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●  About QuantStart
●  Our goal as quant traders
●  The problem of Alpha Decay
●  Alpha from new data sources
●  Which new data sources?
●  Tools to quantify new data sources
●  Alpha-generating strategies based on new data
●  Where to go from here?
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About QuantStart.comAbout QuantStart.com

● QuantStart was founded in 2012
● Educational portal for quantitative trading
● Talks about algo trading, backtesting and machine learning
● Mainly Python and open-source backtesting
● My background is originally in:

– Computational Fluid Dynamics (CFD) research

– Quantitative development at small London quant fund



  

Our Goal as Quant TradersOur Goal as Quant Traders



  

The Hunt for AlphaThe Hunt for Alpha

● Our goal is to search for “alpha”
● Alpha is a new stream of returns uncorrelated with other 

“known” sources of returns
● Purely, it is a function applied to a time series that produces 

predictions/weights of assets for the next time-
period/rebalance  Roughly the “strategy”→

● The main idea is to look for approaches that others don't 
know about otherwise it's not “alpha”
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Alpha DecayAlpha Decay

● Very cheap to get quality asset pricing and fundamentals data
● Easy to “wrangle” data into the correct format
● Can analyse thousands of strategies with cloud computing
● Diffusion of information and “democratisation” of technology 

ensures faster “alpha decay”
● Need to look for alpha elsewhere

– Alternative data sources!



  

The Solution – Alternative DataThe Solution – Alternative Data



  

Alternative DataAlternative Data

● New alpha can be found in alternative data
● Quant funds, family offices and prop trading desks are already 

using it successfully
● Standard practice for retail quants within next five years
● Those who don't use it will be on the wrong side of the 

informational edge



  

What Data Sources are Available?What Data Sources are Available?

● Satellite data - Visual, IR
● Aerial/drone data – Visual, LiDAR, IR
● Social media data – Blogs, FB, Twitter, Instagram, Reddit...
● Internet-of-Things data – Smartphones, car logs, sensors
● Energy supply/demand data – Oil, natural gas, consumer demand
● Weather data – Wind, temperature, rainfall
● Automated email receipts - E-commerce purchases
● Geolocation monitoring - Shipping, airline and freight locations
● Many, many more...
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Remote Observation Data AbundanceRemote Observation Data Abundance

● Satellite imagery and aerial drones
● Multiple EM wavelengths  → “Hyperspectral”
● Microsats becoming cheaper to develop and launch
● Drones are cheap to build, fly and collect data with
● Vendors offering frequent high-resolution observation data 

from both at low(ish) cost



  

Remote Observation Data UsesRemote Observation Data Uses

● Estimating oil volume by calculating oil storage floating-tank 
height with their shadows

● Air and marine freight traffic location determination
● Counting cars in retail car parking lots to estimate sales
● Hyperspectral crop yield estimation for “softs” trading
● Estimating mining yields via LiDAR volume calculation
● Previously this data had to be collected in-person, by hand



  Oil Depot Floating Tank Shadow HeightOil Depot Floating Tank Shadow Height

Source: DigitalGlobe Inc.Source: DigitalGlobe Inc.



  
Mining Yields from Raw Material StockpilesMining Yields from Raw Material Stockpiles



  
Crop Yields via “AgTech” Drone UsageCrop Yields via “AgTech” Drone Usage



  

Sentiment AnalysisSentiment Analysis

● Numerous vendors – Gnip, DataSift, Quandl, AlchemyAPI
● Provides access to thousands of news sources as well as 

Disqus, FB, Instagram, Reddit, Twitter, YouTube and more
● Datasets are large  YouTube added 1PB → per day in 2015
● Often used for equities returns prediction through news, 

tweets and earnings reports
● Challenging to make effective strategy!



  

Sentiment Analysis ChallengesSentiment Analysis Challenges

● Rapidity: Requires fast trade execution after receipt of news
● Relevance: Which equities does news affect and how much?

– e.g. new Tesla car release impacts Ford, GM, Google

● Categorisation: Each category has variable market response
– e.g. surprise earnings vs legal battle

● Novelty: Market only moves if news not “priced in”
– Must account for relative  value of news



  News API VendorsNews API Vendors



  

Sentiment Analysis API VendorsSentiment Analysis API Vendors



  

Internet-of-Things (IoT) DataInternet-of-Things (IoT) Data

● Smartphones, GPS, sensors  All → internet-connected
● Huge impact in O&G/energy, AgTech, healthcare and insurance
● Vendors beginning to anonymise and sell data
● Hedge funds are first to exploit alpha in these datasets

– e.g. Consumer footfall via GPS/smartphones for retail sales 
estimation ahead of analyst expectations



  

Energy and Weather DataEnergy and Weather Data

● Physical weather data and energy supply/demand
● Funds/banks use this to trade commodity futures, cat bonds 

and weather derivatives
– One example is London-based Cumulus fund

– Reported to be able to predict weather better than Met Office

● Many companies rely on favourable weather for revenue
– Retail, adventure sports, agriculture, energy

– Motivates earnings-based trading ideas



  

E-Commerce Purchase Receipts DataE-Commerce Purchase Receipts Data

● Some startups have indirect visibility into email inboxes
– Gmail, productivity apps, to-do apps

● Vendors now provide millions of anonymised emails as data
● Trading strategy estimates quarterly revenues from email 

purchase receipts and trades when expectations differ
● Quandl.com talks about this at length in blog posts



  

Pros and ConsPros and Cons



  

Advantages of Alternative DataAdvantages of Alternative Data

● Good signal-to-noise ratio compared to pricing data
● Often uncorrelated to other financial data sources
● Many off-the-shelf techniques available to quantify the data
● Competitive advantage once 'data pipeline' is built and tested
● New data sources appear frequently
● Retail traders can compete with funds in niches

– Open source data science tools freely available

– Compute power in the cloud is cheap



  

Disadvantages of Alternative DataDisadvantages of Alternative Data

● Often non-quantitative – Video, imagery, text
● Extremely high-dimensional – Video, imagery, text
● Unstructured/hierarchical – no key-value schema
● Missing values – Interpolation or imputation required
● Data vendors all have differing formats
● Data vendor quality is highly variable
● Some datasets can be prohibitively expensive for retail



  

Alternative Data for Quant TradingAlternative Data for Quant Trading

● Prediction: Volume, volatility, returns?
● Liquidity: Can you actually trade on it? 
● Timeframe: HF microstructure or longer-term macro trends?
● Exclusivity: Too many users causes alpha decay
● Domain Expertise: Can data be used “out of the box”?
● Consistency: Does the data format change over time? 



  

Overcoming Alternative Data ChallengesOvercoming Alternative Data Challenges

● Alternative data can be terabytes or petabytes in size
● Often requires quantification through vectorisation
● Software and algorithms need to be highly parallelisable
● “Big Data” era requires new data science tools

– Storage/Processing: AWS S3, Hadoop, HDF5, MapD

– Analysis: Machine Learning



  

Machine LearningMachine Learning



  

Machine LearningMachine Learning

● A mechanism for extracting useful signals from alternative data
● Learns model from the data

– Not pre-programmed “if-then-else” rules

● Main goals are prediction and classification
● Machine learning is pervasive in quant finance
● Three main areas:

– Supervised Learning: Asset Price Prediction, Trade Parameter Optimisation

– Unsupervised Learning: Factor Analysis, Portfolio Clustering

– Reinforcement Learning: Optimising execution algos



  

Supervised LearningSupervised Learning

● Attempt to match inputs with known outputs
– Predicting tomorrow's stock price from the previous ten days of prices

– Classifying a text document into a set of known categories

● Advantage:
– State-of-the-art for classification tasks in alternative data

● Disadvantages:
– Data must be labelled, which is costly

– Prone to overfitting – performance might not generalise

– Requires substantial training data to perform well



  

Unsupervised LearningUnsupervised Learning

● Find useful structure in the data – no “outputs”
– Which equity returns tend to cluster together?

– Which factors drive equity returns?

● Advantages:
– Most data in the world is unlabelled so UL is widely applicable

– Used to reduce dimensionality of high-dimensional alternative data

● Disadvantage:
– Lack of consistent evaluation mechanism makes it hard to know if 

algorithm is effective



  

Reinforcement LearningReinforcement Learning

● Agent interacting with environment via actions and rewards
● More challenging than supervised and unsupervised learning
● Has recently become very famous due to DeepMind success on 

Atari 2600 games and AlphaGo competition
● Recent promise has prompted many to apply it to quant trading

– Stochastic environment and noisy reward signal make it tricky

– Is used in execution algo optimisation (discussed here at QuantCon!)



  

Deep LearningDeep Learning

● Deep learning is a state-of-the-art machine learning technique
● It involves 'deep' neural networks with many 'hidden' layers
● Allows feature extraction that other ML methods can't achieve
● Primary method for extracting signal from alternative data
● Advantages:

– Usually the 'best' method to extract signal for image, text or audio datasets

● Disadvantages:
– Steep learning curve, requires a good background in ML

– Significant trial-and-error needed to achieve best results



  

Analysing Alternative DataAnalysing Alternative Data



  

Quantification of Alternative DataQuantification of Alternative Data

● Quantification Steps:
– Vectorise the data into numerical form

– Reduce the dimensionality of the data

– Scale the data to make it comparable across different datasets

● Image/Video: 
– Convert each pixel into grayscale [0, 1] intensity value vector

● Text: 
– Each word is a dimension representing weighted frequency in a 

document (TF-IDF)



  

Image VectorisationImage Vectorisation

● 14x14 greyscale image converted into 196-dimensional vector



  

Data Science Tools for Exploratory AnalysisData Science Tools for Exploratory Analysis

● Freely-available open-source tools 
are best for the job
– Top-tier quant funds, big Silicon Valley 

firms, data scientists and retail traders

● Python
– Anaconda  Research environment →
– NumPy/Pandas  Data wrangling→
– Scikit-Learn  Unified SL and UL API→
– TensorFlow  Deep Learning→

● Goal: Check data for alpha!



  

Compute Power via The CloudCompute Power via The Cloud

● Previously it was expensive to get 
access to highly-parallelised 
supercomputing

● Required complex HPC machines with 
many CPU cores

● GPUs and cloud vendors have 
changed the economics significantly

● GPU compute power in the cloud
– Amazon EC2 p2.xlarge instance - 

$0.90/hr
– Amazon EC2 p2.16xlarge instance - 

$14.40/hr



  

Quant Trading on Alternative DataQuant Trading on Alternative Data



  

Quant Trading on Alternative DataQuant Trading on Alternative Data

● Must have underlying economic rationale for strategy
● Model the factors that move asset prices:

– Supply/Demand  Physical, statistical, network/graph models→

– Market Sentiment  Text, news, social sentiment analysis models→

● Generate better estimates than “the market”
● Ensure model produces alpha-generating predictions 

– Accounting for liquidity constraints and transaction costs



  

Low-Frequency Oil ModelLow-Frequency Oil Model



  

Oil Model SketchOil Model Sketch

● Attempt to model major drivers of the oil price via alternative data sources
– Specifically supply/demand imbalance and market sentiment

– Alpha should decay slowly as model will be tricky to replicate

● Trading strategy is likely to work:
– Current oil inventory data is based on estimates

– Estimates have varying levels of quality and truthfulness across regions

– We can generate better estimates via alternative data

● Trade weekly when our predictions differ from market expectations
– Oil futures  CL→

– Oil ETFs  USO, XOP, UCO→



  

Oil Price Drivers EstimationOil Price Drivers Estimation

● Estimating Supply:
– Satellite: Global oil depot tank classification and volume

– Satellite: US domestic fracking output  Indirectly via transportation →
data (e.g. counting tanker-wagons on freight trains via satellite)

– Geolocation: MarineTraffic.com for oil tanker locations/destinations

● Estimating Demand:
– Economics: Population models, cars per household, freight truck usage, 

avg miles driven, efficiency of cars, local gasoline taxation

● Estimating Sentiment:
– OPEC/trading sentiment via Twitter, media and research reports



  

High-Frequency Weather ModelHigh-Frequency Weather Model



  

Weather Model SketchWeather Model Sketch

● Attempt to model major drivers of weather derivatives via alternative data
– Alpha is generated through better predictions at intraday frequencies
– Must be able to predict local weather to an extremely high accuracy
– Strategy likely to require a small data-science/quant/developer team

● For accurate temperature/rainfall prediction at major cities we can combine:
– Numerical Weather Prediction (NWP) model and statistical ensemble of forecasts
– Entity extraction/sentiment analysis from social/text sources in geo-referenced posts

● Can create portfolio of weather derivatives to bet on predictions
– CMEGroup provides futures/options for larger US cities as well as London and Amsterdam



  

Weather Derivatives Model DetailsWeather Derivatives Model Details

● Backtesting will be challenging:
– Potential illiquidity of weather derivatives

– Market impact is tough to simulate

– Combining NWP with statistical ensemble intraday will require 
sophisticated HPC infrastructure

● Advantages:
– Capacity constraint of assets limit it to smaller funds or small team

– Alpha will likely decay slowly as it requires expertise in many areas



  

Where To Go From Here?Where To Go From Here?



  

Where To Go From Here?Where To Go From Here?

● Beginner Data Science Tutorials:
– Scikit-Learn: http://scikit-learn.org/stable/tutorial 
– TensorFlow: https://www.tensorflow.org/tutorials

– Kaggle/Quantopian: Practice, practice, practice!

● Data Vendors:
– Quandl, Gnip, DataSift, AlchemyAPI, PyschSignal

– Forecast.io, NOAA, FlightRadar24, MarineTraffic

● Compute Power:
– Buy Nvidia Titan X GPU  $1200→

– Rent p2.xlarge Amazon EC2 instance  ~$670/month→

https://www.tensorflow.org/tutorials


  

Thank you!Thank you!

Q&A?Q&A?
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