:

o

Filtering techniques, which assess each feature’s impact through mutual information criterion
(MIC), information gain, chi-square measure, odds ratio, or R-square measure. These
techniques neglect any interaction effects among features.

Wrapper techniques such as LASSO (Tibshirani 1996), elastic net (Zou and Hastie 2005), and
forward/backward/stepwise regression techniques that iteratively determine which terms
(including interactions) to include in the model.

Embedded techniques, which incorporate feature selection as an integral part of the training. One
example is a decision tree, for which the splitting rules are based on determining the most
influential variables to direct the splitting at each node (for example, the variables that best
preserve the purity of the split).

Feature extraction is the process of transforming the existing features into a lower-dimensional
space, typically generating new features that are composites of the existing features. There are a
number of techniques that reduce dimensionality through such a transformation process, including
the following:

@)

Principal component analysis (PCA) and singular value decomposition (SVD) are
unsupervised feature transformations that strive to project the original features onto new
orthogonal dimensions of maximum variance. The generated or extracted features that are the
top contributors to variance can be preserved as a reduced set of features to be used as inputs
for training the model. Standard PCA uses a linear combination of the existing features to achieve
this; however, kernel PCA (Schélkopf, Smola, and Muller 1998) can be used to construct
nonlinear mappings from the original features to new orthogonal dimensions of maximum
variance. Although PCA can be performed via eigendecomposition of the square and symmetrical
covariance matrix, it is often advantageous to compute the SVD of the rectangular data matrix
instead. It is then trivial to obtain the principal components from the SVD, and you avoid the
intermediate step of computing the covariance matrix. In addition, greater interpretability of the
final feature set can be achieved using sparse PCA (Zou, Hastie, and Tibshirani 2005), which
enforces sparsity constraints to achieve the linear combinations in only a few input variables,
although orthogonality is lost.

Nonnegative matrix factorization (NMF) (Lee and Seung 2000) is another important
unsupervised feature transformation. As in PCA (and SVD if you perform some algebraic
manipulation), the original data matrix is decomposed into the product of two factor matrices. The
distinctive feature of NMF is that all the entries of the factor matrices are constrained to be
nonnegative. This constraint aids interpretability of the factors in many settings (for example, text
analysis) where the factors can be thought of as probabilities.

Autoencoding neural networks extract a highly representative set of nonlinear features from
the bottleneck layer of a specialized network.

10

An obvious drawback to feature extraction is that the actual inputs to the model are no longer
meaningful with respect to the business problem. However, you can simply consider this another
transformation of the original inputs to be provided to the model, something that must be accounted
for as part of the scoring process when the model is deployed.

An excellent overview of feature engineering strategies is provided in (Cunningham 2007).

Whether you perform feature selection or feature extraction, your ultimate goal is to include the subset of
features that describe most, but not all, of the variance and to reduce the signal-to-noise ratio in your
data. Although intuition would tell you that elimination of features equates to a loss of information, in the
end this loss is compensated for by the ability of the model to more accurately map the remaining
features to the target in a lower-dimensional space. The result is simpler models, shorter training times,
improved generalization, and a greater ability to visualize the feature space. As a side note, it is good
practice to perform feature engineering before and after any imputation you might implement and
compare the results; the effect of providing artificial values for values that were missing might cause
different features to be selected.

Some high-dimensional data sets require special attention to perform feature extraction efficiently; one
example is a data set of user ratings for items (such as movies) in which each column represents an item
and each row is a user (or vice versa). Data sets such as this are very sparse and can be reduced by
converting to a sparse data representation such as coordinate list (COO) format, in which only nonzero
items (or items that actually have values) are preserved in a data set that has three columns for row,
column, and value (user, item, and rating in this example). Model training time can be reduced
exponentially simply by realizing that you have sparse data, converting the data set to a format such as
COO, and using feature extraction techniques that are optimized for sparse data representations.

UNDERSTAND THE EXPECTATIONS OF THE MODEL CONSUMER

At some point, the model you ultimately generate is going to be used in some way to make predictions or
other types of business decisions. A key consideration you must establish from the outset is whether the
recommendations from the model will need to be justified by interpreting or explaining the logic behind
how the model arrived at those conclusions; regulated environments might also have certain
documentation requirements. Machine learning algorithms are usually formulated in a manner that
emphasizes accuracy over interpretability. What makes these models accurate is literally what makes them
difficult to understand: they are very complex. This is a fundamental tradeoff. If you know in advance that you
will need to provide a business executive with some sort of reasoning behind a model’s results other than
“because that’'s what the model tells us,” you might decide to limit your model candidates to those that
can be more easily explained, such as regression and decision trees. It's much easier to describe the if-
then hierarchical splitting logic of a decision tree than to describe the hyperplane that maximizes the
margin between classes in the kernel-transformed feature space of a support vector machine. On the
other hand, if you are simply looking for the most accurate generalizable model you can generate, then a
more complex machine learning approach is appropriate. Either way, it's a question you should answer
up front before you spend significant time and effort building models. Some guidance on answering this
guestion is provided in the next section.

TRAINING

Now that you have ensured that you have sufficient and appropriate data, massaged the data into a form
suitable for modeling, identified key features to include in your model, and established how the model is
to be used, you are ready to make use of powerful machine learning algorithms to build predictive models
or discover patterns in your data. This is really the phase where you should allow yourself more freedom
to experiment with different approaches to identify the algorithms (and configuration of options for those
algorithms) that produce the best model for your specific application. Still, as with proper data
preparation, the process of training models cannot be entered into carelessly; an understanding of the
main algorithm concepts and key concerns to heed will help ensure that you are using the appropriate
algorithms and applying them judiciously.

11

OVERFITTING

A discussion of the primary issues and best practices for training models must start with the concept of
overfitting. Recall that the goal is to build models that can be used to score future observations to enable
you to make business decisions, such as to accept or deny credit application, flag fraudulent activity,
identify tissue as cancerous or not, predict potential revenue, and so on. Machine learning algorithms are
very effective at learning a mapping between the features and known target values in your existing data; if
left unattended, they can often create a 100% accurate mapping, as shown in Figure 3a.

7’
4

Validation data’,/'

p——

A g

Error
Target

Training data

o »

Feature U Training lteration (e.g., Tree Depth)

@) (b)
Figure 3. (a) Example of Overfitting, (b) Training and Validation Error Compromise

Clearly, a model that is complex enough to perfectly fit the existing data will not generalize well when
used to score new observations. It might provide accurate answers for some observations by chance, but
in general it does not represent the trend of the data. This is referred to as overfitting. A decision tree is
another prime example of an algorithm that can easily overfit the data. If the tree is allowed to continue to
split the data all the way down to each observation being in its own leaf, it will be 100% accurate for every
observation in the training data. But after a certain depth, the tree is not providing any information that
can be applied in general.

Honest Model Assessment

Certainly you are striving to achieve low training error, but it is just as important (or more important) to
achieve low generalization error. The training process needs to account for this compromise and make an
honest assessment of the accuracy of the model. Machine learning typically involves training a
succession of candidate configurations toward selecting a final model, and the error of each candidate
must be assessed at every iteration of the training process. Assessing a candidate model on the data that
are used to train the model would direct the algorithm to overfit to that training data.

Honest assessment, which is highly related to the bias-variance tradeoff, involves calculating error
metrics from scoring the model on data that were not used in any way during the training process. It is
very important to understand the distinctions between validation and testing, and to incorporate them as
part of your model training, assessment, and selection process.

e Validation data are holdout data that are used to assess the model during training for the purpose of
selecting variables and adjusting the model parameters or hyperparameters in order to generate a
more accurate, generalizable model. Validation data sets are instrumental in evaluating the bias-
variance tradeoff and preventing overfitting. As shown in Figure 3b, the error evaluated on the
validation set will actually start to increase at some point, indicating that attempting to fit the training
data any more accurately will diminish the generalization capability of the model. In lieu of a separate
holdout set (which might not be feasible for smaller data sets), k-fold cross validation can be
performed. In this technique, the training data set is split into k subsets and each subset is held out
and used for validation on a model that is trained by using the other k—1 subsets; the error is taken to

12

be the average across all of the models. Whether through a validation set or through cross validation,
ensure that the training process assesses the error on data that are not used to train the model in
order to avoid overfitting to the training data.

e Test data are holdout data that are used at the end of model fitting to obtain a final, honest
assessment of how well the trained model generalizes to new data. The reason for using test data
(instead of validation data) for an unbiased assessment is that validation data play a role in the model
training process and hence would yield a biased assessment similar to assessment on training data.
For this reason, a test data set should be used only at the end of the analysis and should not play a
role in the model training process.

JUDICIOUS ALGORITHM SELECTION AND TUNING

Ultimately, the success of your machine learning application comes down to the effectiveness of the
actual model you build. The popular “no free lunch” theorem (Wolpert 1996) states that no one model
works best for every problem—selecting the appropriate algorithm and configuring the hyperparameters
to tune that algorithm for maximum effectiveness are critical steps in the process.

Algorithm Selection

Selecting the modeling algorithm for your machine learning application can sometimes be the most
difficult part. The decision of which algorithm to use can be guided by answering a few key questions:

e What is the size and nature of your data?

If you expect a fairly linear relationship between your features and your target, linear or logistic
regression or a linear kernel support vector machine might be sufficient. Linear models are also a
good choice for large data sets due to their training efficiency and due to the curse of dimensionality.
As the number of features increase, the distance between points grows and observations are more
likely to be linearly separable. To an extent, nonlinearity and interaction effects can be captured by
adding higher-order polynomial and interaction terms in a regression model. However, as illustrated in
Figure 4, more complex relationships can be modeled through the power of the more sophisticated
machine learning algorithms such as decision trees, random forests, neural networks, and nonlinear
kernel support vector machines. Of course, these more sophisticated algorithms can require more
training time and might be unsuitable for very large data sets.

Hilland Plateau Traditional Regression Decision Tree Neural Network
Sample Data

Figure 4. Various Models of a Complex Target Profile

e What are you trying to achieve with your model?
Are you creating a model to classify observations, predict a value for an interval target, detect

patterns or anomalies, or provide recommendations? Answering this question will direct you to a
subset of machine learning algorithms that specialize in the particular type of problem.

13

e How accurate does your model need to be?

Although you always want your model to be as accurate as possible when applied to new data, it is
still always good to strive for simplicity. Simpler models train faster and are easier to understand,
making it easier to explain how and why the results were achieved. Simpler models are also easier to
deploy. Start with a regression model as a benchmark, and then train a more complex model such as
a neural net, random forest, or gradient boosted model. If your regression model is much less
accurate than the more complex model, you have probably missed some important predictor or
interaction of predictors. An additional benefit of a simpler model is that it will be less prone to
overfitting the training data.

e How much time do you have to train your model?

This question goes hand-in-hand with the question of how accurate your model needs to be. If you
need to train a model in a short amount of time, linear or logistic regression and decision trees are
probably your best options. If training time is not an issue, take advantage of the powerful algorithms
(neural networks, support vector machines, gradient boosting, and so on) that iteratively refine the
model to better represent complex relationships between features and the target of interest.

e How interpretable or understandable does your model need to be?

It is very important to establish the expectations of your model consumer in regards to how
explainable your model must be. If an uninterpretable prediction is acceptable, you should use as
sophisticated an algorithm as you can afford in terms of time and computational resources. Train a
neural network, a support vector machine, or any flavor of ensemble model to achieve a highly
accurate and generalizable model. If interpretability or explainable documentation is important, use
decision trees or a regression technique, and consider using penalized regression techniques,
generalized additive models, quantile regression, or model averaging to refine your model.

If you need to ensure high accuracy but still need to explain the model results, a common approach is
to train a complex model, use that model to generate predicted target values for all training
observations, and then use these predicted values to train a decision tree. This decision tree is then
essentially a surrogate model that acts as a proxy to the complex logic of the other algorithm. New
observations are scored on the complex model for more accurate evaluation, but the surrogate model
is used to explain the logic.

Table 1 in the Appendix provides a reference guide for the usage of the most common machine learning
algorithms.

Even if you use these questions as guidance, selecting the single most effective algorithm to model your
business problem can be very challenging. Experiment as much as you can afford to, and consider using
an ensemble of multiple techniques, as described in the section “Ensemble Modeling” on page 16.

Regularization and Hyperparameter Tuning

The objective of a learning algorithm is to find the model parameters that minimize the loss function over
the independent samples. For example, these parameters could be regression weights for a linear model,
or they could be the adaptive weights on defining the connections within a neural network. As the
complexity of your model increases, its predictive abilities often decrease after a certain point due to
overfitting and multicollinearity issues. Hence, the resulting models often do not generalize well to new
data, and they yield unstable parameter estimates.

Regularization methods help deal with overfitting models and multicollinearity problems by placing one or
more penalties on the objective function that controls the size of the model weights. This penalty on the
model weights decreases the variance of the model while increasing its bias. The total error of a model is
the sum of its variance and bias. If the amount of penalty on the model weights is selected carefully, the

14

decrease in variance is less than the gain in bias, and hence the total error of the model decreases. This
gives you a better model that has improved predictive abilities and more stable model parameters, and is
known as the bias-variance tradeoff. Figure 5 illustrates the bias-variance tradeoff as it relates to the
total error (Hastie, Tibshirani, and Friedman 2001).

Variance

Opiimun Model Complexity

s >
Model Complexity

Figure 5: Bias-Variance Tradeoff

As a simple example, consider a linear regression model for which the penalty is placed on the squared
error loss function as

arg ming{||Y — X B2 + Ap(3)

where ||Y — XB]|? is the squared error loss function, § represents the vector of regression weights, 1 is a
hyperparameter (tuning or regularization parameter), and p(g) defines the form of the penalty. The form of
the penalty is defined by L1 regularization (sum of the absolute value of the regression coefficients) for
LASSO regression (Tibshirani 1996) and by L2 regularization (sum of the square of the regression
coefficients) for ridge regression. Both L1 and L2 regularization shrink model weights toward 0. L1
regularization performs feature selection by setting some of the weights exactly to 0, whereas L2
regularization never sets them to 0. Therefore, L2 regularization is good at dealing with multicollinearity
issues by shrinking the correlated regression weights toward each other. Another advantage of L2
regularization is that it can be used with any type of learning algorithm; L1 regularization is more difficult
to implement with some learning algorithms, in particular those that need to calculate gradient
information.

Regularization methods are very useful techniques for reducing model overfitting, but they require you to
set the hyperparameters to certain values. Hyperparameters do not necessarily need to be regularization
parameters. For example, the number of hidden units for a neural network or the depth and number of
leaves in a decision tree are also hyperparameters.

Optimal hyperparameter settings are extremely data-dependent; therefore, it is difficult to offer a general
rule about how to identify a subset of important hyperparameters for a learning algorithm or how to find
optimal values of each hyperparameter that would work for all data sets. Controlling hyperparameters of a
learning algorithm is very important because proper control can increase accuracy and prevent overfitting.

Hyperparameter tuning is an optimization task, and each proposed hyperparameter setting requires the
model training process to derive a model for the data set and evaluate results on the holdout or cross
validation data sets. After evaluating a number of hyperparameter settings, the hyperparameter tuner
provides the setting that yields the best performing model. The last step is to train a new model on the
entire data set (which includes both training and validation data) under the best hyperparameter setting.

15

Strategies for hyperparameter tuning include the following:

Grid search: In grid search, the sets of possible hyperparameter values are formed by
assembling every possible combination of hyperparameter values. If the number of tuning
parameters is not very large (two or three parameters), the grid search approach is feasible as
long as the learning algorithms are computationally efficient. Grid search is also easy to
implement, and parallelization is straightforward. However, grid search suffers from the curse of
dimensionality; that is, as the number of hyperparameters increases, the number of value
combinations grows exponentially.

Random search: Bergstra and Bengio (2012) showed that random search can often perform as
well as grid search in a much more computationally efficient way. This might seem surprising, but
a simple probability example makes it easy to understand. Suppose you choose only 60 random
points over the entire hyperparameter space. Now imagine a 5% region around the point where
the best set of hyperparameter values lies. Each random draw then has a 5% chance of lying in
that region. Thus, the probability of missing this space for all 60 sample points would be (1 -
0.05)%0=0.046, which is a very small probability (less than 5%). If you assume that the optimal
region of the hyperparameters occupies at least 5% of the hyperparameter space, then a random
search that uses only 60 sets of hyperparameter values will find that region with a success
probability of at least 0.95 (1 — 0.046 = 0.954). The simplicity and yet surprisingly reasonable
performance of random search makes it a very effective method of hyperparameter tuning.
Moreover, parallelization is trivial for random search (as it is for grid search), and random search
is computationally much more efficient.

Experimental design: Another popular method of hyperparameter tuning is choosing the trials
according to an experimental design instead of choosing them randomly. These methods are
referred to as low-discrepancy point sets because they attempt to ensure that points are
approximately equidistant from one another to fill the space efficiently. Some examples of these
methods include the Sobol sequences (Antonov and Saleev 1979) and Latin hypercube sampling
(McKay 1992).

Smart tuning methods: Instead of searching through all possible candidate hyperparameter
setting combinations or randomly choosing them, smart tuning methods use intelligent
optimization routines (such as genetic algorithms), which start with a small set of points and use
logic and information from those points to determine how to search through the space. The
search is based on an objective of minimizing the model validation error, so each “evaluation”
from the optimization algorithm’s perspective is a full cycle of model training and validation. These
methods are designed to make intelligent use of fewer evaluations and thus save on the overall
computation time. However, unlike a grid search or experimental design approach, tuning
methods that are based on optimization routines are only partially parallelizable, depending on
the optimization algorithm that is used. For example, a genetic algorithm can evaluate each
candidate set of hyperparameter values in a population in parallel, but it must carry out crossover
and mutation steps to determine the next population to be evaluated. Ultimately, a smart tuning
method should find a more effective set of hyperparameter values than a random search or a
discrete approach such as a grid search or experimental design finds. A benchmark study of
different tuners is provided in Konen et al. (2011).

Regardless of the approach you take, understand that significant predictive power can be gained by
intelligently tuning the hyperparameters for the selected algorithm. Don’t settle for the defaults.

Ensemble Modeling

Even with an understanding of some of the basic guidelines for selecting an algorithm and incorporating
hyperparameter tuning, determining the single most effective machine learning algorithm (and its tuning
parameters) to use for a particular problem domain and data set is daunting—even for experts. Ensemble
modeling can take some of that weight off your shoulders and can give you peace of mind that the

16

predictions are the result of a collaborative effort, or consensus, among multiple models that are trained
either from different algorithms that approach the problem from different perspectives, or from the same
algorithm applied to different samples or using different tuning parameter settings, or both.

In general, ensemble modeling is all about using many models in collaboration to combine their strengths,
compensate for their weaknesses, and make the resulting model generalize better for future data. If you
rely on building a single model to represent the relationships and behavior in whatever your application is
(even if you try to tweak and optimize that model based on the data you currently have), by focusing on
one modeling method alone you're most likely sacrificing accuracy and robustness when making
decisions and predictions on future data.

Many popular and effective algorithms have been formulated specifically around this concept of
“consensus” prediction. These algorithms generally fall into one of the following categories:

e Bagging: Bagging (an abbreviation for bootstrap aggregating) is an approach in which multiple base
learners (often decision trees) are trained on different sample sets of the data, which are randomly
drawn with replacement, and their predictions are aggregated through a function such as majority
voting or averaging. Bagging particularly focuses on combining the predictions of base learners to
reduce variance and avoid overfitting; it is an efficient and ideal way to handle the bias-variance
tradeoff. The random forest method developed by Breiman (2001) is a very effective and popular
bagging algorithm that combines the predictions of multiple decision trees that are trained on different
samples by using random subsets of the variables for splitting. Bagging algorithms are highly
parallelizable.

e Boosting: In boosting (Shapire et al. 1998), a weight is applied to each observation in the training set
and used as a probability distribution for sampling with replacement, a base learner (again often a
decision tree) is trained, and misclassified points from the training set are provided higher weights for
the next iteration of sampling and training. In this way, the algorithm is encouraged at each iteration to
focus more on the points that it previously had difficulty classifying. A specific implementation of
boosting called gradient boosting (Friedman 2001) adjusts the model on each iteration by using a
random bootstrap sample to train a model to predict the residuals of previous models (which is
theoretically equivalent to the stochastic gradient descent approach in optimization). Unlike bagging,
boosting is a very sequential process.

e Stacking: Stacking involves training multiple models by using a diverse set of strong learners and
then applying a higher-level “combiner” algorithm to generate a model that includes the predictions of
the member models as inputs. The output of this combiner algorithm is the final prediction as a
consensus among the member models. For example, a regression model (or other modeling
algorithm of your choice) can be fit to weighted predictions from the base learners. The super learner
(van der Laan, Polley, and Hubbard 2007) is a specific implementation of stacking that has proven to
be quite effective.

e Custom combinations: In general, any number of diverse models can be trained on the data set and
aggregated in some fashion to combine their strengths and compensate for their weaknesses. Each
algorithm for training a model assumes some form of relationship between the inputs and the target.
Combining predictions from multiple different algorithms might produce a relationship of a different
form than any one of the algorithm assumes. If two models specify different relationships and fit the
data well, it’s likely that their average will generalize to new data much better. If not, then maybe an
individual model is adequate. In practice, the best way to know is to combine some models and
compare the results.

Note that if you do choose to employ an ensemble model in your application, the business decisions
made using that model in the future will be difficult to explain because you cannot explicitly interpret the
logic behind combining the results of multiple models. However, as previously suggested, you can
alleviate this concern by using a more explainable surrogate model (such as a decision tree) that is built
from the predictions of the ensemble or by using a small ensemble of interpretable models.

17

COMPUTATIONAL RESOURCE EXPLOITATION

Most machine learning tasks are computationally intensive. Computational resources should be used
prudently to ensure efficient data preprocessing, model training, and scoring of new data. Data
preparation and modeling techniques must often be refined repeatedly by the human operator to obtain
the best results. Waiting for days while data is preprocessed or a model is trained not only is frustrating,
but also can lead to inferior results. Most work in any field is conducted under time constraints; machine
learning is no different. Preprocessing more data and training more models faster typically allows for more
human iteration on the problem at hand and leads to better results.

Many researchers and practitioners still rely on older, but trusted and revered, single-threaded algorithm
implementations. During prototyping, multithreading or distributing new algorithms can also be neglected.
Interpreted languages are also heavily relied on in research and practice. Single-threaded algorithms and
interpreted languages fail to sufficiently exploit computational resources. Researchers and practitioners
should consider taking advantage of computational resources in the following ways:

e Concurrent execution of single-threaded algorithms: Single-threaded algorithms are necessary in
certain cases. However, contemporary computers enable the execution of multiple threads, and the
typical machine learning exercise requires the evaluation of multiple feature sets, tuning parameters,
and optimization routines to find the best results. Instead of running these trials in serial, run them in
parallel on different threads.

e Hardware acceleration: For I/O intensive tasks, such as using databases or SAS® software for data
preparation, use solid state hard drives (SSDs). For computationally intensive, but parallelizable,
tasks such as matrix algebra, use graphical processing units (GPUs). Numerous libraries are
available that allow the transparent use of GPUs from high-level languages.

o Low-level languages and libraries: Low-level languages such as C and Fortran, though often seen
as more difficult to use, are much faster than interpreted languages. Java can also offer significant
performance increases over interpreted languages. When you are faced with designing a
computationally intensive machine learning application that will be used repeatedly and over a longer
period of time, carefully consider the tradeoff between perceived development difficulties with lower-
level languages and the performance drawbacks of interpreted languages. An easier approach to
increase performance might be to exploit the multiple packages and libraries that enable compiled
lower-level binaries to be called from interpreted languages. A newer generation of tensor
manipulation libraries even enables users of interpreted languages to transparently compile and then
execute optimized low-level code on CPUs and GPUs.

o Distributed computing: Designing algorithms for distributed computing environments, where data
and tasks are split across many connected computers, can greatly reduce execution times. However,
not all distributed environments are well suited for machine learning and not all machine learning
algorithms are well suited for distributed computing. Generally, shared-nothing environments can
present insurmountable implementation problems for sophisticated machine learning tasks, and
algorithms or implementations that require the movement of large amounts of data across the
network of the distributed environment can easily negate any potential computational timing gains.

DEPLOYMENT

METHOD OF DEPLOYMENT

Given that machine learning models tend to be difficult to interpret, their primary use is to create
predictions that create value (monetary or otherwise) for an organization or other entity. The actual
mechanism by which machine learning models will create their predictions requires thought and attention.

18

For example, making predictions on an individual’s laptop is a good idea only for a limited time in most
cases. If a model is really useful, it needs to be used by an organization in an operational manner to
make decisions quickly, if not automatically. Keep in mind that some level of data preparation has likely
been applied to the data set in its original, raw form, and this must be accounted for when making
predictions on new observations. Moving the logic that defines all the necessary data preparation and
mathematical expressions of a sophisticated predictive model from a development environment such as a
personal laptop into an operational database is one of the most difficult and tedious aspects of machine
learning. Mature, successful organizations are masters of this process—called “model deployment,”
“deployment,” or “model production.”

To better understand model deployment, consider a credit card company. These companies often use
logistic regression models to automatically authorize each transaction. This logistic regression model
probably starts out as Python, R, or SAS code on an individual’s laptop or workstation. However, because
this model must be used millions of times a day in a massive number of simultaneous authorization
decisions that are guaranteed to be made in milliseconds, the model simply cannot be run on an
individual’s laptop or workstation. Moreover, interpreted languages are probably too slow to guarantee
millisecond response times. The model probably needs to be ported into a compiled language, such as C
or Java. Model deployment is the process of moving the model from an individual’'s development
environment to a large, powerful, and secure database or server where it can be used simultaneously by
many mission-critical processes. Deployment as a web service that is programmatically accessible from
custom applications and websites is another powerful and popular approach. Although deployment can
require additional technical skills and knowledge beyond the analytics domain, many commercial machine
learning software vendors provide this capability in a convenient, automated manner.

MONITORING AND UPDATING

Even after a model has been deployed, it must be monitored. Because models are often trained on static
shapshots of data, their predictions typically become less accurate over time as the environment shifts
away from the conditions that were captured in the training data. Consider a model for car insurance
rates, which just 10 years ago did not account for behaviors such as texting while driving. Or consider a
movie recommendation model that must adapt as viewers grow and mature through stages of life. After a
certain period of time, the error rate on new data surpasses a predefined threshold, and models must be
retrained or replaced. Champion-challenger testing is another common model deployment practice, in
which a new, challenger model is compared against a currently deployed model at regular time intervals.
When a challenger model outperforms a currently deployed model, the deployed model is replaced by the
challenger, and the champion-challenger process is repeated. Yet another approach to refreshing a
trained model is through online updates. Online updates continuously change the value of model
parameters or rules based on the values of new, streaming data. It is prudent to assess the
trustworthiness of real-time data streams before implementing an online modeling system.

CONCLUSION

The field of machine learning offers an array of powerful techniques for generating flexible and highly
accurate models that empower businesses to effectively make use of vast amounts of data to make
decisions. However, these techniques should not be considered to be push-button, black-box solutions
that can be employed in an unattended manner. From data exploration and preparation, through model
training, to ultimate deployment, these techniques must be used as part of a scientific approach to
developing your overall machine learning application. The common issues and associated best practices
described in this paper, although not necessarily comprehensive, offer some guidance on key points to
consider in formulating a successful solution.

19

REFERENCES

Antonov, I. A., and Saleev, V. M. (1979). “An Economic Method of Computing LPt-Sequences.” USSR
Computational Mathematics and Mathematical Physics 19:252—-256.

Bellman, R. E. (1957). Dynamic Programming. Princeton, NJ: Princeton University Press.

Bergstra, J., and Bengio, Y. (2012). “Random Search for Hyper-parameter Optimization.” Journal of
Machine Learning Research 13:281-305.

Breiman, L. (2001). “Random Forests.” Machine Learning 45:5-32.

Cunningham, P. (2007). Dimension Reduction. Technical Report UCD-CSI-2007-7, University College
Dublin.

Dasu, T., and Johnson, T. (2003). Exploratory Data Mining and Data Cleaning. Hoboken, NJ: John Wiley
& Sons.

Donoho, D. (2015). “50 Years of Data Science.” Available at
http://courses.csail.mit.edu/18.337/2015/docs/50YearsDataScience.pdf.

Friedman, J. H. (2001). “Greedy Function Approximation: A Gradient Boosting Machine.” Annals of
Statistics 29:1189-1232.

Hastie, T., Tibshirani, R., and Friedman, J. (2001). The Elements of Statistical Learning: Data Mining,
Inference, and Prediction. New York: Springer-Verlag.

He, H., and Garcia, E. A. (2009). “Learning from Imbalanced Data.” IEEE Transactions on Knowledge
and Data Engineering 21:1263-1284.

Huber, P. J. (1964). “Robust Estimation of a Location Parameter.” Annals of Mathematical Statistics
35:73-101.

Konen, W., Koch, P., Flasch, O., Bartz-Beielstein, T., Friese, M., and Naujoks, B. (2011). “Tuned Data
Mining: A Benchmark Study on Different Tuners.” In Proceedings of the Thirteenth Annual Conference on
Genetic and Evolutionary Computation (GECCO-2011). New York: SIGEVO/ACM.

Lee, D. D., and Seung, H. S. (2000). “Algorithms for Non-negative Matrix Factorization.” In Advances in
Neural Information Processing Systems 13: Proceedings of the 2000 Conference, edited by T. K. Leen, T.
G. Dietterich, and V. Tresp, 556-562. Cambridge, MA: MIT Press.

Lohninger, H. (1999). Teach/Me Data Analysis. Berlin: Springer-Verlag.

Marcus, G. F. (1998). “Rethinking Eliminative Connectionism.” Cognitive Psychology 37:243—-282.
McKay, M. D. (1992). “Latin Hypercube Sampling as a Tool in Uncertainty Analysis of Computer Models.”
In Proceedings of the Twenty-Fourth Conference on Winter Simulation (WSC '92), edited by J. J. Swain,
D. Goldsman, R. C. Crain, and J. R Wilson, 557-564. New York: ACM.

Mease, D., Wyner, A. J., and Buja, A. (2007). “Boosted Classification Trees and Class
Probability/Quantile Estimation.” Journal of Machine Learning Research 8:409-439.

Rubin, D. (1987). Multiple Imputation for Nonresponse in Surveys. New York: John Wiley & Sons. Classic
edition, published in 2004.

20

http://courses.csail.mit.edu/18.337/2015/docs/50YearsDataScience.pdf

Schapire, R. E., Freund, Y., Bartlett, P., and Lee, W. S. (1998). “Boosting the Margin: A New Explanation
for the Effectiveness of Voting Methods.” Annals of Statistics 26:1651-1686.

Schoélkopf, B., Smola, A., and Miller, K.-R. (1998). “Nonlinear Component Analysis as a Kernel
Eigenvalue Problem.” Neural Computation 10:1299-13109.

Scott, A. J., and Wild, C. J. (1986). “Fitting Logistic Models under Case-Control or Choice Based
Sampling.” Journal of the Royal Statistical Society B 48:170-182.

Spruyt, V. (2014). “The Curse of Dimensionality in Classification.” Computer Vision for Dummies (blog).
http://www.visiondummy.com/2014/04/curse-dimensionality-affect-classification/.

Tibshirani, R. (1996). “Regression Shrinkage and Selection via the Lasso.” Journal of the Royal Statistical
Society B 58:267—-288.

Van der Laan, M. J., Polley, E. C., and Hubbard, A. E. (2007). “Super Learner.” UC Berkeley Division of
Biostatistics Working Paper Series, No. 222. http://biostats.bepress.com/ucbbiostat/paper222.

Vapnik, V.M. (1996). The Nature of Statistical Learning Theory. New York: Springer-Verlag.
Wickham, H. (2014). “Tidy Data.” Journal of Statistical Software 59:1-23.°
Wielenga, D. (2007). “Identifying and Overcoming Common Data Mining Mistakes.” In Proceedings of the

SAS Global Forum 2007 Conference. Cary, NC: SAS Institute Inc.
http://www?2.sas.com/proceedings/forum2007/073-2007.pdf.

Wolpert, D. H. (1996). “The Lack of A Priori Distinctions between Learning Algorithms.” Neural
Computation 8:1341-1390.

Zhang, J., and Mani, . (2003). “kNN Approach to Unbalanced Data Distributions: A Case Study Involving
Information Extraction.” In Proceedings of the Twentieth International Conference on Machine Learning
(ICML-2003), Workshop on Learning from Imbalanced Data Sets Il. Palo Alto, CA: AAAI Press.

Zou, H., and Hastie, T. (2005). “Regularization and Variable Selection via the Elastic Net.” Journal of the
Royal Statistical Society B 67:301-320.

Zou, H., Hastie, T., and Tibshirani, R. (2006). “Sparse Principal Component Analysis.” Journal of
Computational and Graphical Statistics 15:265—-286.

ACKNOWLEDGMENTS

The authors would like to thank Jorge Silva and Anne Baxter for their contributions to this paper.

CONTACT INFORMATION

Your comments and questions are valued and encouraged. Contact the authors:

Brett Wujek Patrick Hall Funda Gines
SAS Institute Inc. SAS Institute Inc. SAS Institute Inc.
brett.wujek@sas.com patrick.hall@sas.com funda.gunes@sas.com

SAS and all other SAS Institute Inc. product or service names are registered trademarks or trademarks of
SAS Institute Inc. in the USA and other countries. ® indicates USA registration.

Other brand and product names are trademarks of their respective companies.

21

http://www.visiondummy.com/2014/04/curse-dimensionality-affect-classification/
http://biostats.bepress.com/ucbbiostat/paper222
http://www2.sas.com/proceedings/forum2007/073-2007.pdf
http://www.site.uottawa.ca/~nat/Workshop2003/jzhang.pdf?attredirects=0
http://www.site.uottawa.ca/~nat/Workshop2003/jzhang.pdf?attredirects=0

APPENDIX: MACHINE LEARNING ALGORITHM QUICK REFERENCE

MACHINE LEARNING QUICK REFERENCE: ALGORITHMS - 1

Algorithm Type Common Usage Suggested Usage

Suggested Scale . Interpretability

Common Concerns

= Supervised regression + Modeling linear or linearly separable phenomena
Penalized = Supervised classification |+ Manually specifying nonlinear and explicit inferaction terms
—Nmﬂ_.mmm_.u: + Well suited for N =< p

Supervised classification = Modeling linearly separable phenomena in large data sets
= Well-suited for extremely large data sets where complex

Naive Bayes methods are intractable

= Supervised regression + Modeling nonlinear and nonlinearly separable phenomena
= Supervised classification in large, dirty data
= Interactions considered automatically, but implicitly
+ Missing values and outliers in input variables handled
automatically in many implementations
= Decision tree ensembles (e.g., random forests and
gradient boosting) can increase prediction accuracy and
decrease overfitting, but also decrease scalability and
interpretability

Decision Trees

Supervised regression + Modeling nonlinearly separable phenomena

k-Nearest = Supervised classification |+ Can be used to maich the accuracy of more sophisticated
Zmﬁ:—uoa techniques, but with fewer tuning parameters
(kNN)
= Supervised regrassion + Modeling linear or linearly separable phenomena by using
= Supervised classification linear kermnels
= Anomaly detection + Modeling nonlinear or nonlingarly separable phenomena
by using nonlinear kemels
Support Vector HUELL

) + Anomaly detection with one-class SVM (OSVM)
Machines (SVM)

Supervised regression + Modeling nonlinear and nonlinearly separable phenomena
Supervised classification |+ Deep neural networks (e.g., deep learning) are well-suited
Unsupervised clustering for state-of-the-art pattern recognition in images, videos,

= Unsupervised feature and sound
Artificial Neural exiraction = Allinteractions considered in fully connected, multilayer
= Anomaly detection topologies

Networks (ANN) «+ Nonlinear feature extraction with autoencoder and
restricted Boltzmann machine (REM) networks
= Anomaly detection with autoencoder networks
+ Clustering and visualization with self-organizing maps
(S0OMs)

Medium to large data sets

Small to large data sets High

Small to extremely large data Moderate

sets

Moderate

Small to medium data sets Low

+ Small to large data sets for Low

linear kernals
+ Small to medium data sets
for nonlinear kemels

+ Usually small to medium Low

data sets

= Stochastic gradient
descent (SGD)
optimization drastically
increases scalability

.

Missing values
Outliers
Standardization
Parameter tuning

Strong linear independence
assumption
Infrequent categorical levels

Instability with small training

data sets

Gradient boosting can be unstable
with noise or outliers

Overfiting

Parameter tuning

Missing values
Overfitiing

Outliers
Standardization

Curse of dimensionality

Missing values

Overfitting

Outliers

Standardization

Parameter tuning

Accuracy versus deep neural
networks depends on choice of
nonlinear kernel; Gaussian and
polynomial often less accurate

Missing values
Overfitiing
Outliers
Standardization
Parameter tuning

22

MACHINE LEARNING QUICK REFERENCE: ALGORITHMS - 2

Algorithm Type

Association Rules

k-Means

Hierarchical
Clustering

Spectral Clustering

Principal
Components
Analysis (PCA)

Nonnegative Matrix
Factorization (NMF)

Random
Projections

Factorization
Machines

» Supervised rule building

Unsupervised clustering

Unsupervised clustering

Unsupervised clustering

Unsupervised feature

Unsupervised feature

Unsupervised feature

Common Usage

» Unsupervised rule building

extraction

extraction

extraction

= Supervised regression and

classification
» Unsupervised feature
extraction

Suggested Usage

Building sets of complex rules by using the co-

occurrence of items or events in transactional data
sets

» Creating a known a priori number of spherical,

disjoint, equally sized clusters
+ k-modes method can be used for categorical data
» k-prototypes method can be used for mixed data

Creating a known a priori number of nonspherical,

disjoint, or overlapping clusters of different sizes

Creating a data-dependent number of arbitrarily

shaped, disjoint, or overlapping clusters of different
sizes

» Extracting a data-dependent number of linear,

orthogonal features, where N => p

» Extracted features can be rotated to increase
interpretability, but orthogonality is usually lost

+ Singular value decomposition (SVD) is often used
instead of PCA on wide or sparse data

» Sparse PCA can be used to create more
interpretable features, but orthogonality is lost

+ Kemel PCA can be used to extract nonlinear
features

Extracting a known a priori number of interpretable,

linear, oblique, nennegative features

Extracting a data-dependent number of linear,

uninterpretable, randomly-oriented features of equal
importance

» Extracting a known a priori number of
uninterpretable, oblique features from sparse or
transactional data sets

» Can automatically account for variable interactions

» Creating models from a large number of sparse
features; can outperform SVM for sparse data

Suggested Scale

Medium to large transactional

data sets

Small to large data sets

Small data sets

Small data sets

= Small to large data sets for

traditional PCA and SVD

+ Small to medium data sets
for sparse PCA and kernel
PCA

Small to large data sets

Medium to extremely large

data sets

Medium to extremely large

sparse or transactional data
sets

Interpretability

Moderate

Moderate

Moderate

Moderate

Generally low, but higher
for sparse PCA or
rotated solutions

High

Low

Moderate

Commeon Concerns

+ Instability with small training data
+ Overfitting
+ Parameter tuning

+ Standardization

« Correct number of clusters is often
unknown

+ Highly sensitive to initialization

+ Curse of dimensionality

+ Standardization

+ Correct number of clusters is often
unknown

+ Curse of dimensionality

+ Missing values

+ Standardization

+ Parameter tuning

+ Curse of dimensionality

+ Missing values

+ Outliers

+ Standardization

+ Correct number of features is often
unknown

+ Presence of negative values

Missing values

+ Missing values

+ Outliers

+ Standardization

+ Correct number of features is often
unknown

+ Less well suited for dense data

gsas

23

Best Practices for Applying Deep Learning to Novel Applications

Leslie N. Smith
Navy Center for Applied Research in Artificial Intelligence
U.S. Naval Research Laboratory, Code 5514
Washington, DC 20375
leslie.smith@nrl.navy.mil

ABSTRACT

This report is targeted to groups who are subject matter experts in their application but
deep learning novices. It contains practical advice for those interested in testing the
use of deep neural networks on applications that are novel for deep learning. We
suggest making your project more manageable by dividing it into phases. For each
phase this report contains numerous recommendations and insights to assist novice
practitioners.

Introduction

Although my focus is on deep learning (DL) research, | am finding that more and more frequently | am
being asked to help groups without much DL experience who want to try deep learning on their novel
(for DL) application. The motivation for this NRL report derives from noticing that much of my advice
and guidance is similar for all such groups. Hence, this report discusses the aspects of applying DL that
are more universally relevant.

While there are several useful sources of advice on best practices for machine learning [1-5], there are
differences relevant to DL that this report addresses. Still, | recommend the reader read and become
familiar with these references as they contain numerous gems. In addition, there are many sources on
best practices on the topic of software engineering and agile methodologies that | assume the reader is
already familiar with (e.g., [6, 7]). The closest reference to the material in this report can be found in
Chapter 11 of “Deep Learning” [8] on “Practical Methodology” but here | discuss a number of factors
and insights not covered in this textbook.

You can see below that a deep learning application project is divided into phases. However, in practice
you are likely to find it helpful to return to an earlier phase. For example, while finding an analogy in
phase 3, you might discover new metrics that you hadn’t considered in phase 1. All of these best
practices implicitly include iteratively returning to a phase and continuous improvement as the project
proceeds.

Phase 1: Getting prepared

In this report | assume you are (or have access to) a subject matter expert for your application. You
should be familiar with the literature and research for solving the associated problem and know the
state-of-the-art solutions and performance levels. | recommend you consider here at the beginning if a
deep learning solution is a worthwhile effort. You must consider the performance level of the state-of-
the-art and if it is high, whether it is worthwhile to put in the efforts outlined in this report for an
incremental improvement. Don’t jump into deep learning only because it seems like the latest and

Version 1.0 2/27/17

greatest methodology. You should also consider if you have the computer resources since each job to
train a deep network will likely take days or weeks. | have made ample use of DoD’s HPC systems in my
own research. In addition, you should consider if machine learning is appropriate at all — remember
training a deep network requires lots of labeled data, as described in phase 2.

The first step is quantitatively defining what success looks like. What will you see if this is successful,
whether it is done by human or machine? This helps define your evaluation metrics. Which metrics are
important? Which are less important? You need to specify all quantitative values that play a role in the
success of this project and determine how to weigh each of them. You also need to define objectives for
your metrics; is your goal surpass human level performance? Your objectives will strongly influence the
course of the project. Knowing quantitatively what human performance is on this task should guide
your objectives; how does the state-of-the-art compare to human performance? Also, knowing how a
human solves this task will provide valuable information on how the machine might solve it.

Some of these metrics can also lead to the design of the loss function, which is instrumental in guiding
the training of the networks. Don’t feel obligated to only use softmax/cross entropy/log loss just
because that is the most common loss function, although you should probably start with it. Your
evaluation metrics are by definition the quantities that are important for your application. Be willing to
test these metrics as weighted components of the loss function to guide the training (see phase 6).

Although you are likely considering deep learning because of its power, consider how to make the
network’s “job” as easy as possible. This is anti-intuitive because it is the power of deep networks that
likely motivates you to try it out. However, the easier the job that the networks must perform, the
easier it will be to train and the better the performance. Are you (or the state-of-the-art) currently
using heuristics/physics that can be utilized here? Can the data be preprocessed? While the network
can learn complex relationships, remember: “the easier the network’s job, the better it will perform”.
So it is worthwhile to spend time considering what you can leverage from previous work and what the
network needs to do for you. Let’s say you want to improve on a complex process where the physics is
highly approximated (i.e., a “spherical cow” situation); you have a choice to input the data into a deep
network that will (hopefully) output the desired result or you can train the network to find the
correction in the approximate result. The latter method will almost certainly outperform the former.
On the other hand, do not rely on manual effort to define potential heuristics — the scarcest resource is
human time so let the network learn its representations rather than require any fixed, manual
preprocessing.

In addition, you might want to write down any assumptions or expectations you have regarding this
state-of-the-art process as it will clarify them for yourself.

Phase 2: Preparing your data

Deep learning requires a great deal of training data. You are probably wondering “how much training
data do | need?” The number of parameters in the network is correlated with the amount of training
data. The number of training samples will limit your architectural choices in phase 6. The more training
data, the larger and more accurate the network can be. So the amount of training data depends on the
objectives you defined in phase 1.

Version 1.0 2/27/17

In addition to training data, you will need a smaller amount of labeled validation or test data. This test
data should be similar to the training data but not the same. The network is not trained on the test data
but it is used to test the generalization ability of the network.

If the amount of training data is very limited, consider transfer learning [9] and domain adaptation [10,
11]. If this is appropriate, download datasets that are closest to your data to use for pre-training. In
addition, consider creating synthetic data. Synthetic data has the advantages that you can create plenty
of samples and make it diverse.

The project objectives also guides the choosing of the training data samples. Be certain that the training
data is directly relevant to the task and that it is diverse enough that it covers the problem space. Study
the statistics of each class. For example, are the classes balanced? An example of a balanced class is
cats versus dogs while an unbalanced class with be cats versus all other mammals (if your problem is
inherently unbalanced, talk with a deep learning expert).

What preprocessing is possible? Can you zero mean and normalize the data? This makes the network’s
job easier as it removes the job of learning the mean. Normalization also makes the network’s job
easier by creating greater similarity between training samples.

As discussed above, investigate if there are ways to lower the dimensionality of the data using a priori
knowledge or known heuristics. You don’t need to spend time to manually determine heuristics
because the goal is to save human time and you can let the network learn its own representations. Just
know that the more irrelevant data the network has to sift through, the more training data is needed
and the more time it will take to train the network. So leverage what you can from prior art.

Phase 3: Find an analogy between your application and the closest deep learning applications

Experts know not to start from scratch for every project. This is what makes them experts. They reuse
solutions that have worked in the past and they search the deep learning literature for solutions from
other researchers. Even if no one has ever done what you are trying to do, you still need to leverage
whatever you can from the experts.

Deep learning has been applied to a variety of applications. In order to create your baseline model —
your starting point —you need to find the applications that are in some ways similar to your application.
You should search the DL literature and consider the “problems” various applications are solving to
compare with the “problem” you need to solve in your application. Find similarities and analogies
between these problems. Also, note of the differences between your new application and the deep
learning application because these differences might require changing the architecture in phase 6.

When you find the closest application, look for code to download. Many researchers make their code
available when they publish in a wide spread effort to release reproducible research. Your first aim is to
replicate the results in the paper of the closest application. Later you should modify various aspects to
see the effects on the results in a “getting to know it” stage. If you are lucky, there will be several codes
available and you should replicate the results for all of them. This comparison will provide you with
enough information so you can create a baseline in phase 4.

There are a few “classic” applications of deep learning and well known solutions. These include image
classification/object recognition (convolutional networks), processing sequential data (RNN/LSTM/GRU)

Version 1.0 2/27/17

such as language processing, and complex decision making (deep reinforcement learning). There are
also a number of other applications that are common, such as image segmentation and super-resolution
(fully convolutional networks) and similarity matching (Siamese networks). Appendix A lists a number of
recent deep learning applications, the architecture used, and links to the papers that describe this
application. This can give you some ideas but should not be your source for finding deep learning
applications. Instead you should carefully search https://scholar.google.com and https://arxiv.org for
the deep learning applications.

Phase 4: Create a simple baseline model

Always start simple, small, and easy. Use a smaller architecture than you anticipate you might need.
Start with a common objective function. Use common settings for the hyper-parameters. Use only part
of the training data. This is a good place to adopt some of the practices of agile software
methodologies, such as simple design, unit testing, and short releases. Only get the basic functionality
now and improve on it during phase 6. That is, plan on small steps, continuous updates, and to iterate.

Choose only one of the common frameworks, such as Caffe, TensorFlow, or MXnet. Plan to only use one
framework and one computer language to minimize errors from unnecessary complexity. The
framework and language choice will likely be driven by the replication effort you performed in phase 3.

If the network will be part of a larger framework, here is a good place to check that the framework APIs
are working properly.

Phase 5: Create visualization and debugging tools

Understanding what is happening in your model will affect the success of your project. Carpenters have
an expression “measure twice, cut once”. You should think “code once, measure twice”. In addition to
evaluating the output, you should visualize your architecture and measure internal entities to
understand why you are getting the results you are obtaining. Without diagnostics, you will be shooting
in the dark to fix problems or improve performance.

You should have a general understanding of problems related to high bias (converging on the wrong
result) versus high variance (not converging well) because there are different solutions for each type of
problem; for example, you might fix high bias problems with a larger network but you would handle high
variance problems by increasing the size of your training dataset.

Set up visualizations so you can monitor as much as possible while the architecture evolves. When
possible, set up unit tests for all of your code modifications. You should compare training error to test
error and both to human level performance. You might find your network will behave strangely and you
need ways to determine what is going on and why. Start debugging the worst problems first. Find out if
the problems are with the training data, aspects of the architecture, or the loss function.

Keep in mind that error analysis tries to explain the difference between current performance and
perfect performance. Ablative analysis tries to explain the difference between some baseline
performance and current performance. One or the other or both can be useful.

One motivation for using TensorFlow as your framework is that it has a visualization system called
TensorBoard that is part of the framework. One can output the necessary files from TensorFlow and
TensorBoard can be used to visualize your architecture, monitor the weights and feature maps, and

4
Version 1.0 2/27/17

https://scholar.google.com/
https://arxiv.org/

explore the embedded space the network creates. Hence, the debugging and visualization tools are
available in the framework. With other frameworks, you need to find these tools (they are often
available online) or create your own.

Phase 6: Fine tune your model

This phase will likely take the most time. You should experiment extensively. And not just with factors
you believe will improve the result but try changing every factor just to learn what happens when it
changes. Change the architecture design, depth, width, pathways, weight initialization, loss function,
etc. Change each hyper-parameter to learn what the effect of increasing or decreasing it is. |
recommend using the learning rate range test [12] to learn about the behavior of your network over a
large range of learning rates. A similar program can be made to study the effect of other hyper-
parameters.

Try various regularization methods, such as data augmentation, dropout, and weight decay.
Generalization is one of the key advantages of deep networks so be certain to test regularization
methods in order to maximize this ability to generalize to unseen cases.

You should experiment with the loss function. You used a simple loss function in the baseline but you
also created several evaluation metrics that you care about and define success. The only difference
between the evaluation metrics and the loss function is that the metrics apply to the test data and the
loss function is applied to the training data in order to train the network. Can a more complicated loss
function produce a more successful result? You can add weighted components to the loss function to
reflect the importance of each metric to the results. Just be very careful to not complicate the loss
function with unimportant criterion because it is the heart of your model.

Earlier you found analogies between your application and existing deep learning applications and chose
the closest to be your baseline. Now compare to the second closest application. Or the third. What
happens if you follow another analogy and use that architecture? Can you imagine a combination of the
two to test?

In the beginning, you should have successes from some low hanging fruit. Asyou go on it will become
more difficult to improve the performance. The objectives you defined in phase 1 should guide how far
you want to pursue the performance improvements. Or you might want to now revise the objectives
your defined earlier.

Phase 7: End-to-end training, ensembles and other complexities

If you have the time and budget, you can investigate more complex methods and there are worlds of
complexities that are possible. There exists a huge amount of deep learning literature and more papers
are appearing daily. Most of these papers declare new state-of-the-art results with one twist or another
and some might provide you a performance boost. This section alone could fill a long report because
there are so many architectures and other options to consider but if you are at this stage, consider
talking with someone with a great deal of deep learning expertise because advice at this stage is likely to
be unique to your application. .

However, there are two common methods you might consider; end-to-end training and ensembles.

Version 1.0 2/27/17

As a general rule, end-to-end training of a connected system will outperform a system with multiple
parts because a combined system with end-to-end training allows each of the parts to adapt to the task.
Hence, it is useful to consider combining parts, if it is relevant for your application.

Ensembles of diverse learners (i.e., bagging, boosting, stacking) can also improve the performance over
a single model. However, this will require you to train and maintain all the members of the ensemble. If
your performance objectives warrant this, it is worthwhile to test an ensemble approach.

Summary

This report lays out many factors for you to consider when experimenting with deep learning on an
application where it hasn’t been previously used. Not every item here will be relevant but | hope that it
covers most of the factors you should consider during a project. | wish you much luck and success in
your efforts.

Version 1.0 2/27/17

References:

1.

10.

11.

12.

Martin Zinkevich, “Rules of Machine Learning: Best Practices for ML Engineering”,
http://martin.zinkevich.org/rules of ml/rules of ml.pdf

Brett Wujek, Patrick Hall, and Funda Gines, “Best Practices for Machine Learning Applications”,
https://support.sas.com/resources/papers/proceedings16/SAS2360-2016.pdf

Jason Brownlee, “How to Use a Machine Learning Checklist to Get Accurate Predictions,
Reliably”, http://machinelearningmastery.com/machine-learning-checklist/

Domingos, Pedro. "A few useful things to know about machine learning." Communications of the
ACM 55.10 (2012): 78-87.

Grégoire Montavon, Geneviéve Orr, Klaus-Robert Miiller, “Neural Networks: Tricks of the
Trade”, Springer, 2012

Fergus Henderson, “Software engineering at Google”, CoRR, arXiv:1702.01715, 2017.
Gamma, Erich. Design patterns: elements of reusable object-oriented software. Pearson
Education India, 1995.

Goodfellow, I., Bengio, Y., Courville, A., “Deep Learning”, MIT Press, 2016

Weiss, Karl, Taghi M. Khoshgoftaar, and DingDing Wang. "A survey of transfer learning." Journal
of Big Data 3.1 (2016): 1-40.

Patel, Vishal M., Raghuraman Gopalan, Ruonan Li, and Rama Chellappa. "Visual domain
adaptation: A survey of recent advances." IEEE signal processing magazine 32, no. 3 (2015): 53-
69.

Gabriela Csurka “Domain Adaptation for Visual Applications: A Comprehensive Survey”, CoRR,
arXiv:1702.05374, 2017.

Leslie N. Smith. Cyclical learning rates for training neural networks. In Proceedings of the IEEE
Winter Conference on Applied Computer Vision, 2017.

Appendix A: Table of various deep learning applications

The following table lists some recent applications of deep learning, the architecture used for this
application and a few references to papers in the literature that describe the application in much more

detail.
Application Architecture Comments
Colorization of Black and White Large, fully convolutional http://www.cs.cityu.edu.hk/~qiyang/publicatio
Images. ns/iccv-15.pdf
http://arxiv.org/pdf/1603.08511.pdf

Version 1.0 2/27/17

http://martin.zinkevich.org/rules_of_ml/rules_of_ml.pdf
https://support.sas.com/resources/papers/proceedings16/SAS2360-2016.pdf
http://machinelearningmastery.com/machine-learning-checklist/
http://www.cs.cityu.edu.hk/~qiyang/publications/iccv-15.pdf
http://www.cs.cityu.edu.hk/~qiyang/publications/iccv-15.pdf
http://arxiv.org/pdf/1603.08511.pdf

Adding Sounds To Silent Movies.

CNN + LSTM

http://arxiv.org/pdf/1512.08512.pdf

Automatic Machine Translation.

Stacked networks of large
LSTM recurrent neural
networks

http://www.nlpr.ia.ac.cn/cip/ZongPublications/

2015/IEEE-Zhang-8-5.pdf

https://arxiv.org/abs/1612.06897

https://arxiv.org/abs/1611.04558

Object Classification in Photographs.

Residual CNNs, ResNeXt,
Densenets

http://papers.nips.cc/paper/5207-deep-neural-

networks-for-object-detection.pdf

Automatic Handwriting Generation. RNNs http://arxiv.org/pdf/1308.0850v5.pdf
Character Text Generation. RNNs http://arxiv.org/pdf/1308.0850v5.pdf
Image Caption Generation. CNN + LSTM http://arxiv.org/pdf/1505.00487v3.pdf

Automatic Game Playing.

Reinforcement learning +
CNNs

http://www.nature.com/nature/journal/v529/n

7587/full/naturel16961.html

https://arxiv.org/abs/1612.00380

Generating audio

WaveNet = Dilated PixelCNN

https://arxiv.org/abs/1609.03499

https://arxiv.org/abs/1612.07837

https://arxiv.org/abs/1610.09001

Object tracking

CNN + hierarchical LSTMs

https://arxiv.org/abs/1701.01909

https://arxiv.org/abs/1611.06878

https://arxiv.org/abs/1611.05666

Lip reading CNN + LSTMs https://arxiv.org/abs/1701.05847
https://arxiv.org/abs/1611.05358
Modifying synthetic data into GAN https://arxiv.org/abs/1701.05524

labeled training data

Single image super-resolution

Deep, fully convolutional
networks

https://arxiv.org/abs/1612.07919

Version 1.0

2/27/17

http://arxiv.org/pdf/1512.08512.pdf
http://www.nlpr.ia.ac.cn/cip/ZongPublications/2015/IEEE-Zhang-8-5.pdf
http://www.nlpr.ia.ac.cn/cip/ZongPublications/2015/IEEE-Zhang-8-5.pdf
https://arxiv.org/abs/1612.06897
https://arxiv.org/abs/1611.04558
http://papers.nips.cc/paper/5207-deep-neural-networks-for-object-detection.pdf
http://papers.nips.cc/paper/5207-deep-neural-networks-for-object-detection.pdf
http://arxiv.org/pdf/1308.0850v5.pdf
http://arxiv.org/pdf/1308.0850v5.pdf
http://arxiv.org/pdf/1505.00487v3.pdf
http://www.nature.com/nature/journal/v529/n7587/full/nature16961.html
http://www.nature.com/nature/journal/v529/n7587/full/nature16961.html
https://arxiv.org/abs/1612.00380
https://arxiv.org/abs/1609.03499
https://arxiv.org/abs/1612.07837
https://arxiv.org/abs/1610.09001
https://arxiv.org/abs/1701.01909
https://arxiv.org/abs/1611.06878
https://arxiv.org/abs/1611.05666
https://arxiv.org/abs/1701.05847
https://arxiv.org/abs/1611.05358
https://arxiv.org/abs/1701.05524
https://arxiv.org/abs/1612.07919

https://arxiv.org/abs/1611.03679

https://arxiv.org/abs/1511.04587

https://arxiv.org/abs/1611.00591

Speech recognition LSTMs https://arxiv.org/abs/1701.03360

https://arxiv.org/abs/1701.02720

Generate molecular structures RNNs https://arxiv.org/abs/1701.01329

Time series analysis Resnet + RNNs https://arxiv.org/abs/1701.01887

https://arxiv.org/abs/1611.06455

Intrusion detection RNNs or CNNs https://arxiv.org/abs/1701.02145
Autonomous Planning Predictron architecture https://arxiv.org/abs/1612.08810
Object detection https://arxiv.org/abs/1612.08242
Multi-modality classification CNN + GAN https://arxiv.org/abs/1612.07976

https://arxiv.org/abs/1612.00377

https://arxiv.org/abs/1611.06306

Health monitoring All are used https://arxiv.org/abs/1612.07640
Robotics CNN (perception) https://arxiv.org/abs/1612.07139

RL (control) https://arxiv.org/abs/1611.00201
Domain adaptation https://arxiv.org/abs/1612.06897
Self-driving CNNs https://arxiv.org/abs/1612.06573

https://arxiv.org/abs/1611.08788

https://arxiv.org/abs/1611.05418

Visual question answering Resnet https://arxiv.org/abs/1612.05386

Version 1.0 2/27/17

https://arxiv.org/abs/1611.03679
https://arxiv.org/abs/1511.04587
https://arxiv.org/abs/1611.00591
https://arxiv.org/abs/1701.03360
https://arxiv.org/abs/1701.02720
https://arxiv.org/abs/1701.01329
https://arxiv.org/abs/1701.01887
https://arxiv.org/abs/1611.06455
https://arxiv.org/abs/1701.02145
https://arxiv.org/abs/1612.08810
https://arxiv.org/abs/1612.08242
https://arxiv.org/abs/1612.07976
https://arxiv.org/abs/1612.00377
https://arxiv.org/abs/1611.06306
https://arxiv.org/abs/1612.07640
https://arxiv.org/abs/1612.07139
https://arxiv.org/abs/1611.00201
https://arxiv.org/abs/1612.06897
https://arxiv.org/abs/1612.06573
https://arxiv.org/abs/1611.08788
https://arxiv.org/abs/1611.05418
https://arxiv.org/abs/1612.05386

https://arxiv.org/abs/1611.01604

https://arxiv.org/abs/1611.05896

https://arxiv.org/abs/1611.05546

Weather prediction Graphical RNN https://arxiv.org/abs/1612.05054
Detecting cancer RBM https://arxiv.org/abs/1612.03211
Genomics Multiple NNs https://arxiv.org/abs/1611.09340
Semantic segmentation Fully conv Densenet https://arxiv.org/abs/1611.09326

https://arxiv.org/abs/1611.06612

Hyperspectral classification CNN https://arxiv.org/abs/1611.09007

Natural Language Processing (NLP) | LSTM, GRU https://arxiv.org/abs/1606.0673

Face detection CNN https://arxiv.org/abs/1611.00851
10

Version 1.0 2/27/17

https://arxiv.org/abs/1611.01604
https://arxiv.org/abs/1611.05896
https://arxiv.org/abs/1611.05546
https://arxiv.org/abs/1612.05054
https://arxiv.org/abs/1612.03211
https://arxiv.org/abs/1611.09340
https://arxiv.org/abs/1611.09326
https://arxiv.org/abs/1611.06612
https://arxiv.org/abs/1611.09007
https://arxiv.org/abs/1606.06737v2
https://arxiv.org/abs/1611.00851

	Cit p_1:1:
	Cit p_19:1:
	Cit p_19:2:
	Cit p_5:1:
	Cit p_23:1:
	Cit p_5:2:
	Cit p_23:2:
	Cit p_9:1:
	Cit p_16:1:
	Cit p_20:1:
	Cit p_6:1:
	Cit p_17:1:
	Cit p_17:2:
	Cit p_7:1:
	Cit p_7:2:
	Cit p_8:1:
	Cit p_38:1:
	Cit p_38:2:
	Cit p_31:1:
	Cit p_31:2:
	Cit p_35:1:
	Cit p_33:1:
	Cit p_33:2:
	Cit p_41:1:
	Cit p_41:2:

