
A New Approach to Enterprise
Architecture: Reactive Systems
How a reactive data layer can bring performance, scale
and resilience to your application architecture

A New Approach to Enterprise Architecture: Reactive Systems

Contents

Introduction 3

The Internet – Opportunity and Cost 3

The Impact on Enterprise IT 4

Defining Reactive Systems 4

Understanding Messaging 5

Data Efficient Messaging 6

Efficient Realtime Data Has Many Applications 7

Introducing a Reactive Data Layer 8

Summary 9

About Push Technology 9

2

A New Approach to Enterprise Architecture: Reactive Systems 3

Introduction

Transformation has always been difficult for any industry or organization. But today,
disruptive software startups and emerging technologies are demanding that all
businesses, across all industries, define and navigate a transformational path that
embraces the app economy and represents a new focus on digital products and software-
defined architecture. How will your business react?

For developers, architects, and product managers, the question of “how” can fall to
assumptions – relying on legacy technology and trusting in traditional integration
patterns. The “what” and “why” also needs careful thought to overcome the realities of
today’s dependence on the internet.

This paper will take a critical look at de facto standards for data integration and
distribution, offer recommendations where reactive systems and realtime messaging
can help, and propose a new reactive data layer that adapts and evolves with today’s
business requirements.

The Internet – Opportunity and Cost

Application architecture and integration requirements have undergone a sea change over the
past few years. The number of end-users, connected devices, and applications are increasing
exponentially. All the while, enterprise data resources, systems of record and computing
infrastructure are pushed out to an array of new cloud-based services that are connected – yet
separated – by an unknown network. This unknown and unmanaged network resource is of
course the internet, and it sits at the center of today’s app architecture.

The internet has evolved faster than anyone could have imagined - back in 2000, the total
number of network users was only 400M. Today the internet has over 3.3B users1, and China
alone has 721 million users.

With this growth, a single app today handles more traffic than the entire internet infrastructure
did just a decade ago.

Quantifying this growth translates to some truly staggering statistics:

• Annual global IP traffic will pass the Zettabyte (1000 Exabytes) threshold by the end of 2016,
and will reach 2 Zettabytes per year by 2019.2

• Globally, mobile data traffic will increase 10-fold by 2019 to 24.3 Exabytes per month, up
from 2.5 Exabytes per month in 2014.

The internet has evolved faster
than anyone could have imagined
- back in 2000, the total number
of network users was only 400M.
Today the internet has over 3.3B
users , and China alone has 721
million users.

With this growth, a single app today
handles more traffic than the entire
internet infrastructure did just a
decade ago.

30

25

20

15

10

5

0

Global mobile data tra�ic from 2014 to 2019 (in exabytes per month)

Tr
a�

ic
 in

 ex
ab

yt
es

 p
er

 m
on

th

2.5

2014

4.5

2015*

6.8

2016*

10.7

2017*

16.1

2018*

24.3

2019*
Source:
Cisco Systems
© Statista 2015

Additional Information:
Worldwide 2014

1http://www.internetlivestats.com/internet-users/
 2http://www.internetlivestats.com/internet-users/

http://www.internetlivestats.com/internet-users/
 http://www.internetlivestats.com/internet-users/

A New Approach to Enterprise Architecture: Reactive Systems

But the world of “traditional
IT” has come to an end. Today
businesses, partners, customers,
and employees all demand more
flexibility and capability.

4

Considering these numbers, it’s easy to see that we’re facing issues of scale and an ever
increasing reliance upon the internet in our day-to-day lives. With this in mind, it’s also easy to
imagine that some integration paradigms, system architectures and app technologies of the
past may not be the best choice for today, and certainly won’t scale for the future.

The Impact on Enterprise IT

Traditional enterprise IT is reliant on monolithic solutions from a small number of vendors.
Until recently, there was little need for these solutions to interact with other systems, never
mind with the outside world. Even over the past three to five years, most organizations have
been able to design and architect for well-known IT problems and tightly controlled application
integration scenarios.

But the world of “traditional IT” has come to an end. Today businesses, partners, customers,
and employees all demand more flexibility and capability.

Rather than a tactical approach to integration, a broad enabling fabric will deliver the breadth
of capability users demand with the performance, scale and resilience they expect. So when it
comes to IT infrastructure, it is no longer viable to simply invest in products and services that
cover only the requirements of today.

Architects, in any environment, must think about creating a sufficiently generic layer of
infrastructure that can be applied to many different projects and serve the unknown
requirements of tomorrow. With this approach, you naturally move away from a model of
buying technology that solves just one problem, to instead investing in broad capacity that
can be leveraged across multiple problem areas. Reusing capacity improves efficiency and
effectiveness, while reducing costs and increasing the potential return from projects.

Defining Reactive Systems

The challenges of internet scale and the limitations of traditional IT, clearly demonstrate a
need for a new approach to enterprise architecture. A new architecture has evolved to let
developers conceptualize and build applications that satisfy these demands. We call these
reactive systems.

Reactive systems are inherently more flexible, loosely-coupled, and scalable – making them
faster to develop and easier to change. This allows developers to build systems that deliver
highly responsive user experiences with a realtime feel, backed by an elastic and resilient
application stack. Defined by the Reactive Manifesto3, there are four key features architects
and developers should follow.

Responsive:
The system responds in a timely manner. Responsiveness is the cornerstone of usability
and utility. For end-users, responsiveness also means that problems may be detected
quickly and dealt with effectively. Responsive systems focus on providing rapid and
consistent response times, establishing reliable upper performance thresholds so they
deliver a consistent quality of service. This consistent behaviour is reflected in error
handling, builds end user confidence, and (importantly) encourages further interaction.

Resilient:
The system stays responsive in the face of failure. This doesn’t apply only to highly-
available, mission-critical systems — any system must be responsive during and after
a failure to be considered resilient. Resilience is achieved by replication, containment,
isolation and delegation. Failures are contained within each component, isolating
components from each other. Ensuring that individual components can fail and recover
without compromising the system as a whole is key. Clients should never be expected to
carry the burden of unexpected or undefined failures.

3http://www.reactivemanifesto.org

http://www.reactivemanifesto.org

A New Approach to Enterprise Architecture: Reactive Systems

Elastic:
The system stays responsive under varying workload. This implies a design that has no
contention points or central bottlenecks, resulting in the ability to shard or replicate
components and distribute inputs among them. Reactive systems support predictive,
as well as reactive, scaling mechanisms by monitoring performance in realtime. They
achieve elasticity in a cost-effective way on commodity hardware and software platforms.

Message Driven:
Reactive systems rely on asynchronous message-passing to establish a boundary between
components that ensures loose coupling and isolation. Employing explicit message-
passing enables load management, elasticity, and flow control by shaping and monitoring
the message queues in the system and applying back-pressure when necessary. With non-
blocking communication, the system will allow recipients to only consume resources
while active, leading to less system overhead.

Understanding Messaging

Message-Driven
As described in the manifesto, a message-driven architecture is one of four key components
within a reactive system. Typically, this integration pattern can be event-driven or actor-based.

Event-Driven:
This architecture is based on events which are monitored by zero or more interested
parties (clients). Different from imperative programming as the client doesn’t need to wait
for a response from each request. Events are not directed to a specific destination, but
rather available to interested end-points.

Actor-Based:
An actor-based system is a conceptual model to handle concurrency. It’s important to
understand that, although multiple actors can run at the same time, an actor will process
a given message sequentially. The idea is similar to object-oriented languages, but the
main difference is that actors are completely isolated from each other and they will never
share memory.

In this paper, we focus on event-driven concurrency and the realtime messaging layer that
provides the reactive infrastructure a given service will use to publish and subscribe to events.

Realtime
The world of “realtime” data is perhaps misunderstood and there can be strong opinions on
the definition – here, we are discussing realtime web technologies that enable applications to
react to events as they happen.

Across much of today’s application integration there is no ability for systems to react in this
way. Typically, system A (the client) will ask system B (the server) if new data is available based
on a set of query parameters. So to really understand the value of realtime technology, we
need to discuss the limitations of this integration pattern:

Polling is used by the vast majority of applications today. In this model, the client
application repeatedly polls a server for data. Based entirely on the foundations of the
web, these applications leverage the HTTP protocol, that allows the fetching of data in a
request/response pattern. The application asks (requests) the server for data based on
some query parameters, and waits for a response which is often of unknown size. If no
data is available, an empty response is returned. The problem here is that empty
responses, or multiple responses containing duplicate data cause a huge amount of
overhead.

Long polling is a variation of polling designed to accommodate scenarios where the
server does not have new data available. When an HTTP request is received the server will
hang on to the connection until new data does become available, the server responds,
closes the connection, and the process is repeated. This creates the effect of event-based
responses, but in reality this is a costly hack.

5

The world of “realtime” data is
perhaps misunderstood and there
can be strong opinions on the
definition – here, we are discussing
realtime web technologies that
enable applications to react to
events as they happen.

A New Approach to Enterprise Architecture: Reactive Systems

Rather than polling back-end systems for changes, realtime messaging should be used to
create responsive, event-driven applications. This allows you to scale your applications,
without adding unnecessary load to the back-end. Integrating realtime messaging seamlessly
with modern development frameworks for the web (Angular, Meteor, React, etc.) means users
see data changes as they happen. This means applications are no longer delivering “point-in-
time data”, and instead, focus on realtime, event-driven, responsive, engaging data.

Data Efficient Messaging

We’ve concluded that event-driven architecture and realtime messaging are the foundation of
how reactive systems must be architected. But to achieve efficiency, we need to look beyond
the integration pattern, to the data itself – and think critically about “what” data is being
moved around, rather than simply “how”.

Application data is often complex, data delivery is complicated, and network costs can quickly
skyrocket. From IT leader to product owner, enterprise architect to developer, finding the most
efficient mechanism for distributing and consuming data should rank high amongst
integration requirements.

In most messaging products, each and every update (message) sent to or from an application
is the data payload. Meaning applications and services are paying to transport data that
doesn’t need to be moved. This includes:

• Redundant data
• Out-of-date data
• Duplicate data

Data efficiency is a core component of Push Technology’s realtime messaging, and various
unique and patent-pending features are offered to achieve this.

1. Network communication is performed by an event-driven kernel that uses non-blocking I/O
to interact efficiently. The lock-free design exploits the way that modern CPUs access
memory to avoid contention between sessions. This allows a single server to scale linearly
across CPU resources, and achieve very high message rates.

2. Messages are serialized in a compact binary form. A small binary header is used to frame
each message.

3. Topics provide stateful streams of data to each session. Once a session is subscribed to a
topic, a subsequent update is sent as a “delta”, (i.e. the difference from the previous
value), if doing so will reduce the amount of data sent. This happens transparently to the
application, so doesn’t affect the ease of use: the delta is automatically applied by the
client SDK, and passed to the application as a new value.

4. Messages that can’t be immediately delivered to a session are queued. If the network
connections fail, bandwidth is limited, or the client is simply slow, messages can back up
on the queue. The platform can conflate the queue to remove messages that are stale or
no longer relevant, or combine multiple related messages into a single consolidated
message.

5. In addition to automatic throttling and conflation, the rate of messages delivered to a
session can be manually constrained to prioritize one session over another or to place
limits on bandwidth utilization.

6. Sessions subscribe to topics using wild card selectors. Unlike traditional messaging
products, when new topics are added, sessions with matching selectors are automatically
subscribed.

This data efficient approach to messaging means that most development teams see savings
in bandwidth of up to 90%.

6

But to achieve efficiency, we
need to look beyond the
integration pattern, to the
data itself – and think
critically about “what” data
is being moved around,
rather than simply “how”.

Applications are no longer delivering
“point-in-time data”, and instead,

focus on realtime, event-driven,
responsive, engaging data.

The 5 V’s of data complexity
• Volume – the sheer scale of

data we can or need to access.
Distributed across many
services and systems.

• Velocity – the speed at which
data is being generated, the
blurred lines between
consumer and producer, and
the need to move data around
in realtime.

• Variety – the ever growing
differences between data
resources (structured &
unstructured), data models
and data location.

• Veracity – the unknowns,
inconsistencies and
fragmentation of data, that are
making it increasingly difficult
to harness.

• Value – the inherent business
opportunity that exists within
and between data sets, and
being able to unlock this value
at the right time.

A New Approach to Enterprise Architecture: Reactive Systems

Efficient Realtime Data Has Many Applications

 Realtime Data Delivery for Mobile Apps

Many of today’s mobile applications are point-in-time representations of data, refreshing
information only when a user explicitly asks for an update. But interactive applications are
infinitely more engaging, updating in realtime as new data becomes available. App developers
need to enhance their traditional request/response data integration, and leverage realtime
messaging. This delivers not only better application experiences that react to business events as
they happen, but also provides a bi-directional communication channel for application data.

 Extend Existing Middleware over the Internet

Enterprise messaging and middleware has long provided effective connectivity between
legacy systems that would otherwise be unable to talk to each other. However, with application
data, services and computing resources now widely distributed across a multitude of cloud
platforms, a new approach to application integration is urgently required. Legacy middleware
was designed to handle data traffic across dedicated and managed corporate networks.
Organizations now need a data distribution layer that can adapt to the realities of the internet,
connect the explosion of cloud services, and react to the ever mobile nature of all users.

 Decouple Backend Systems from Frontend Apps

Short term business objectives and time-to-market demands often mean tactical integration
decisions are made for many cloud and mobile applications, rather than considering a
scalable long-term view across application architecture. Apps should leverage a reactive
integration and abstraction layer, that hides the complexity of your data model, and decouple
applications from potential backend changes. Then app developers can spend more time
building features, and less time fixing integration problems.

 Data Backplane for Microservices Architecture

Microservices have emerged as the preferred approach to build scalable applications that can
adapt as requirements change over time. In contrast to monolithic applications which typically
have a single relational database, a microservices architecture requires a mechanism to
manage data communication between a potentially large number of services that are often
running different technology stacks and located across multiple cloud services. By using an
event-driven data backplane that offers the SDKs your developers need, a given microservice
can easily publish events that other services (existing or future) may subscribe to.

 Optimized Integration for IoT

The massive scale associated with the Internet of Things presents some unique challenges in
terms of application architecture, integration and data movement. With around 5 billion
connected devices today, and the market expecting to grow to 50 billion connected devices by
2020, organizations must act now to ensure they can support the speed and scale of this
growth. An effective IoT architecture requires an event-driven integration platform that offers
predictable performance and latency as connections increase, can intelligently distribute only
necessary data, and also ensures connections are secure.

 Realtime Event Processing & Analytics

Big data resources often exist in various forms, across multiple data centers, presenting
challenges for event processing and analytics. When integrated with data-efficient messaging,
organizations can provide realtime distribution of this data that manages the complexities of
connectivity across the internet.

7

Applications are no longer delivering
“point-in-time data”, and instead,

focus on realtime, event-driven,
responsive, engaging data.

An effective IoT architecture requires
an event-driven integration platform
that offers predictable performance
and latency as connections increase,
can intelligently distribute only
necessary data, and also ensures
connections are secure.

A New Approach to Enterprise Architecture: Reactive Systems

Introducing a reactive data layer

Modern applications do not adhere to a typical client-server model, where one program (the
client) requests a service from another program (the server). More typically, modern
applications consume and produce data across multiple endpoints at the same time – all over
the internet. Hence the need for efficient realtime messaging and a reactive programming
model.

This translates to three fundamental lessons for data integration:

1. Data is key. What apps really care about is the real business data, what has changed and
when it changed.

2. Business value exists in the now. End-users expect experiences that are as close to realtime
as possible, and rely on having the best available data.

3. The internet lets you down. Since everyone is using the same network to exchange data,
the developer that overcomes the internet’s many obstacles wins.

At Push we have defined the concept of a reactive data layer (RDL) that gathers data from all
systems and cloud applications and caches it in a single, live (in-memory) data model that
transmits data between the reactive data layer, producers, and consumers. The work of filtering,
synchronizing, and optimizing the data is performed by the reactive data layer.

This approach provides fast access to large volumes of data as well as predictable, reliable
scalability for applications. By nature, it promotes the development of applications that are
event-driven, vs. request-response integrations that use conventional data layers and force
unwanted coupling between components and subsystems. By removing complex and strong
dependencies between components, the reactive data layer can flex and scale with minimal
impact on the application architecture it supports.

Here is a checklist of features from Push Technology that are needed for an effective reactive
data layer.

Publish / Subscribe Integration
A reactive data layer provides a publish and subscribe integration model. The server stores
data against a hierarchy of topics, where each topic has a current value that can be queried in
an ad hoc fashion. More commonly, a client session subscribes to the topics that are of interest
to them, and the server will push each change to the topic as a stream of events.

Dynamic Data Model
Client sessions subscribe to data topics using wild card selectors - when new topics are added,
sessions with matching selectors are automatically subscribed. This avoids the need for
separate topic life-cycle processes, and data objects can be frequently created and destroyed
without impacting existing applications.

Value-Oriented Programming
A value-oriented programming model is a fundamental feature of a reactive data model.
Applications are built against an API that provides streams of values, rather than individual
messages that need further decoding. Client SDKs provide a common programming model,
making best use of the features particular to the implementation language. This frees
developers to focus on application concerns, rather than data integration.

Inverted Data Grid
A reactive data layer can be thought of as an inverted data grid. Like a data grid, the reactive
data layer stores values in-memory – yet traditionally these are optimized for query, and
primarily support a polling paradigm. In contrast, the reactive data layer is optimized for a
realtime, event-driven communication. Often deployed as a specialized cache, data grids
offload processing from a back-end system. The reactive data layer offers the same benefit and
it is particularly designed for delivering streams of realtime data.

8

By removing complex and strong
dependencies between components,
the reactive data layer can flex and
scale with minimal impact on the
application architecture it supports.

✓

✓

✓

✓

A New Approach to Enterprise Architecture: Reactive Systems

Summary

Forward-thinking enterprise architects and developers should look to add a reactive data
layer to their core technology stack. Just as a business intelligence layer provides a single
reference point for customer or reporting information, a reactive data layer provides a single
view of data from all systems and cloud applications, creating a living, breathing data model.

With Push Technology products, your reactive data layer can deliver and exceed the standards
of the reactive programming model in terms of scalability, resilience, and responsiveness by
overcoming the challenges presented by disparate back-end systems, the unknowns of the
internet, and client device complexity.

About Push Technology

Push Technology provides realtime messaging, optimized for streaming data over the Internet.

Better performance, scale and stability are crucial problems for all developers. The solution? A
reactive data layer that can grow adapt and scale as required. With our products Reappt and
Diffusion – and their unique approach to streaming data – developers are armed with realtime
messaging that provides the foundation for your reactive applications.

Try Reappt on IBM Bluemix for free or download Diffusion today.

9

SAN JOSE
+1 408 780 0720

LONDON
+44(0) 2035 880900 www.pushtechnology.com

We make the Internet work for the mobile-obsessed,
everything-connected world

http://download.pushtechnology.com/
http://Reappt.io

