
The IT Manager’s Guide to

Continuous Delivery
Delivering business value in hours, 
not months

Foreword by David Farley
Co-author of Continuous Delivery



1  Introduction 05

2   Meet Ostrich Insurance, the Traditional Company 07

3   Meet the Competitor: Future Insurance 13

4  The Role of the Business 17

5   An Introduction to the Continuous Delivery Pipeline 19

6  Test: Move the Tests Up Front 22

7  Development: Instant Visibility 26

8   Deployment: Make it a Non-event 30

9   Provisioning: Pipeline Foundations 33

10  Release Coordination: Orchestrating your Pipeline 36

11  Dare to Think Differently 38

12   Getting Started with Continuous Delivery 41

13  Final Thoughts 44

14  DOs and DON’Ts 46

 Glossary of Terms 48 

 About the Authors 53 

 About XebiaLabs 54

Table of Contents



Preface

Continuous Delivery is a set of processes and practices that radically removes  

waste from your software production process. It enables faster delivery of high-quality 
functionality and sets up a rapid and effective feedback loop between your business  
and your users. As a result, you will deliver better software and have more satisfied  
customers.

In a competitive economic environment, every organization should at least consider  
this game-changing approach. It marks the difference between being a business just 
about able to keep up or being a business setting the pace.

This is the first book on this subject that

 focuses on measurable business benefits, 

  is written for readers with a non-technical  
background, 

 gives concrete advice on how to get started.  

 
Continuous Delivery is often considered solely as a technical topic. In reality,  
executive support, buy-in across the organization and hands-on participation from  
the business are equally, if not more, essential for successful Continuous Delivery  
implementations.  

This is the first book that helps managers understand the principles behind Continuous 
Delivery, explains the transition to a Continuous Delivery organization and gives practical 
advice on how to start benefiting from the dramatic improvements Continuous Delivery 
provides. 



Foreword by David Farley

Continuous Delivery is at the leading edge of software development thinking. Most of the literature 
and discussion focusses on the technical aspects, but this is a process that crosses boundaries and 
helps to make businesses more efficient. This book is aimed at the IT manager or business person who 
wants to understand the Continuous Delivery approach.

Software development is an extremely difficult undertaking. Software is unlike most endeavours  
with which we are familiar. Creating software is a technically demanding process. It often demands 
advanced problem solving techniques and high levels of creativity. On top of all of that, software is 
remarkably fragile: a tiny error, one wrong character in the equivalent of a chapter, is enough to prevent 
it from working.

As a result of these demands, the software industry has often struggled to effectively meet the needs 
of the businesses that it serves. It has been far too common for software development projects to be 
late, deliver poor quality and deliver software that doesn’t meet the needs of users. There have been 
many attempts to tackle this problem, but over the past few years there has been a significant change. 
Learning from the scientific method, advanced quality-focussed processes and experiments in  
software development processes we have evolved techniques that we can finally claim, with some 
authority, work.

Continuous Delivery is the most effective approach to developing high quality software that we have 
found so far. This is the process that some of the most successful companies in the world now use  
to gain market advantage. The early adopters were web companies, including some of the largest and 
most successful, but increasingly this process is now being adopted in all types of organisation,  
developing all kinds of software and in widely different business sectors. This adoption is happening 
because this process works! Businesses that have adopted Continuous Delivery are more successful 
as a result. They get higher-quality software into the hands of their users and customers faster than 
before and so can react to business demand and change more rapidly.

Continuous Delivery works because it depends on a more scientific approach to development.  
We attempt to establish feedback mechanisms that show the results of our work more quickly.  
We aim to make our software more verifiable at all levels.

Continuous Delivery changes the way that you and your software development teams work together. 
This is not a process that stops at the boundaries of the software development team. It helps to foster 
a professional, high-performance team culture. It frees each group to make the professional decisions 
for which they are trained and yet encourages them to interact more and depend upon one another’s 
skills and expertise.

I believe that in any market, a company that uses Continuous Delivery for software development has 
a significant advantage over those that don’t. This is not because of the technicalities, but because it 
provides a business the freedom to experiment and so to react to change. If you work for a company 
that relies on software development these changes are going to affect you. If you adopt them they will 
change the way that you work, and improve the efficiency, effectiveness and quality of your software 
and your business. If you don’t you will see increasing competition from those that do.

I hope you enjoy this book, and I hope that you enjoy the process of discovery and the sense of  
teamwork that adopting Continuous Delivery so often initiates.

David Farley
Co-Author of Continuous Delivery



1

Introduction



Go to  
Table of Contents

6

Turning good ideas into marketable features quickly is a business imperative for 
every enterprise. Getting features “out there” faster and at high levels of quality 
is the first critical step. The subsequent step is to rapidly collect feedback from 
your users in order to guide your next set of ideas.

First, deliver features better. Then, deliver better features better!

Continuous Delivery is a set of processes and practices that radically  
removes waste from your software production process, enables faster delivery 
of high-quality functionality and sets up a rapid and effective feedback loop  
between your business and your users. In a competitive economic environment, 
every organization should at least consider this game-changing approach.

Continuous Delivery will help you reduce your time to market from weeks and 
months to days or hours!

The IT Manager’s Guide to Continuous Delivery



2

Meet Ostrich Insurance: 
The Traditional Company



Go to  
Table of Contents

8

In order to properly motivate the practices and processes of Continuous  
Delivery, we first look at the manner in which software functionality is  
delivered in a traditional organization: Ostrich Insurance.

Ostrich is a traditional company that has been doing things a certain way  
for a long time. To remain competitive in the insurance market, Ostrich  
shifted to selling their products online a while ago. However, it is hard for 
them to compete in the online market, because it simply takes them too 
much time to deliver new software.

Communication between business, development, QA and operations  
takes place on many different levels and often leads to confusion. Handoffs  
between the different groups involved in the overall process introduce  
long waiting times and provide yet further opportunity for hesitation  
and disruption.

Slow, error-prone, manual processes, delays, handoffs and lengthy fix  
cycles inevitably lead to infrequent releases. And when you infrequently 
release large numbers of changes and fixes in one go, the go-live is  
predestined to be stressful and often followed by days or weeks of  
post-release emergency patches.

How can the business ever release features quickly and reliably under these 
circumstances?

Identifying Waste

In order to help identify Ostrich’s challenges, let us look at the Value Stream 
Map for their software delivery process - a proven technique for identifying 
and progressively eliminating waste in a process.

Slow, error-prone, manual 
processes, delays, hand-
offs and lengthy fix cycles  
inevitably lead to  
infrequent releases.

Continuous Delivery promises to deliver new features to  
production in a matter of hours. In this chapter, we illustrate  
the problems that exist in a traditional software delivery 
process where this often takes many months.

The IT Manager’s Guide to Continuous Delivery



Go to  
Table of Contents

0. Requirements: We Know Everything

Conditioned to work with large, infrequent releases, the business analyst 
tries to specify the complete feature set up front. To try to avoid ambiguity 
and differences in interpretation, they create very detailed descriptions in an 
attempt to capture all use cases and scenarios the business can imagine.  
Inevitably, this involves second-guessing the details of what customers 
actually want, leading to many features that end up not quite meeting their 
expectations.

It also means that, from the perspective of delivering business value, there is 
already a built-in time-to-market delay, because sufficient features need to be 
gathered before work on a single feature can even start.

Duration: weeks to months 
Waste: wrong features specified; features not specified correctly;  
features specified to an excessive level of detail; no customer  
feedback cycle in large up-front product design; no advice from  
developers to design for feasibility

1. Coding: Postponing Problems

The specifications of the feature requirements are passed to one or more 
development teams one by one. Developers work in isolation, each making 
changes to their copy of the application code without being aware of any 
possible overlapping changes made by their colleagues. After several weeks, 
work that is related to a particular feature is complete. 

Duration: several weeks
Waste: duplicated effort; lack of communication between  
the developers

 
2. Integrating: Merge Hell

After weeks of working on an isolated copy of the code, the new  
features now need to be combined or “merged” into one single codebase. 
The longer the team puts off merging the code and the larger the develop-
ment team, the greater the number of conflicting changes that need to be 
handled. Late and infrequent integration is a typical recipe for missing dead-
lines and introduces significant risk.

Duration: days
Waste: conflict resolution during merging; problem needs to be 
solved by the entire team

9

Value Stream Mapping  
is a proven technique for 
identifying and progres-
sively eliminating waste  
in a process.

The IT Manager’s Guide to Continuous Delivery



Go to  
Table of Contents

3. Installing: Error-prone Manual Deployment

After weeks of manually tweaking the development machines in order to  
get the application to run, the development team now needs to prepare  
an installation manual to allow operations to deploy the new version to  
the subsequent test environments as well. This installation manual usually 
describes all the steps that the developers remember, but it certainly does 
not describe a fully tested procedure.

The installation manual and application binaries are handed off to operations 
via a shared network drive. A support ticket is created for operations to  
deploy the application to the test environment in the next available timeslot.

Just before the deadline of the service level agreement for handling the  
support ticket expires, the request is picked up by an operator, who attempts 
to deploy the application according to the manual. After a couple of steps, 
the operator runs into an error, adds a comment to the ticket and passes it 
back to the development team.

The next morning, the QA team that is expecting to start a test cycle  
discovers that the application isn’t even running. The lead developer checks 
the support ticket, discovers a typo in the installation manual, uploads the 
updated manual to the network share (obscuring the audit trail in the  
process) and hands the ticket back to operations.

Eventually, the operator resumes work on the ticket and finally completes the 
installation.

Duration: 1 week 
Waste: waiting for deployment to be carried out; fixing incorrect de-
ployment instructions; fixing incorrect deployments; waiting for target 
environment to become available; QA waiting for application to test to 
become available; “ping-pong” between different teams

4. Testing: Lowering The Bar After Manual QA

The QA team can now start their acceptance test. During the development 
phase, the team translated the detailed business requirements into exten-
sive test plans. Some of the requirements seem to be good candidates for 
the test automation tool used at Ostrich. For these type of requirements, 
the team tried to translate requirement descriptions into automation scripts 
that the tool is able to run. Like all translations, this is a challenging process 
resulting in a number of requirements incorrectly or insufficiently covered by 
automated tests.

10

0. Requirements
1. Coding
2. Integrating
3. Installing
4. Testing
5. Release Preparation
6. Go Live

The IT Manager’s Guide to Continuous Delivery



Go to  
Table of Contents

The lengthy process of executing the test plan gets underway. On  
completion, the QA team prepares its report, which identifies 15 failing  
test scenarios - enough for the release to be put on hold.

With many important features threatening to be delayed by the 15 failing 
tests and pressure from the business mounting, it is decided that only 3 of 
the defects are indeed show stoppers that really need to be fixed before  
continuing. A patch is quickly rushed out, the 3 scenarios are verified, and 
the updated version is reluctantly passed by the QA team.

The release manager now creates a support ticket to release the patched 
version to production, accepting the fact that 12 of the requirements  
originally laid out failed the test! These will need to be addressed in an  
urgent maintenance release that is now planned in a hurry.

Duration: 3 weeks 
Waste: translation of requirements into tests; waiting for test  
completion before fixing; developing features that do not work;  
testing scenarios that are determined to be non-essential; many 
correct features waiting for 3 defects to be fixed; miscommunication 
caused by differing interpretation of requirements; handoffs between 
different teams

5. Release Preparation: The Pre-Production Bottleneck

Before the new version can be released to production, it must pass a final 
set of tests in the pre-production environment. This is required to increase 
the confidence level that the go-live will succeed, since the acceptance  
environment differs quite substantially from production.

Getting an exclusive slot for the busy pre-production environments has to be 
planned well in advance; this time, the next available slot is two weeks down 
the line.

Once the application is installed in the pre-production environment, the QA 
team starts the production integration, stability and regression tests. After a 
week, the team finds two errors, which are fixed by the development team 
two days later. After a short retest of the failed scenarios, the release is  
accepted for production.

Duration: 4 weeks 
Waste: waiting for the pre-production environment to become  
available; missed deadlines; errors found late in the process

11

Continuous Delivery is 
often considered solely as 
a technical topic. In reality, 
executive support, buy-in 
across the organization 
and hands-on participa-
tion from the business 
are equally, if not more, 
essential for a successful 
Continuous Delivery  
implementations.

The IT Manager’s Guide to Continuous Delivery



Go to  
Table of Contents

6. Go-Live: The Quarterly Release Cycle

The new application version has been approved just in time for the next  
available quarterly release slot, coming up in 3 weeks. As usual, it will be 
busy and stressful: from Saturday night to Sunday, operations is supposed to 
manually deploy 9 new application versions. After 4 hours of manually  
executing the installation steps described in the various manuals, the QA 
department takes another 4.5 hours to verify the releases. Just before the 
go/no-go deadline is reached, QA completes testing, and with many sighs of 
relief the application is live.

Duration: 3 weeks 
Waste: waiting for the release window; out-of-hours work

In short, from a business perspective: it has taken months to get only  
a small subset of the features Ostrich thinks their customers need into  
production. Important fixes are outstanding, and it will be difficult or 
impossible for Ostrich to gauge the impact of each of the new features  
in order to address their customers’ needs better in future.

12

A traditional software delivery 
process prevents you from  
responding to your customers’
needs quickly and reliably:

  Individual features or  
requests cannot be quickly 
implemented

  Delivery process is slow, 
unreliable and error-prone

  Quality levels are low due to 
late discovery of errors

The IT Manager’s Guide to Continuous Delivery



3

Meet the Competitor:  
Future Insurance



Go to  
Table of Contents

Let us compare the situation at Ostrich with that of its competitor, Future 
Insurance. Looking at market developments, they acknowledged early that it 
was no longer acceptable to deliver new products or update product features 
at the same pace at which they had been operating for the past ten years.

Future Insurance examined its software delivery value stream and pinpointed 
every step in the process that was costly, time-consuming or prone to errors. 
They removed, automated or accelerated every single step, until they had 
put in place a rapid, cost-efficient and reliable process. This transition was 
based on the practices and principles of Continuous Delivery.

At Future Insurance, the feedback cycle between the business and the end 
user is incredibly tight, enabling a rapid “dialogue” with customers that  
ensures each idea and feature delivered is aligned with the current needs 
and wishes of Future’s users.

For Future, it’s not just about delivering ideas faster and more efficiently. It’s 
about enabling the business to reliably have better, more relevant and more 
timely ideas in the first place. The differences between Future and Ostrich 
go beyond just the development process: the business does not attempt to 
dream up new features based on a guess of what users might like.

Instead, they identify improvements based on analysis of user responses  
by looking at user interaction data, system metrics, social media output and 
comparisons with groups of users exposed to a different subset of features. 
Based on this analysis the business, which constantly keeps track of  
customer behavior through live dashboards and visualizations, decides  
to try out new features.

14

For Future, it’s not just 
about delivering ideas 
faster and more efficient-
ly. It’s about enabling the 
business to reliably have 
better, more relevant and 
more timely ideas in the 
first place.

In the previous chapter, we saw how a traditional software  
delivery process prevents organizations from reacting quickly  
and reliably to market demand. In this chapter, we illustrate  
how Continuous Delivery enables the rapid delivery of high  
quality features to production.

The IT Manager’s Guide to Continuous Delivery



Go to  
Table of Contents

0. Collaborating: End-to-end Feature Teams

At Future, new ideas are formulated and prepared for inclusion in the  
delivery stream by an end-to-end team that involves all relevant groups  
as soon as possible: business analysts, developers, testers and operators. 
This approach ensures that everybody has a shared understanding of an  
idea and will be able to implement this idea effectively. This agile team covers 
the entire spectrum of service delivery and is involved in making the product 
a success at every step of the way.

1. Defining: Specifications Become Automated Acceptance Tests

No matter how agile or lean you are, a change should be specified before it 
is implemented. In contrast to the lengthy documents common at Ostrich, 
specs at Future are formulated by the entire delivery team, with primarily the 
business and QA working together to write executable tests in business-level 
language. This increases efficiency and eliminates a source of miscommuni-
cation in one stroke: why first write a specification on paper and later request 
someone else to translate it into code for a test tool, when both people can 
work together to define a single executable test in one step?

Duration: 0.5 day

1. Coding: Tests First, Then Code

Before a developer at Future starts implementing a feature, they write a 
failing unit test for the piece of code about to be written. Only then does the 
developer start writing code to make the test succeed. This practice, which 
is followed by all other developers working on the application, has resulted 
in a large body of unit tests validating that all the pieces of code continue to 
behave as intended.

Since all these unit tests still pass after the new code has been added, the 
change is checked into version control. By doing so, the change is added to 
the same codebase being worked on by all other developers on the team. 
The updated codebase is now verified again by the Continuous Integration 
server to check that the new code does not conflict with changes made by 
other developers. If this build fails, the entire team is immediately notified, 
and correcting the mistake to “get the build back to green” becomes the top 
priority for the team. Any member of the team can fix, or even simply remove, 
the new change to correct the mistake in minutes.

Duration: 0.5 day
 

15The IT Manager’s Guide to Continuous Delivery

0. Collaborating
1. Defining
2. Coding
3. Pipeline
4. Go Live



Go to  
Table of Contents

2. Off It Goes: The Continuous Delivery Pipeline

The integration build is the first step a new feature takes on its journey 
through the Continuous Delivery pipeline. It will verify that the feature not 
only passes the automated acceptance test that is our specification, but also 
meets system requirements for security, performance, availability etc.

These tests are carried out in automated, “hands-off” environments: test 
systems which are created and torn-down as needed, without human inter-
vention. The feature is automatically deployed onto these environments, after 
which applicable tests are immediately executed.

The speed and reliability of automatically provisioning and configuring the 
production-like test environments is critical to the pipeline. It allows Future 
Insurance to accelerate throughput by performing many types of tests in 
parallel, raising the confidence level that the high quality level verified in the 
pipeline will carry over to production.

Most important, the status of each feature in the pipeline is immediately 
visible, and progress is highly predictable at all times. Everyone involved in 
feature delivery - from the business and development to QA and operations - 
has complete visibility at every step of the way.

Duration: 0.5 day

3. Go-live: The Product Owner Hits the Button

If a new feature does not cause any failures in the pipeline, the business 
owner is notified and asked to approve the new version of the application. 
This is mostly a formality as the feature has already passed thousands of 
automated tests, which ran overnight. All test results are summarized in a 
quality dashboard for review and drill-down if desired.

By approving the new feature, the business owner adds it to the next fully 
automated production deployment. These deployments take place at regular 
intervals around the clock, with no developer or operator required. Deploying 
a new feature is as easy as publishing an article in a content management 
system.

For many applications at Future, the business trusts the tests to the point 
that any feature that makes it through the pipeline is automatically approved. 
After all, any new change is initially only exposed to a percentage of the  
customer base. If significant problems are detected in this “canary” subset, 
the change is automatically rolled back.

Duration: 1 hour

This approach allows the business to concentrate on reacting quickly and  
responsively to user input to devise the next “killer feature” that will take  
Future even further ahead of their competitors.

16

Continuous Delivery enables 
the rapid delivery of high quality 
features to production, allow-
ing the business and IT to work 
together to react quickly to the 
demands of customers and out-
pace the competition.

  Multi-disciplinary, end-to-
end feature team involved 
from the beginning. 

  Visibility into progress and 
quality levels throughout the 
process. 

  Reliable delivery through  
an automated build,  
deployment, test and  
release process. 

  Instant user feedback on 
new features continuously 
monitored by the business. 

The IT Manager’s Guide to Continuous Delivery



4

The Role of the Business



Go to  
Table of Contents

One of the key appeals of Continuous Delivery is that it gives the business 
much more direct control of feature development - from “throwing a bunch  
of the requirements over the wall to IT and waiting months to see what 
comes out” to “having an idea today and being able to follow all its steps  
to go-live tomorrow”.

Putting the business behind the wheel is an important step. However,  
in order to make Continuous Delivery a success, the business also  
needs to keep its eyes firmly on the road and concentrate on the journey.  
The business needs to be prepared to commit full-time resources -  
dedicated Product Owners - to gather and evaluate feedback from the  
user community, work with testers and developers to refine new  
features and improvements and define specifications in the form of  
automated acceptance tests.

In an effective Continuous Delivery environment, the ability of the pipeline to 
churn out new functionality can be so significant that simply ensuring that 
enough new features and ideas are ready to be worked on can become a 
challenging task.

In order to get the most out of Continuous Delivery, we have to ensure  
the business itself does not become the bottleneck. Early expectation  
management and communication of the new responsibilities to the  
business are essential to realizing the potential of Continuous Delivery.  
If not addressed properly, we risk ending up with an idling racecar.

18

One of the key appeals 
of Continuous Delivery is 
that it gives the business 
much more direct control 
of feature development

In the previous chapter, we saw how Continuous Delivery  
enables rapid delivery of high quality features to your users.  
In this chapter, we stress the importance of buy-in and  
committed involvement in the delivery process by the business.

The IT Manager’s Guide to Continuous Delivery



5

An Introduction  
to the Continuous  
Delivery Pipeline



Go to  
Table of Contents

The goal of Continuous Delivery is to create a constant flow of changes to 
production: an automated software production line. The core concept that 
makes this happen is the Continuous Delivery pipeline. The pipeline breaks 
the software delivery process down into a number of stages. Each stage is 
aimed at verifying quality of new features from a different angle in order to 
prevent errors from affecting your users.

The pipeline should provide feedback to the team and visibility into the flow 
of changes to everyone involved in feature delivery. A typical Continuous 
Delivery pipeline can be broken down into the following stages:

The initial stages: Build automation and Continuous Integration

The pipeline starts by building the binaries to create the deliverable(s) that 
will be passed to the subsequent stages. New features implemented by the 
developers are integrated into the central code base on a continuous basis, 
built and unit tested. This is the most direct feedback cycle that tells the 
development team about the “health” of their application code.

The verification stages: Test automation

Subsequent stages in the pipeline ensure that all desired system qualities 
are met by the new version of the application. It is important that all relevant 
aspects - whether functionality, security, performance or compliance - are 
verified by the pipeline. The stages may involve different types of automated 
or (initially, at least) manual activities, or require human authorization.

The rollout stage: Deployment automation

The final stage of the pipeline is deployment to production. Since the  
preceding stages have verified the overall quality of the system, this is now 
a low-risk step. The deployment can be staged, with the new version being 
initially released to a subset of the production environment and monitored 
before being completely rolled out. The deployment is automated, allowing 
for reliable delivery of new functionality to users within minutes whenever this 
is needed.

20

The goal of Continuous 
Delivery is to create a 
constant flow of changes to 
production: an automated 
software production line. 

In the previous chapter, we stressed the importance of the  
committed involvement of the whole organization in the  
Continuous Delivery process. In this chapter, we describe the  
delivery pipeline: the key concept driving the continuous flow  
of changes to production.

The IT Manager’s Guide to Continuous Delivery



Go to  
Table of Contents

Foundations: Platform provisioning

The deployment pipeline is supported by platform provisioning and system 
configuration management, which allow teams to create, maintain and tear 
down complete environments automatically or at the push of a button. Au-
tomated platform provisioning ensures that all tests are carried out against 
correctly configured and reproducible environments. It also facilitates  
horizontal scalability and allows the business to try out new products in a 
sandbox environment at any time.

Orchestrating it all: Release coordination

The multiple stages in a deployment pipeline will involve different groups of 
people collaborating and supervising the release of the new version of your 
application. Release coordination provides a top-level view of the entire 
pipeline, allowing you to define and control the stages and gain insight into 
the overall software delivery process.

Analyzing this value stream highlights any remaining inefficiencies and  
hot-spots and pinpoints opportunities for further optimization of your  
pipeline.

Don’t Add New Functionality Before Quality Is Right!

Continuous Delivery is about enabling your organization to bring new  
features to production, one by one, quickly and reliably. That means that 
every individual feature needs to be seen through to completion, meeting  
the quality requirements set for the overall system.

In a traditional environment, development teams try to implement an entire 
new version in one go, intending to address software quality characteristics 
such as robustness, extensibility, maintainability etc. only once the project  
is close to completion. In consequence, the software only reaches a state 
suitable for shipping to the customer, and thus delivering business value, at 
the very end of the project! As deadlines loom and budget pressure grows, 
quality is often the first thing that is compromised.

Poor system quality, low user satisfaction and endless “quality band-aids” 
can be avoided by adopting the principle of not adding new functionality  
before “quality is right”. You should always first meet and maintain your  
quality levels and only then consider gradually adding functionality to  
the system.

With Continuous Delivery, each new feature is required to meet the level of 
quality expected for the system as a whole, right from the start. Only once 
this quality level has been reached can this feature be moved to production.

21

The delivery pipeline is the key 
concept that enables a  
continuous flow of changes to  
production in a Continuous  
Delivery environment. 
 
Key points of the pipeline are:

  Functionality is only added 
when the quality is right. 

  All changes to the source code 
immediately result in a new 
version of the application. 

  Each new version is  
automatically tested against  
all available tests. 

  New versions are automatically 
deployed to production. 

  All installation and  
configuration of machines  
and environments is fully  
automated. 

The IT Manager’s Guide to Continuous Delivery

Quality =  
Functionality  

(what the system does)

System Qualities  
(how well it does it)



6

Test:  
Move the Tests Up Front



Go to  
Table of Contents

The standard approach to testing is to first develop new features, and then 
to test them. As a result, testing becomes a roadblock that stands in the  
way of go-live. After all, “the code is already there - what are we waiting for?” 
Inevitable delays cause testing to be cut short, resulting in the low quality of 
many released features.

In a Continuous Delivery environment, we adopt a more productive  
approach. With automatically testable specifications, testing becomes  
the first thing we do, before development starts. Automating our tests  
allows testing to be an ongoing activity that is performed continuously as 
part of the development process. Moving to this model provides a real-time 
picture of the current level of functionality and quality at all stages in the 
delivery pipeline.

Executable Specifications: Automated Acceptance Testing

Traditional specifications are dustware: they disappear into a desk drawer 
and quickly become obsolete as requirements and functionality change. 
These lengthy documents first need to be translated into test cases, which 
are then usually executed manually: a costly, time-consuming process which 
frequently results in tests that do not actually verify the originally intended 
functionality in the first place.

In a Continuous Delivery setup, we can switch to executable specifications. 
These are formulated using a structured natural language which can be  
read and understood by both the business and the test tool. No more  
“lost in translation” problems: the specification is the functional  
acceptance test!

Automated functional acceptance tests perform black box testing, in which 
the internals of the system are not known. They approach the system from a 
user’s point of view, and so also function as automated acceptance criteria. 
They are automatically evaluated as features move through the delivery  
pipeline, allowing us to track the progress of development in real time.

23

In order to successfully 
implement Continuous 
Delivery, we need a high 
degree of confidence 
that we can deliver new 
features quickly and 
regularly without breaking 
existing functionality. 

In the previous chapter, we introduced the delivery pipeline  
as the key concept enabling a continuous flow of changes to 
production. In this chapter, we show how the pipeline guarantees 
high levels of quality.

The IT Manager’s Guide to Continuous Delivery



Go to  
Table of Contents

There’s More to Quality Than Functionality:  
Automated Non-Functional Testing

Implementing a piece of functionality that works under “friendly  
circumstances”, such as on a developer’s laptop, is relatively simple.  
Writing high quality software for the real world, at acceptable cost,  
is a much bigger challenge.

As with functional specifications, we need to start by identifying our quality 
requirements, and state them in a testable - ideally, automatically testable - 
form. In a Continuous Delivery environment, it’s important to remember that 
non-functional requirements can be part of the feedback loop just as much as 
feature ideas: system metrics such as latency, load and stability  
can equally give rise to new improvements.

Treating non-functional improvements as “just another type of change”  
is also a good way to find a balance between functionals and non- 
functionals, which all contribute to overall system quality. Non-functional  
requirements tend to be overlooked by the business, while developers can 
have a tendency to focus on them too strongly.

It is important to internally agree that improvement items can be placed  
on the backlog by developers and testers, and not just by the business  
owner. Using data about system performance and user experience allows  
architectural improvements and other changes that tackle “technical debt”  
to be prioritized more fairly. They can then be handled by the Continuous  
Delivery pipeline in the same manner as a new feature.

When writing your acceptance criteria, make sure you include non-functional 
requirements as part of the overall quality specification. Once these require-
ments are known, test for them! Automate these tests and run them often.

Keeping The System Running: Automated Regression Testing

In order to successfully implement Continuous Delivery, we need a high degree 
of confidence that we can deliver new features quickly and regularly without 
breaking existing functionality. Such errors are called regressions and,  
especially if they affect frequently-used or highly visible parts of the  
system, will quickly result in a poor user experience.

A very useful type of testing when it comes to preventing regressions caused 
by the small, incremental changes Continuous Delivery aims for is testing of 
the internals, or white box testing.

In software development, testing the behavior of a piece of code by itself is 

24

In a Continuous Delivery  
environment, it’s important  
to remember that non- 
functional requirements can 
be part of the feedback loop 
just as much as feature ideas

The IT Manager’s Guide to Continuous Delivery



Go to  
Table of Contents

called unit testing. In Test Driven Development, the developer writes unit 
tests before writing the actual code. These tests thus serve as a description 
and verification of intended behavior. Once a unit test is created, it is run 
every time, safeguarding the ongoing correct functioning of this component.

This growing body of unit tests is invaluable in helping ensure all the  
pieces of the system still work as intended as we introduce changes  
to add functionality, and especially when restructuring the system  
to improve non-functional qualities.

Avoiding regressions through extensive automated testing is a key part of  
a successful Continuous Delivery pipeline. Many types of regression testing  
will be required, since we want to ensure that all system qualities, from  
functionality to performance to reliability, remain stable.

But of course we also can’t afford to run all our automated tests for every 
single commit, as the required throughput time can quickly run into hours 
and days.

From a manager’s perspective, good regression tests are determined by 
two measures: coverage and execution time. Coverage is a percentage that 
indicates how much of the system’s behavior is validated by the tests. Aim 
for 100% but make sure that the tests are meaningful and relevant, verifying 
especially those parts of the system that will result in the greatest loss in 
business value if regressions occur. Aim also to keep the time required to run 
each test as low as possible - otherwise, we may achieve 100% coverage 
but will simply not have the time to run our tests.

Overall, a balance needs to be found between the maximum acceptable  
runtime for tests and the degree of coverage achievable. We can also  
use a tiered approach, with tests covering highly critical parts of our  
applications being executed for every change, while the full test set is run 
less frequently.

In order to minimize the need for this tradeoff, you should optimize your  
test infrastructure and tooling, and make use of any opportunity to run tests 
in parallel.

25

Before we can speed up the  
delivery process, we need to  
make sure that the quality of the 
software is guaranteed.

  Testing takes priority over  
developing code. 

  Automated acceptance tests 
are written with the business  
to verify new functionality. 

  Automated tests for non- 
functional requirements are 
included in the process. 

  Automated regression tests 
ensure the system remains 
stable. 

The IT Manager’s Guide to Continuous Delivery



7

Development:  
Instant Visibility



Go to  
Table of Contents

In a traditional software development organization, developers often work 
in isolation until, every couple of weeks or months, an attempt is made to 
merge all changes into central version control and “build the whole thing”. 
Getting this to work takes a lot of effort and is a significant source of  
frustration. In such a process, developers spend a lot of time getting all  
parts of the code to work together, instead of focusing on creating tangible 
improvements and value for end users.

With Continuous Delivery, developers commit their changes to central version 
control several times a day, from where the changes are automatically built 
and tested to produce an updated version of the product. The application  
is always “ready to go”, allowing the team to focus on functionality and  
delivering high quality features to customers.

Once executable specifications describing what needs to be built are in 
place, it is time to develop the code to implement the desired functionality.  
In a Continuous Delivery environment, we make use of a number of tools and 
practices that focus on ensuring that each new feature works in the context 
of the overall system: Test Driven Development, Continuous Integration and 
product dashboards are all about identifying errors and defects as early as 
possible and making them clearly visible. After all, problems found at this 
stage of the delivery process are still relatively easily and quickly fixed.

Test Driven Development – First The Test, Then The Code

A developer should only be writing code required to ensure the new feature 
meets specifications. If the code needs to be modified later, for instance in 
case the functionality needs to be extended, or to improve maintainability or 
performance, the developer also needs to make sure that such changes do 
not break anything else.

These challenges are addressed by writing code-level tests before writing  
the actual program code, a practice called Test Driven Development. The 
developer starts by writing failing “unit tests” for each a component, or  
“unit”, of the new feature. Code implementing the feature is then added  
until all these tests pass. The result of the unit tests makes the progress of 
the implementation of a feature clearly visible.

27

With Continuous  
Delivery, developers 
commit their changes to 
central version control 
several times a day, from 
where the changes are 
automatically built and 
tested to produce an 
updated version of the 
product.

In the previous chapter, we saw how Continuous Delivery focuses 
on tests before writing code to guarantee quality. In this chapter, 
we show how Continuous Delivery provides fast feedback and 
instant visibility during development to deliver high quality code.

The IT Manager’s Guide to Continuous Delivery



Go to  
Table of Contents

The updated code can then be committed to version control, where  
Continuous Integration takes over to verify that the new version of the system 
as a whole meets the business requirements and desired quality levels.

Continuous Integration - Nobody Goes Home if the Build  
Is Broken

Your software developers deliver business value through working software. 
For software to work, it must first build. Building your application on a regular 
basis forces the development teams to ensure all the various components fit 
together at any moment in time.

The most effective way to ensure code is regularly assembled is to maintain 
a central Build and Continuous Integration server. This automatically tries to 
run a new build on a “clean” machine whenever the code in the central ver-
sion control system is changed. When the build succeeds, the team’s build  
dashboard stays green. If the build fails, it turns red.

Before leaving the office, any developer that has added a code change to 
version control needs to wait until the Build & CI server has successfully 
verified the updated code. If the build fails and the dashboard goes red, the 
developer has two options:

1. Fix the error 
2. Remove the change and return to the last working version 

The ability to roll back the change means that no developer should need to 
leave the office with the application in a “broken” state, which would block 
the progress of the rest of the development team.

Dashboards – It’s All About Quality

In a large software project, it’s easy enough to hide flaws. Code bases  
can stretch to millions of lines of code, with quality rarely being checked. 
Developers themselves quickly get used to “smell” in the code and stop 
noticing it.

Many automated tools are available that can make flaws in code visible.  
Insufficient test coverage, failing tests or complex, unmaintainable code  
can all be identified automatically. Usage of such tools is essential since 
achieving and maintaining a high level of build quality requires dedication  
and constant attention beyond the human capacity of most teams.

Under pressure of deadlines, relaxing quality standards “for a short while” 
sounds like a just-about-feasible option. The problem is that, in the long 
run, the cost of maintaining and enhancing a system with low levels of code 
quality, by far exceeds the short-term time gain. Continuous Delivery quickly 
makes it apparent that it is possible to maintain high quality and quickly and 

28

Under pressure of  
deadlines, relaxing  
quality standards “for a 
short while” sounds like  
a just-about-feasible  
option. The problem is 
that, in the long run, the 
cost of maintaining and 
enhancing a system with 
low levels of code quality 
by far exceeds the  
short-term time gain.

The IT Manager’s Guide to Continuous Delivery



Go to  
Table of Contents

reliably deliver software that runs well.
To ensure that quality is never sacrificed, the team should set quality  
standards and adhere to them at all times. Builds should always finish  
with at least an automated run of static tests, component (or unit) tests and 
functional tests. The results should become clearly visible on a large screen 
in the teams’ working areas.

High visibility of build results showcases achievement and fosters a sense 
pride - this is not about punishment and finger pointing. It is about  
demonstrating to all, including the business, that your team really is able  
to deliver high quality software. A product version should be eligible for  
release only when the agreed quality standards have been met.

Take Build Infrastructure Seriously

If your build server’s capacity is saturated and teams are waiting for builds  
to start, or if the server cannot be restored after a crash because no backups 
are available, your ability to deliver new features is impaired. Treat your build 
and test servers as a critical part of your delivery infrastructure which needs 
to scalable, properly maintained and backed up on a regular basis.

No builds or broken builds mean no new features for your customers and  
no generation of business value. 

29

Continuous Delivery ensures  
development results in a high- 
quality product that is releasable  
at any moment by:

  Applying Test Driven  
Development: Tests are written 
before the code. 

  Continuously integrating  
all changes made by all  
developers, ensuring the  
 resulting  application  
version works. 

  Providing instant visibility  
into the quality of the  
software through  
prominent dashboards. 

  Having a robust, performant 
and scalable build and test 
infrastructure. 

The IT Manager’s Guide to Continuous Delivery



8

Deployment:  
Make It a Non-Event



Go to  
Table of Contents

In a traditional environment, the deployment of a new version of the application 
to an environment is a time-consuming and error-prone process. The develop-
ment team puts together a deployment package, prepares a manual and hands 
the whole thing off to operations for the actual execution. Slight differences 
between the configurations of each environment frequently cause deployments 
to fail and result in even more delays and idle time. Deploying to production is an 
extremely stressful exercise which organizations tend to postpone for as long as 
possible.

With Continuous Delivery, new application versions are automatically deployed 
in a matter of minutes, providing instant feedback to the delivery team, allowing 
them to respond rapidly to customer demand. Deploying to production is a  
routine non-event that occurs multiple times a day. Additional deployment  
strategies such as canary releases allow new features to be exposed to a  
small set of customers to monitor whether they are functional and effective — 
both technically and commercially — before exposing the features to the  
complete user base.

Deploy Anytime, Anywhere

In traditional IT organizations, the deployment of a new application is a  
highly bureaucratic, often manual process. Deploying a new version to a target  
environment is so time-consuming and mired in red tape that development teams 
avoid it for as long as they can. When the paperwork has finally been dealt with, 
it still takes a lot of time and technical effort on the part of both development and 
operations to actually get the new version up and running.

In a Continuous Delivery scenario, the deployment process across all target  
environments is fully automated, allowing the organization to quickly test new 
functionality in any environment and deploy new versions to production on 
demand. Automating the deployment process helps bridge the gap between 
development and operations and build end-to-end delivery teams. An automated 
deployment process should be a standard project deliverable from day one, with 
development and operations jointly determining and implementing an automated 
strategy to ensure that deployments “just work”.

Since deployments are carried out frequently as an application moves through 
the delivery pipeline, the deployment process itself is tested every time a code 
change triggers a new pipeline run. Problems in the deployment configuration are 
quickly highlighted, and can be fixed in the same manner and at the same time 
as problems in the application code. 

31

With Continuous Delivery, 
new application versions 
are automatically deployed 
in a matter of minutes, 
providing instant feed-
back to the delivery team, 
allowing them to respond 
rapidly to customer  
demand. 

In the previous chapter, we saw how Continuous Delivery  
provides fast feedback during the development process and  
ensures your applications are always ready for release. In this
chapter, we show how Continuous Delivery takes the pain out  
of getting a new application version to production.

The IT Manager’s Guide to Continuous Delivery



32The IT Manager’s Guide to Continuous Delivery

Go to  
Table of Contents

It should be possible for any team member with sufficient authorization, 
including the business owner, to initiate a deployment to any of the target 
environments with a simple click, eliminating dependencies on operations  
or even specific operators. By automating deployments, reproducibility is 
guaranteed, while the deployment server itself maintains a full audit trail for 
each and every deployment.

Removing manual steps and hand-offs from the deployment process  
significantly reduces throughput time, the number of failures and trouble-
shooting sessions and, in consequence, the overall cost of software delivery.

Test It In Production - Canary Releases and Dark launches

In a traditional software delivery process, a lot of manual effort goes into  
testing a new application version as thoroughly as possible before it is 
approved for production. Problems that surface after the go-live cause the 
organisation to add yet further checks and tests into the release process, 
lengthening the time-to-market even more.

With Continuous Delivery, the release of a feature to production is an  
uneventful experience. Using canary releases and dark launches, an  
incremental deployment strategy is applied that minimizes the risk of  
downtime and allows the delivery team to discover how the application  
behaves in a production environment without immediately impacting all  
users. The insight into real-life customer behavior enables the organization  
to learn faster and make better business decisions, day after day.

Canary Releases

In a canary release, the new application version is deployed to only a  
small number of servers in production, running side by side with the existing  
version. A percentage of the system’s users is directed to the new “trial”  
version, where the behavior of the users and system is closely monitored. 
Any anomalies are quickly detected without affecting the vast majority  
of customers.

When necessary, the sample users can instantly be redirected back to the 
stable version, and the “canary servers” rolled back to the prior application 
version with a single click using deployment automation. If all goes well, the 
new version is rolled out to the entire production environment.

Dark Launches

With dark launches, new application versions and features are deployed to 
production without being made directly visible to users. Runtime options  
in the software (feature flags) allow you to expose specific features to a  
controlled subset of your user base, usually an “early access” group:  
employees, partner companies or “friends & family”. Dark launches can  
also be used to put new features into production without users noticing.  
For example, a feature may not yet be visible in the user interface, but the 
underlying code can already be running, allowing results to be analyzed.

In a Continuous Delivery  
environment, moving a new  
version through the pipeline  
and deploying it to production  
becomes a “non-event”:

  No more handoffs between 
development and operations. 

  Deployment of new versions 
of the software to all environ-
ments is fully automated. 

  Features can be deployed  
incrementally to production 
and exposed to users  
gradually. 

  Tests can be carried out 
against “silent” features in  
production to measure the 
quality  and impact of changes. 



9

Provisioning:  
Pipeline Foundations



34The IT Manager’s Guide to Continuous Delivery

Go to  
Table of Contents

In a traditional IT organization, waiting for test, QA or acceptance environments 
is a frequent source of inefficiency in the software delivery process. In addition, 
unanticipated configuration differences between environments result in  
deployment failures, unexpected application behavior and further delay delivery.

In a Continuous Delivery organization, new environments for development or QA 
can be spun up automatically or at the click of a button. There are no service 
tickets, handoffs or manual configuration steps, resulting in a fast process with  
a high level of reliability and reproducibility. These self-service environments  
function as a foundation for the delivery pipeline to facilitate the flow of new  
features to production.

Infrastructure As a Service - Environments on Demand

In a traditional organization, the set of available environments is fixed:  
Development, Test, Acceptance, Staging and Production. The servers in each 
environment are maintained by operations, with configuration changes applied 
manually via a formal change request process. Adding a new machine can take 
weeks or even months, as servers need to be ordered, shipped and physically 
installed in the data center.

With Continuous Delivery, there is no concept of a fixed set of environments 
- they are created and destroyed on-the-fly, as needed. Provisioning of a new 
environment, based on one of many available templates, can be triggered auto-
matically or via a self-service portal. The new virtual machines are ready for use 
within minutes, and can be automatically deprovisioned when no longer needed, 
maximizing resource efficiency and cost-effectiveness.

The middleware on each machine is automatically installed and configured, and 
various sets of sample data are available for databases, including recent snap-
shots of the production DB. This allows teams to quickly and reliably reproduce 
production environments to try out new features or carry out tests.

Hands-Off Operations - “Zero Access Platform”

Traditionally, configuration of the IT infrastructure is handled manually by  
operations. Changes that developers make to their development machines to 
get applications to work are often forgotten in deployment manuals, causing the 
configuration of the various environments to drift apart, resulting in unexpected 
failures. And there simply aren’t enough system administrators to handle  
all the environment creation and configuration requests submitted by the  
development teams.

In a Continuous Delivery 
organization, new  
environments for  
development or QA can  
be spun up automatically 
or at the click of a button. 

In the previous chapter, we saw how moving a new version 
through the pipeline and deploying it to production becomes a 
non-event. In this chapter, we show how automated provisioning 
and middleware configuration is a prerequisite for a reliable  
Continuous Delivery pipeline.

The IT Manager’s Guide to Continuous Delivery



35The IT Manager’s Guide to Continuous Delivery

Go to  
Table of Contents

In a Continuous Delivery organization, the IT infrastructure is managed ac-
cording to a clear “hands-off” policy. Neither developers nor administrators 
are granted login access to the machines, except in production emergencies. 
The system and middleware configurations are specified by version-con-
trolled blueprints that are applied and audited automatically by provisioning 
and configuration management tools.

If a configuration change needs to be made, an administrator updates the 
applicable blueprints for that server. The updates are checked into version 
control and picked up by the configuration management system, which  
calculates the required modifications and applies them to the target  
machines automatically. In addition, all servers are scanned at regular  
intervals to ensure compliance with applicable blueprints.

Machines and environments are fully reproducible: any server can be  
destroyed and recreated with the configuration settings it had at any point 
in time. In this way, a very small team of system administrators can scale to 
manage thousands of machines effectively.

In a Continuous Delivery organiza-
tion, automated provisioning and 
configuration management enables 
the pipeline to deliver quickly and 
reliably.

  Self-service portals allow 
teams to create ready-to-use 
environments on demand. 

  The installation and configu-
ration of operating systems, 
middleware, networking etc.  
is fully automated. 

  Changes to the configuration  
of machines are only carried 
out automatically, to  
ensure  stability. 



10

Release Coordination:  
Orchestrating your Pipeline



Go to  
Table of Contents

In a traditional software delivery organization, releases are typically  
overseen by release managers. They are responsible for getting the entire  
team together to plan what needs to be done, coordinating and tracking all  
the activities across multiple teams as the release progresses, and reporting  
back to the business – inevitably, not frequently enough.

In a Continuous Delivery environment, dedicated release managers are seldom  
required: the delivery pipeline orchestrates the sequence of automated tasks  
that constitute the release process. The pipeline is the responsibility of the  
delivery team as a whole, including the business. Anyone can track the  
progress of a new application version at any time via the pipeline dashboards.

In other words, the release process certainly still exists in a Continuous  
Delivery environment - in an entirely automated form, allowing many new  
application versions and features to be released extremely rapidly.

Pipeline optimization

In a full Continuous Delivery pipeline, all activities in each stage, all approvals  
and all transitions between stages are automated. A developer checks a change 
to the source code into version control, the updated codebase is automatically 
build, unit- and integration tested, deployed to an acceptance test environment, 
acceptance tested, approved and deployed to production.

A basic pipeline starts with a simple, linear sequence of automated stages.  
Every new application version progresses through these stages, passing a  
series of automated approval gates before deployment to production. Each  
approval is aimed at ensuring a different aspect of quality of the deliverable in 
order to prevent production errors.

One immediate observation is that this simple pipeline executes stages in  
sequence even when these stages are independent of each other. Provided  
sufficient execution capacity and a suitable target environment is available,  
pipeline throughput time can be improved by running such stages in parallel.  
In addition, work can also be parallelized within stages. For example, if  
automated acceptance tests can be run across four systems rather than one,  
the acceptance test stage can be completed in a quarter of the time.

From release plans to delivery pipelines

Release coordination tools allow you to take your current manual or partially 
automated release process, identify the biggest bottlenecks and delays  
through automated Value Stream Mapping, and progressively replace these  
with automated tasks.

They can prove useful tools in the transition from your current process to a fully 
automated Continuous Delivery pipeline, helping you to deliver the greatest  
possible improvement and measure the benefits, at every step.

37

In the previous chapter, we saw how automated provisioning and 
configuration management enables the pipeline to deliver quickly 
and reliably. In this chapter, we show how the Continuous  
Delivery pipeline relates to your existing release process.

Continuous Delivery has a  
significant effect on the  
release process.

  Release managers no  
longer have to coordinate 
people and activities to 
deliver a new  release  
to production. 

  The release process is 
entirely automated and its 
progress can be tracked via 
a  dashboard. 

  You can optimize the  
release process by  
parallelizing different  
stages in the pipeline. 

  A release coordination tool 
can help you move away 
from a traditional release 
process  towards  
Continuous Delivery. 

The IT Manager’s Guide to Continuous Delivery



11

Dare to Think Differently



Go to  
Table of Contents

Once the building blocks to “deliver features better” are in place, you can  
start to take your Continuous Delivery process to the next level: “delivering 
better features better”!

Don’t look back, roll forward

With automated testing now an integral part of your software delivery  
process, the quality level of your applications should be consistently high. 
However, if a new release does happen to behave unexpectedly, “rolling  
forward” to an improved version should be the default choice.

Rollbacks make sense if you deliver software in large, complex releases  
consisting of many changes in one big batch. In such cases, identifying which 
of the new features is responsible for any system instability is rarely possible. 
The only safe thing to do is to revert all your modifications.

In a Continuous Delivery environment where software is put into production 
feature by feature, the changes made to the system are much smaller. This 
makes it far easier for the development team to quickly create a new version 
that fixes or removes the troublesome feature and release it rapidly to your 
customers through the delivery pipeline: roll forward.

Test in Production

The wide-ranging changes that are typical in “big bang” releases make it  
almost impossible to run new application versions silently in production,  
or expose a new application to only a subset of production users.

The increased risk associated with large, complex releases means that  
all aspects of the new application version need to be thoroughly tested in  
dedicated, production-like test and acceptance environments. Due to  
the associated cost, these environments are scarce and never quite  
production-like enough, leading to delays and expensive failures  
after a go-live.

In a Continuous Delivery organization, small, feature-by-feature changes and 
the high level of quality verified by the delivery pipeline mean deployments to 
production are a much more low-risk affair. The new application version can 
usually run alongside the existing system, exposed to only a limited group of 
“early access” users.

Expensive, dedicated production-like test environments can be eliminated  
and the false “but it worked in the acceptance environment!” sense of security 
can be avoided. There is no more reliable way to test a feature than running it 
in production.

39

In the previous chapters, we saw how to speed up the time-to-
market and improve the quality of new features at the same time. 
In this chapter, we show how Continuous Delivery seriously alters 
the way you think about software development.

In a Continuous Delivery 
environment where  
software is put into  
production feature by  
feature, the changes  
made to the system are 
much smaller. 

The IT Manager’s Guide to Continuous Delivery



40The IT Manager’s Guide to Continuous Delivery

Go to  
Table of Contents

Product teams, Devops & “Bizdevops”

In a typical organization, business, developers and operations work in  
silos in order to establish local optimizations. While this may increase the  
efficiency of one particular department, it often happens at great cost to the 
end-to-end value chain. Ultimately, it simply reduces the ability of  
the company as a whole to effectively deliver customer value.

Effectiveness in terms of overall business value generated is more important 
than efficiency in terms of departmental cost. IT needs to be freed from its 
silo and become an integral part of the organization, typically as a  
multidisciplinary team focused on delivering benefits to the business — 
one of the core principles of Devops.

Integrated business, development and operations teams that are  
responsible for the end-to-end process of achieving a business goal will 
make more effective choices than segregated teams working to produce 
intermediate deliverables that are “thrown over the wall” into the next silo, 
without awareness of a common business goal.

In that sense, think not just Devops but “Bizdevops” and organize  
your teams around the common aim of business and customer value.

Ongoing customer conversation

You can expose new functionality to a limited set of users and track “hard” 
metrics such as revenue and conversion rates, as well as “soft” data such  
as feedback posted through, for example, social media channels.

The measurements will quickly tell you whether a new idea is profitable  
and favorably received. If customers do not react positively to the new  
functionality, you can rapidly initiate a dialogue with your user base to  
determine desired improvements and deliver these while developing an 
on-going conversation with your customers.

Continuous Delivery seriously  
alters the way you think about  
software development:

  The default option of dealing 
with production issues is  
to deliver a new version  
instead  of rolling back to  
a previous configuration. 

  Create teams that have full 
responsibility for the entire 
system and authorize them 
to  continuously improve the 
business outcome. 

  Run real life tests in  
production and measure  
the effect of suggested  
improvements. 

  Shape the system together 
with your customers, by  
measuring the effect of new 
ideas in production.



12

Getting Started with  
Continuous Delivery



Go to  
Table of Contents

If you believe that there is room for improvement in your organization’s  
software delivery process and you are interested in seeing how Continuous 
Delivery can help, the next step will be to figure out how to start turning your 
company into a Continuous Delivery organization.

Here, we give some advice on how to kick off that journey. However, keep  
in mind that realizing the full benefits of Continuous Delivery may require  
significant changes to your company’s processes and attitudes.

Continuous Delivery is more than just introducing a few new tools. It affects 
your organizational structure, roles and responsibilities, how your developers 
go about their work and, ultimately, the relationship between IT and the  
business.

Turning your company into a Continuous Delivery organization will only  
succeed once the topic is approached in manageable steps.

Agile development

Getting your development teams to work in an iterative manner is a  
prerequisite for Continuous Delivery. If you have not yet adopted an agile 
methodology, this is an excellent first step.

An agile mindset, focusing on business value and continuity through short, 
iterative development cycles, is a natural generator of the continuous flow of 
changes to production enabled by Continuous Delivery.

Acknowledging the Challenge

The greatest problem faced by a traditional software delivery organization is 
not the inefficient, error-prone delivery and feedback process as such. The 
biggest impediment is the acceptance that the current process represents  
the “natural order of things”.

Acknowledging that your delivery process can be improved, and  
communicating clearly that the way things are currently done is open to  
debate and revision, is a critical prerequisite for a successful Continuous  
Delivery transformation.

42

In the previous chapters, we saw the processes, practices and 
effects of Continuous Delivery and how it will alter the way you 
think about the software delivery process. In this chapter, we 
show you how to get started.

Continuous Delivery is 
more than just introducing 
a few new tools. It affects 
your organizational  
structure, roles and  
responsibilities, how  
your developers go about 
their work and, ultimately, 
the relationship between 
IT and the business. 

The IT Manager’s Guide to Continuous Delivery



43The IT Manager’s Guide to Continuous Delivery

Go to  
Table of Contents

Value Stream Mapping

In order to identify where the most immediate improvements are available, 
work with your delivery and business teams to map out your current value 
stream. A value stream describes all steps in a particular process, their  
duration and any intermediate idle time. In a typical software delivery  
process, you will find that a large proportion of the overall throughput time 
will be spent idling.

Having defined your value stream, you and the team can then determine 
where the most painful bottlenecks are and which improvements are likely  
to deliver the greatest benefit. Estimate the benefits in quantifiable terms 
such as cost, quality and time-to-market and start implementing those  
improvements that will give the biggest bang for the buck.

One Bottleneck at a Time

There is no such thing as a standard “Continuous Delivery Transformation 
Plan” suitable for every organization. However, a pattern common to  
successful implementations is to favor incremental “biggest pain first”  
approaches over blanket, organization-wide roll-outs.

The decision to adopt Continuous Delivery itself will not magically solve all  
of your delivery problems. Implementing Continuous Delivery practices will, 
however, bring the biggest bottlenecks rapidly and clearly to light. And every 
time you eliminate the most painful bottleneck, the pipeline will quickly  
highlight the next challenging issue.

The result: a clear and measurable improvement path to delivering better 
features better through Continuous Delivery.

In order to implement Continuous 
Delivery in your organization:

  Adopt an Agile method in your 
software development teams. 

  Acknowledge the need for 
significant improvement of the 
current process. 

  Create a Value Stream Map of 
the software delivery process. 

  Improve your process step by 
step, attacking the biggest 
bottlenecks first. 



13

Final Thoughts



Go to  
Table of Contents

Complex, “big bang” releases, slow, error-prone manual processes,  
repeated handovers and delays lead to failures in production, poor quality  
and dissatisfied users. If a company wants to remain ahead of its  
competitors, it needs to do better than that.

Release high-quality software straight to production and set up a rapid  
and effective feedback loop between your business and your users.

Start your path to Continuous Delivery now and experience the benefits  
of delivering business value in days, not months!

45

Start your path to  
Continuous Delivery  
now and experience the 
benefits of delivering  
business value in days, 
not months!

The IT Manager’s Guide to Continuous Delivery



14

DOs and DON’Ts



47The IT Manager’s Guide to Continuous Delivery

Go to  
Table of Contents

It’s worth repeating that there is no such thing as a standard “Continuous  
Delivery Transformation Plan” suitable for every organization. What we can  
put together though, is a set of practices and tools that are commonly found 
in successful Continuous Delivery environments.

If one of the “DON’T” patterns sounds similar to what you’re experiencing in 
your organization, it’s worth investigating what kind of benefits the  
corresponding “DO” could deliver for you.

DO DON’T

1. Concise, automatically- 
verifiable specs

Overly complete, ambiguous requirements that require human 
translation or interpretation to be verified

2. Continuous Integration Long, isolated development efforts followed by “Merge Hell”

3. Automated validation of  
executable specs

Test scenarios manually created by interpreting requirements, 
then manually executed

4. Automated deployment Hand-off and manual installation based on lengthy 
deployment manuals

5. Automated provisioning and  
system configuration  
management

Manual creation and configuration of new target servers and 
environments

6. Regular go-live of small code 
changes

Infrequent, stressful “big bang” releases containing lots of 
new features and fixes

7. End-to-end delivery teams,  
including the business

Business “throws requirements over the wall” to IT

8. Build up automated pipeline  
orchestration guided by metrics 
and Value Stream Mapping

Spreadsheets and release plan documents or  
automation for the sake of automation, “because it’s cool”



48The IT Manager’s Guide to Continuous Delivery

Go to  
Table of Contents

A/B Testing A technique in which a new feature, or different variants of a 
feature, are made available to different sets of users and  
evaluated by comparing metrics and user behavior.

Acceptance Testing Typically high-level testing of the entire system carried out 
to determine whether the overall quality of both new and 
existing features is good enough for the system to go to 
production.

Agile A software development and, more broadly, business  
methodology that emphasizes short, iterative planning  
and development cycles to provide better control and  
predictability and support changing requirements as  
projects evolve.

Black Box Testing A testing or quality assurance practice which assumes no 
knowledge of the inner workings of the system being tested, 
and which thus attempts to verify external rather than  
internal behavior or state.

Build Automation Tools or frameworks that allow source code to be  
automatically compiled into releasable binaries. Usually 
includes code-level unit testing to ensure individual pieces 
of code behave as expected.

Canary Release A go-live strategy in which a new application version is 
released to a small subset of production servers and heavily 
monitored to determine whether it behaves as expected. If 
everything seems stable, the new version is rolled out to the 
entire production environment.

Continuous Delivery (CD) Continuous Delivery is a set of processes and practices 
that radically removes waste from your software production 
process, enables faster delivery of high-quality functionality 
and sets up a rapid and effective feedback loop between 
your business and your users.

Glossary



49The IT Manager’s Guide to Continuous Delivery

Go to  
Table of Contents

Continuous Integration 

(CI)

A development practice in which all changes by developers 
to a shared codebase are regularly combined (integrated) 
into a single version and tested, detecting errors and con-
flicts as soon as possible.

Dark Launch A go-live strategy in which code implementing new features 
is released to a subset of the production environment but  
is not visibly, or only partially, activated. The code is  
exercised, however, in a production setting without users 
being aware of it.

Delivery Pipeline A sequence of orchestrated, automated tasks implementing 
the software delivery process for a new application version. 
Each step in the pipeline is intended to increase the level  
of confidence in the new version to the point where a go/
no-go decision can be made. A delivery pipeline can be 
considered the result of optimizing an organization’s  
release process.

Deployment Automation/

Application Release  

Automation

Tools, scripts or products that automatically install and  
correctly configure a given version of an application in a 
target environment, ready for use.

DevOps A type of organization or organizational mindset in which  
all teams participating in the service delivery process  
collaborate closely, focused on the common goal of  
providing value to the customer. A common misconception 
is that the approach is limited to developers and operations: 
it should include QA and the business, too.

Functional Testing Testing of the end-to-end system to validate (new)  
functionality. With executable specifications, Functional 
Testing is carried out by running the specifications against 
the application.

Infrastructure as a  

Service (IaaS)

Cloud-hosted virtualized machines usually billed on a  
“pay as you go” basis. Users have full control of the  
machines but need to install and configure any required 
middleware and applications themselves.

Glossary



50The IT Manager’s Guide to Continuous Delivery

Go to  
Table of Contents

Infrastructure as Code A system configuration management technique in  
which machines, network devices, operating systems,  
middleware etc. are specified in a fully automatable format. 
The specification or “blueprint” is regarded as code that is 
executed by provisioning tools, kept in version control and 
generally subject to the same practices used for application 
code development.

Lean “Lean manufacturing” or “lean production” is an approach 
or methodology that aims to reduce waste in a production 
process by focussing on preserving value. Largely derived 
from practices developed by Toyota in car manufacturing, 
lean concepts have been applied to software development 
as part of agile methodologies. The Value Stream Map 
(VSM), which attempts to visually identify valuable and 
wasteful process steps, is a key lean tool.

Non-functional  

Requirements (NFRs)

The specification of system qualities such as ease-of-use, 
clarity of design, latency, speed, ability to handle large  
numbers of users etc. that describe how easily or  
effectively a piece of functionality can be used, rather  
than simply whether it exists. These characteristics can also 
be addressed and improved using the Continuous Delivery 
feedback loop.

NoOps A type of organization in which the management of  
systems on which applications run is either handled  
completely by an external party (such as a PaaS vendor) 
or fully automated. A NoOps organization aims to maintain 
little or no in-house operations capability or staff.

Pipeline Orchestration Tools or products that enable the various automated tasks 
that make up a Continuous Delivery pipeline to be invoked 
at the right time. They generally also record the state and 
output of each of those tasks and visualize the flow of 
features through the pipeline.

Glossary



51The IT Manager’s Guide to Continuous Delivery

Go to  
Table of Contents

Platform as a Service 

(PaaS)

Cloud-hosted application runtimes, usually billed on a “pay 
as you go” basis. Customers provide the application code 
and limited configuration settings, the middleware,  
databases etc. are part of the provided runtime.

Product Owner A person or role responsible for the definition, prioritization 
and maintenance of the list of outstanding features and 
other work to be tackled by a development team. Product 
Owners are common in agile software development  
methodologies and often represent the business or  
customer organization. Product Owners need to play a  
more active, day-to-day role in the development process 
than their counterparts in more traditional software  
development processes.

Provisioning The process of preparing new systems for users (in a  
Continuous Delivery scenario, typically development or  
test teams). The systems are generally virtualized and 
instantiated on demand. Configuration of the machines to 
install operating systems, middleware etc. is handled by 
automated system configuration management tools, which 
also verify that the desired configuration is maintained.

Regression Testing Testing of the end-to-end system to verify that existing 
functionality has not been negatively impacted by changes 
to the application.

Release Coordination The definition and execution of all the actions required to 
take a new feature or set of features from code check-in to 
go-live. In a Continuous Delivery environment, this is largely 
or entirely automated and carried out by the pipeline.

Test-Driven Development 

(TDD)

A development practice in which small tests to verify the 
behavior of a piece of code are written before the code 
itself. The tests initially fail, and the aim of the developer(s) 
is then to add code to make them succeed.

Unit Testing Code-level (i.e., does not require a fully installed end-to-end 
system to run) testing to verify the behavior of individual 
pieces of code. TDD makes extensive use of unit tests to 
describe and verify intended behavior.

Glossary



52The IT Manager’s Guide to Continuous Delivery

Go to  
Table of Contents

Value Stream Mapping A process visualization and improvement technique used 
heavily in lean manufacturing and engineering approaches. 
Value Stream Maps are used to identify essential process
steps vs. “waste” that can be progressively eliminated from 
the process.

Virtualization A systems management approach in which users and 
applications do not use physical machines, but simulated 
systems running on actual, “real” hardware. Such “virtual 
machines” can be automatically created, started, stopped, 
cloned and discarded in a matter of seconds, giving opera-
tions tremendous flexibility.

Waterfall A software development methodology based on a phased 
approach to projects, from “Requirements Gathering” 
through “Development” etc. to “Release”. Phases late in 
the process (typically related to testing and QA) tend to be 
squeezed as delays put projects under time pressure.

White Box Testing A testing or quality assurance practice which is based on 
verifying the correct functioning of the internals of a system 
by examining its (internal) behavior and state as it runs.

Glossary

The IT Manager’s Guide to Continuous Delivery



About the authors

Andrew Phillips is VP of Product Management at XebiaLabs in Boston, 
USA. Andrew is a cloud, application delivery and automation expert 
and has been part of the shift to more automated application delivery 
platforms. He sits on expert panels and regularly speaks at confer-
ences and meetups on DevOps and Continuous Delivery.

Michiel Sens is Principal Consultant at Xebia IT Architects in 
The Netherlands. Michiel specializes in Continuous Delivery and full 
lifecycle software development programs. He advocates the use of 
Continuous Delivery at seminars and meetups, while remaining in 
touch with its details by performing actual implementations as well.

Adriaan de Jonge is Principal Consultant at Xebia IT Architects in 
The Netherlands. Adriaan specializes in Lean and Continuous Delivery. 
Before this book, he wrote two developer guides on web technology, 
published by Addison-Wesley in 2011 and 2012.

Mark van Holsteijn is Principal Consultant for Xebia IT Architects in 
The Netherlands. Mark specializes in Continuous Delivery and 
Automated Provisioning. He pioneered in the field of Automated 
Deployment and Provisioning.



About XebiaLabs
XebiaLabs is the leading provider of delivery automation software that helps  

enterprises deliver higher quality software faster and more efficiently.  

XL Platform combines deployment automation, on-demand environment  

provisioning, Agile test management and enterprise Continuous Delivery 

pipeline orchestration. Using XL Platform, organizations reduce application  

delivery costs, accelerate application time to market and bridge the gap  

between Development and Operations. Headquartered in the U.S., XebiaLabs 

has a world-wide network of sales offices and partners. 

For more information about how we can help your organizations move to  

Continuous Delivery, visit www.xebialabs.com/time-for-cd.


