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Abstract 
For firms involved in high-frequency trading, of primary concern is whether or not a 
particular trading system will generate sufficient profits to cover its considerable 
research and development, fixed and variable costs.  Since these costs are allocated per 
accounting period, firms view market returns from a bottom line profitability perspective.  
The current performance metrics of finance do not provide sufficient information to 
assess investments in high-frequency trading systems in this context.  We develop and test 
a capability measure that captures the performance of high-frequency trading systems in 
this light. 
 
 

Key Words 
 

High frequency trading, performance measurement, capability. 



 Electronic copy available at: http://ssrn.com/abstract=2327227 

 

 2

High-frequency trading (HFT) systems come in different shapes and sizes.  They 

include stock and option market making systems, as well as other algorithm-driven 

strategies such as index arbitrage and equity long-short.  What all HFT systems have in 

common is that technological speed is a source of competitive advantage.  Latency causes 

slippage and, therefore, impacts the profitability of the system.  The daily profits are then 

summed and averaged to produce the weekly profit used to pay the firm's expenses. 

HFT systems generate more than 70% of the trading volume in the U.S. 

(Brogaard [2011]).  Thus, it is no exaggeration to state that the practice of finance now 

focuses on their design and control.  We infer from this that institutional investors have a 

preference for the risk-return profiles only automated systems can generate.  This 

preference must be driven by greater returns, lower volatility of returns, and their greater 

predictability.  But, high frequency trading is not cheap.  “Years of research and 

development and millions of dollars go into the development of these algorithms” (Hull 

[2000]).  For algorithmic trading firms (ATFs), of primary concern is whether or not a 

particular trading system will generate sufficient profits to cover its fixed and variable 

costs.  Research and development (R&D), salaries, leases and infrastructure costs can 

easily run into the millions (sometimes tens of millions) of dollars.  Where traders and 

quantitative analysts are concerned with maximizing revenue from trading systems, top 

management and investors in ATF are concerned with maximizing bottom-line 

accounting profits.  Since these costs are allocated per accounting period, ATFs view 

profits from an earnings-before-taxes (EBT) perspective.  There are most often no 

performance or management fees charged as HFT systems usually run by proprietary 

trading firms. 
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HFT systems execute many buy and sell transactions per minute.  They never buy 

and hold.  The daily profit on such systems is based upon thousands of trades.  The large 

number of trades leads to the law of large numbers.  The daily profit to the firm is an 

average of the profits across thousands of trades.   

An ATF may find a profitable trading strategy, but choose to ignore it if they 

cannot justifiably expect to achieve some threshold level of bottom line profitability.  

Bottom line profitability is the total trading profits per day minus the total cost of 

operating the system per day.  The profit over some accounting period, say two-weeks or 

one month, is the sum of the daily profits.  Thus, ATFs must create the trading strategies 

that maximize their long-term business objectives.  Further, they must trade-off two 

potential uses of capital: 

 Investing in working trading systems that generate profits to cover the operating 

costs of the firm.  We call this investment capital.   

 Funding R&D of new trading strategies and their enabling technologies.  We call 

this R&D capital.   

This bifurcation of capital allocation and large number of per-period profits that are 

summed per day and per accounting period leads to performance measurement problems 

not covered by the traditional metrics of finance that ignore the business costs of 

operating a high technology firm. 

Performance Measures in Finance  

The well-known Sharpe Ratio [1994] summarizes an asset’s return-to-variability.  

When comparing two investments, an investor should choose the one with the higher 
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Sharpe Ratio, defined as: 
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Where E(r) is the expected return, rf is the risk free rate and r is the standard deviation 

of returns.  Most academic papers focus on log returns of buy and hold investments.  

Distributions of such returns are well-known to exhibit leptokurtosis with fat tails.  Not 

so in high frequency trading.  The output distributions of high frequency trading systems 

may well be non-normal, but long left tails are curtailed by trading tactics—stop losses, 

hedges, etc.   

Aldridge [2010] estimates the Sharpe Ratio for a HFT system can run in the order 

of several thousands.  This is suspect given that most Sharpe Ratios are below 5.  

Aldridge’s calculation ignores operating costs which would lower that value.  Aldridge's 

estimates can be explained by averaging of thousands of small profits and stopped-losses 

across dozens, hundreds or thousands of instruments.  This type of process produces 

distributions which are approximately normal due to the central limit theorem.  

 The Sortino Ratio (see Sortino and van der Meer [1991]) is a modification of the 

Sharpe Ratio.  Where Sharpe penalizes both positive and negative volatility, Sortino 

penalizes only for returns falling below a lower specification target for required rate of 

return.   The Sortino Ratio is calculated as: 
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where E(r) is the expected return; t the target rate of return, and d is the downside risk.  

Downside risk is the target semi-deviation, as:   



 

 5

  
2

1

2 )( 







 



T

drrfrtd        (3) 

The Sortino Ratio is more appropriate for HFT since many HFT systems are designed to 

generate profits during jump periods.  Where the Sharpe Ratio penalizes for both large 

positive and negative jumps, Sortino penalizes for only negative.   

 A similar metric, called the Information Ratio (IR), is the return of an asset 

relative to some benchmark (e.g. the Dow Jones Industrial Average) divided by the active 

risk.  The IR is the main criteria used to judge trading and investment strategies.  
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If the benchmark is the risk-free rate, then the IR is the same as the Sharpe Ratio.  (This 

is an important point because HFT systems generally have no benchmark.)  Grinold and 

Kahn [2001] have shown that a higher IR is the only criterion for investment selection.  A 

higher IR is always better regardless of the risk penalty.  Grinold and Kahn [2001] claim 

in the Fundamental Law of Active Management (FLAM) that the IR follows the 

following relationship: 

 bICIR           (5) 

where IC is the information coefficient, the correlation (usually Spearman) between 

predicted returns and their actual values.  And, b is the breadth, the number of 

independent bets.  For high-frequency trading systems, b could be in the thousands per 

day (i.e. hundreds of thousands per month).  For HFT systems, the allocation of fixed 

costs on a trade-by-trade basis would be impractical.  The thousands of trades per 

day/period result in highly skewed IC values as b increases.     
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 The Sharpe, Information and Sortino Ratios do not correctly characterize the 

performance of HFT systems and their ability to operate according to specification, 

within tolerance or meet the firm’s requirements for profitability.  They are inappropriate 

for examining the risk-return requirements of HFT systems because they ignore R&D, 

deployment, operating expenses.   

 In three of these calculations—Sharpe, Sortino, and IC—each assumes the 

appropriate measure of performance is asset return and not profit.  Thus, the Sharpe Ratio 

is an approximation to the case where fixed costs are present, but are small compared to 

the investing capital base.  This approximation breaks down as fixed costs become large 

compared to the capital base as in HFT.  ATFs have limited capital.  Scarce resources 

must be allocated across a portfolio of R&D projects and systems and are reallocated 

periodically.  Furthermore, ATF’s reset trading capital periodically.  Bonuses are paid.  

Capital may be reallocated to other trading systems (e.g. ones that are more profitable or 

have a portfolio effect on the ATF as a whole).  Also, the trading strategy itself may not 

be infinitely scalable, so capital may be subtracted.   The traditional metrics from finance 

do not account for these realities.  Further, these calculations all penalize in some way for 

jumpy performance.  Averaging profits over groups would generate a more stable metric.  

Most HFT systems execute tens of thousands of trades per day, where the profits per 

trade all occur over different holding times (measured at the microsecond level) and 

many result in zero profit.  This forces firms to average profits from thousands of trades 

from (potentially) hundreds of systems to obtain a profit for the day. 

 In the mutual fund and hedge fund industries, the managing partner receives a fee 

(usually a percentage of assets under management) to cover expenses.  ATFs must pay 
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their R&D overhead out of trading profits on investment capital.  A firm could go 

bankrupt with a Sharpe Ratio even greater than 5, since their weekly business expenses 

could greatly exceed the revenue from the trading system.  New performance metrics that 

more realistically assess the performance HFT systems are needed.   

Engineering Perspective 

Finance is moving (and in large part has moved) from human to computer 

numerical control (CNC), a discipline well-documented in the engineering literature.  

ACF is increasingly similar to continuous manufacturing in this respect.  However, where 

predictions in finance are justified under a relatively weak standard (“implicitly or 

explicitly, it is assumed that historic results have at least some predictive ability” (Sharpe 

[1994])), the engineering disciplines apply a more rigorous standard.  As Deming [1986] 

states:  “descriptive statistics serve no useful purpose unless the underlying process is in a 

state of statistical control.”   

A process is “a set of interrelated work activities characterized by a set of specific 

inputs and value added tasks that make up a procedure for a set of specific outputs” (ASQ 

[2008]).  “A process is stable if it has a constant mean and a constant variance over time.”  

(NIST [2012])1  A process is said to be in a state of statistical control when it is stable, 

when it consists only of common-cause (or random) variation, and is absent any special-

cause (or assignable) variation which originates outside expected operating conditions.  

Without a state of statistical control, no reliable predictions can be made.  If the decisions 

to invest in an HFT system is be based upon its ability to perform according to 

                                                 
1 This definition is generally that of stationarity, rather than stability, but in the NIST definition is 
commonly used in the engineering disciplines. 
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specifications, then statistical control is a necessary pre-condition.  Thus, any measure of 

a system’s capability of meeting specifications first requires stability. 

Because trading systems follow coded processes, their outputs can be made to be 

within statistical control.  Several authors have applied statistical control to problems in 

trading, investment, portfolio construction and risk management, including Hassan et al. 

[2010], Bilson et al. [2010], Golosnoy and Schmid [2009], Hittesdorf [2009], Schmid et 

al. [1998, 2007, and 2008], Frisen [2003], Tomasson [2009], Bock et al. [2008], and 

Rowe [2003].   Our goal, however, is to examine the performance of in-control HFT 

systems relative to ATF specifications for profitability.   

The remainder of the paper is organized as into five sections.  First, we define the 

firm’s specifications for accounting profitability.  Second, we describe how to define 

process control limits HFT systems using backtests.  Third, we describe how backtesting 

can prove the capability of the system to meet ROI requirements.  Fourth, we provide a 

trading system capability study to compare Sharpe Ratio values to those our capability 

metric.  Fifth, we summarize and conclude. 

Investor Specifications 

The required profit on an HFT system is net of the firm’s fixed costs allocated to 

it.  To stay in business, the firm must remain cash-flow positive.  That is, rather than 

percentage returns, the firm is interested in dollar profits after expenses.  While this 

seems obvious, most hedge funds nevertheless fail for operational reasons, not failure of 

their trading strategies (see Hamilton [2006]).  Positive returns from trading activities do 

not guarantee positive cash flow after expenses.   In Exhibit 1, assuming a trading 

strategy that does cover its costs, the firm’s lower specification limit (LSL) is the 
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breakeven point.2  (An in capable trading strategy could have its expected profits below 

the LSL.)  Thus, the LSL defines the stop-loss on the HFT system. 

 

Exhibit 1:  Investor Specifications 

The HFT firm would like to know if a given trading system can generate enough 

revenue to at least breakeven (i.e. cover R&D capital expenses), and then additionally 

provide a return on investment capital.  That is, trading revenue equals fixed costs plus 

ROI.  Put another way, is the HFT system capable of consistently generating trading 

profits that exceed the LSL? 

Capability indexes can relate the firm’s profit specifications to the performance of 

an HFT system.  One such index, the Cpk (see ISO 9000), compares the outputs of a 

process to specification limits.  A process is capable if nearly all its outputs fall within 

lower and upper specification limits (USL).  The Cpk is calculated as a ratio of the width 

of the specification to the width of the process outputs, where both widths are measured 

as six standard deviations.   

As discussed in the following section given an HFT system that generates 

thousands of trades per day, these trades are averaged over the course of the trading day.  

Then, the daily trades per security are grouped per day and per accounting period.  While 
                                                 
2 The breakeven point is the level of revenue from a trading system that equals total fixed costs so that 
accounting profit equals zero.  Fixed costs relate to R&D and infrastructure costs allocated to each trading 
period. 
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not guaranteed to be normal, the three levels of averaging will push the accounting period 

profits to normal by way of the central limit theorem.  This process of averaging profits 

across thousands of (profits or stop-lost) trades with very small holding periods (as small 

as sub-second) is different from the traditional finance literature, which focuses on daily 

returns over long holding periods (e.g. years), market risk and fat tailed distributions.   

With daily profits i  as the output process, the daily average profit will approach 

 ~ N(  , 2
s  ).  This framework can easily be expanded to a mixture of normal to 

handle any combination of skewness and kurtosis.  (The more advanced methods of 

calculating SPC and capability for non-normal processes (see for example, Chen, et al. 

[2006] or Thissen, et al. [2005]) is not discussed in this paper to ensure the reader can 

follow the pedagogical example in this paper.) 

The Cpk is the ratio of the distance from the center of the process   to the nearest 

specification limit divided by three times the process sample standard deviation s . 




s

LSL
Cpl 




3
 and,  




s

USL
Cpu 
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3
   (6) 

 puplpk CCC ,min         (7) 

Exhibit 2 shows the relationship between the Cpu and Cpl, and the sample process 

distribution.     
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Exhibit 2:  Capability and Process Distribution 

An HFT system cannot make too much money.  Thus, for benchmarking, the USL 

is set to infinity.  (However, as we will show, a system that violates its upper control limit 

(UCL) would be out of control.  An out of control system should be brought into 

statistical control prior to assessment of capability.)  So, we will focus on only the Cpl to 

assess the capability of an HFT system in profitability rather than returns.  In Exhibit 3, 

assuming a capable strategy, we relate the Cpl back to the firm’s specification for 

profitability and we show the relationship between the Cpl, the firm’s breakeven point, 

and the distribution of HFT outputs.  Here, the distribution of the average trading profits 

is above the LSL.  An incapable trading strategy would have a significant portion of its 

left tail below the LSL.  This tail would represent the probability that the strategy would 

be incapable of covering its costs. 

 

Exhibit 3:  Breakeven, Profits and Average Trading Profits 

Cpl rewards reduction of downside variability greater than an increase in 

profitability.  This is unlike the Sharpe Ratio, where an investor should be indifferent to 

an increase in risk as long as he is compensated for it in increased expected return.  

Where the Sharpe Ratio focuses on the investor’s decision on expected return per unit of 

risk, the ATF owner focuses on the need for positive cash flow after R&D capital 

expenses (rather than management fees).  
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To calculate the Cpl, sample means and standard deviations are needed, where 

sample size k should be at least 25, though in practice usually k ≥ 100 (see Shewhart 

[1986]).  To accept the process as capable, the Cpl should be at least 1.0, but according to 

Goetsch and Davis [2000] 1.33 is the preferred minimum.  A Cpl of less than one means 

the process incapable of meeting specifications.  In a case where the process spread 

exceeds the LSL, it can never be capable of meeting specifications. 

For example, assume an HFT firm requires that on average the positive net cash 

flow from its trading systems of $1000 per day.  Furthermore, since the firm uses weekly 

accounting periods, each system should never generate profits below its operating costs.  

(The USL may be negative given capital reserves, but rolling averages should 

nevertheless be profitable.)  Research shows that a particular trading system under 

consideration will produce average daily trading revenues of $3000 with a sample 

standard deviation of $250, but will cost $1100 per day to operate.  Thus, its average 

daily net cash flow is 3000 – 1100 = $1900.  The capability of this system to meet the 

firm’s specification is: 

67.
2503

10001900





plC        (8) 

Because the Cpl for the HFT system is .67, we deem it incapable of meeting 

specifications.  The ATF cannot expect to stay in business due to negative cash flows. 

Assessing Stability 

The Cpl calculation of capability is conditional upon the stability of the 

distribution, regardless of its shape.  Stability is established by examining the distribution 

of the sample mean, which approaches the normal  ~ N(  , 2
s  ) through the central 
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limit theorem.  In engineering disciplines, stability of a process is assessed according to 

Nelson's [1984] eight rules for statistical control (see Appendix A).   

Averaging profits over accounting periods generates greater stability metrics, and 

proper backtesting can demonstrate this state.  Assume that a particular HFT system 

makes several (e.g. hundreds or thousands) independent bets b per period, where some 

make money, some do not.  The system holds no positions overnight.  While the system 

demands a small amount of trading capital, it requires large amount of infrastructure 

investment.  Placing of thousands of trades per minute requires software, servers, 

switches, and IT personnel.      

Given the backtested performance data, we let n be the number of periods in a 

sample, and as previously described, and k be the number of samples in a year.  Then, we 

let π be the time series of period-ending (e.g. second-to-second, minute-to-minute, or 

day-to-day3) profits on the HFT system.  The daily profit is net of variable costs (i.e. 

commissions, etc.) and fixed costs allocated to each day (including R&D payback).  

Thus, πi is the bottom-line dollar profit for time period i.  Working at this level of control, 

suppose that we calculate the n-period (e.g. if the system must be profitable on a weekly 

basis, then n = 5 days; bi-weekly would be 10 days) sample average profits  : 

 



n

i
in 1

1           (9) 

From these values, we calculate the average profit of k (e.g. 52-weeks) samples, . 

 



k

j
jk 1

1           (10) 

                                                 
3 For simplicity, we will use daily time periods.  In practice, this would depend on the holding period for 
each trade.  Some trading systems hold positions for milliseconds, so much shorter periods could be 
selected. 
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As mentioned, through the central limit theorem, these subgroup averages, j , will tend 

to be normally distributed around   with dispersion s .  In practice, if n < 10, we use 

the sample range to estimate s .  Range{ π1,…, πk }, the range R of profits in a sample is 

defined as: 

 )1()(   nR          (11) 

And, the average range R  over k samples is: 

 



k

j
jR

k
R

1

1
         (12) 

The relationship between the average range and the standard deviation depends only on 

the sample size n (see Patnaik 1950).  The process standard deviation s and the standard 

deviation of sample means s  are estimated using d2, a constant based on the subgroup 

size per Exhibit 4, as follows:  

 
2d

R
s   and, 

n

s
s 
        (13)  

From an absolute perspective, the annualized expected profit E(π) is equal to the sample 

average of backtested (or historic) profitability of the trading system   times the number 

of periods in a year n · k, say 52 weeks or 260 trading days4. 

knE   )(         (14) 

And the annualized standard deviation of sample profits   is given by: 

kns           (15)  

                                                 
4 Including holidays, the actual number of trading days per year is around 252.  However, to simplify we 
will assume 5 trading days per week times 52 weeks is 260 trading days per year. 
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This enables us to define performance boundaries, or control limits, three standard 

deviations above and below the expected profit, as estimated by: 

 



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3
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Where A2 is the anti-biasing constant per Exhibit 4, and: 

 
nd

A
2

2

3
          (17) 

Value 
of c 

Basic Factors Factors for Averages Factors for Ranges 
d2 d3 A A1 A2 D1 D2 D3 D4 

2 1.128 0.853 2.121 3.760 1.880 0 3.686 0 3.267 
3 1.693 0.888 1.732 2.394 1.023 0 4.358 0 2.575 
4 2.059 0.880 1.500 1.880 0.729 0 4.698 0 2.282 
5 2.326 0.864 1.342 1.596 0.557 0 4.918 0 2.115 

 
Exhibit 4:  Constants5 

The true standard deviation of profits is found from the distribution of w = R / σ.  The 

standard deviation of w is d3 and is a function of the sample size n (see Patnaik [1950]) 

and is used to adjust from a sample to a population.   Since R = w · σ, we can estimate sR 

by:  

2
3 d

R
dsR           (18) 

As a result, the control limits for R are three standard deviations above and below the 

expected profit, as estimated by:  

 
RDLCL

RDUCL

R

R





3

4         (19) 

                                                 
5 For example, d2 is a proportionality factor.  If X is normally distributed, then µR = X·d2, and being Rbar 
an estimation of µR, Rbar / d2 becomes an estimation of X.  For more information on the derivation of 
proportionality constants used in quality control, see Woodall and Montgomery [2000], AIAG [2005], 
Juran [1988] and ASTM [1976]. 
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The estimation of sπ in (7) also allows us to represent the annualized standard deviation 

as: 

kn
d

R


2
         (20) 

We now have risk performance boundaries.     

If in the backtest j  or Rj performance occurs outside the respective limits (which 

occur with probability ≈ .0013), this would indicate that the process is out of statistical 

control, and therefore unstable.6  Thus, the purpose of a backtest is to prove stability as 

justification that the HFT system can consistently cover its allocated fixed costs and 

provide ROI on a standard accounting cycle. 

Backtesting 

If backtesting proves process stability (according to the prior section), then the 

expectation of repeatability is justified, and capability can be assessed.  Sufficient 

capability, using Cpl, justifies investment in further development.  Insufficient capability 

may trigger additional research on process improvement until a targeted level of 

capability is achieved.  In the case where the target cannot be achieved, specifications 

may be changed.   Exhibit 5 shows that process improvement can enhance capability 

under the condition of stability.  (Stability is defined as being in statistical control.) 

                                                 
6 Other signals with similar probability exist.  See Nelson [1984] and  Bilson, et al. [2010]. 
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Exhibit 5:  Backtesting with Process Improvement to Achieve Target Cpl 

Continued research into quantitative and technological methods will produce differing 

versions of the same HFT system.  Unstable versions of a trading strategy are discarded 

regardless of capability, while stable versions are improved until the targeted level of 

capability (e.g. Cpl = 1.33) is met.  Exhibit 6 shows how control limits defined in the 

backtest fit within the Cpl framework. 

 

Exhibit 6:  Cpl and Process Control Limits 

Simulation Example 

For example, let’s assume that the total annual fixed costs for an ATF firm—

including payroll, rent, R&D amortization, technology costs—are (for round numbers) $1 

M.  Over a 252 day trading year, operating 6.5 hours per trading day, this works out to 
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per second costs of $.17.  Positive returns from trading activities do not guarantee 

positive cash flow after expenses.  The firm must develop an HFT system that at a 

minimum covers this cost.   

To illustrate the use of the Cpl, we generate simulated data as a proxy for 

(potentially non-normal) empirical HFT system returns which are highly secret.  While 

many families of distributions exist to handle various combinations of skewness and/or 

kurtosis—Pearson, Johnson, beta—Cooper and Van Vliet [2012] have used the 

generalized lambda distribution (GLD) for fitting non-normal financial data in part 

because of its ease of use in simulation.  The four parameter GLD was developed by 

Ramberg and Schmeiser (RS) [1974].   The RS generalization is most often defined by its 

quantile function Q(p).   

2
1

43 )1(
)(




 pp
pQ


                   (21) 

Where λ1 is a location parameter, λ2 the scale parameter, and λ3 and λ4 determine 

the shape.  p is the probability 0 < p < 1.  To generate the data, we set the parameters 

shown in Exhibit 7. 

Parameters Values 
λ1 .75 
λ2 .50 
λ3 .30 
λ4 .05 

 
Exhibit 7.  Lambda parameters for simulated HFT return data 

These parameters generated non-normal 2000 data points with the descriptive 

statistics shown in Exhibit 8. 

Statistic Value 
Mean 0.37633 
Standard Deviation 0.43183 
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Skewness -0.54204 
Kurtosis -0.16027 

 
Exhibit 8. Descriptive statistics of the simulated HFT data 

The histogram of the data is shown in Exhibit 9.  Clearly, the distribution is non-

normal, having a large left tail.   

 

Exhibit 9. Histogram of simulated HFT returns 

Using n = 5, SPC generated the statistics on the resulting 400 samples shown in 

Exhibit 10: 

Statistic Value 
  0.37633 

R 1.00102 
Estimate of s3  0.55757 

 
Exhibit 10.  Sample statistics 

 
First, we look at the Sharpe Ratio of this system (which ignores stability).  

Assuming it requires $1 M of margin to operate.  The return on this investment is: 

 






 


Margin

FlowCash Margin
lnir              (22) 

Thus, the average return on this system per second is expected to be: 
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M
r                (23) 

The standard deviation of one second returns turns about to be: 

 3%0.00004318r                     (24) 

To annualize these numbers, we multiply by 5,896,800 (assuming 252 trading 

days of 6.5 hours), the number of seconds in a year, and the square root of that number 

respectively, so that: 

  
%10486.

%9.221




annual

annualr


                   (25) 

Thus, the Sharpe ratio for this system would be: 

 2116.20
%10486.

%9.221


annual

annualr
Sharpe


                (26) 

While the Sharpe Ratio has been calculated correctly, the value of 2116.20 is 

effectively stating that the system is all profit (221.9% annually) with extremely low risk 

(.105% annually).  Clearly, any fund manager would place all their assets into such an 

investment.  If, on the other hand, we view the time series of profits from a statistical 

control and capability perspective, we generate different values relative to the Sharpe 

Ratio, and therefore possibly different decisions as to which HFT systems to invest R&D 

capital in. 

Next, we assess the stability of the underlying distribution by examining the 

distributions of the sample mean and range.  SPC is unconcerned with the shape of the 

underlying distribution, only its stability.  Exhibit 11 shows the distribution of the sample 

means  .  Even at n = 5, we can see that the distribution of the mean approaches normal.  

Larger values of n increase the tendency toward normality. 
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Exhibit 11. Histogram of sample mean returns 

As can be seen from the X-bar chart in Exhibit 12, the sample means are in 

statistical control according to Nelson's [1984] rules. 

 

Exhibit 12.  X-bar chart of simulated means 

The X-bar chart control limits over the data set are: 

 
93389.00102.1557.37633.

18124.00102.1557.37633.

2

2





RAUCL

RALCL






               (27) 

The R chart in Exhibit 13 also shows stability. 
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Exhibit 13.  R chart of simulated HFT returns 

The R chart control limits over the data set are: 

 
11715.200102.1115.2

000102.10

4

3





RDUCL

RDLCL

R

R                (28) 

Given that the process is in control, capability can be assessed.  Using Cpl the LSL 

is set to the fixed cost allocated per period plus a maximum allowable dollar drawdown 

times some number of periods: 

Periods ofNumber Drawdown MaximumPeriodper  Expense LSL      (29)  

The expense per period is $.17 and management will carry a losing system for 

three times the maximum sample loss over the backtest.  Thus, 

 36035.317678.17. LSL            (30) 

As graphically depicted in Exhibit 14, the Cpl for the system is: 

 32.1
55757.

73668.

55757.

)36035.(37633.

3












s

LSL
C pl         (31) 
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Exhibit 14. Cpl for Hypothetical HFT System 

As the capability dividing line is 1.33, this system would be barely capable of 

long term operation due to its dubious ability to consistently pay for its fixed operating 

costs.  Cpl  leads to the opposite decision relative to the Sharpe Ratio of 2116.  The Cpl 

metric gives a better indication about the future profitability of the HFT system. 

Empirical Comparison of Sharpe and Capability Metrics 

To illustrate the difference between the Sharpe Ratio and the Cpl, we use as a 

proxy for HFT system returns, daily Hedge Fund Research Index7 returns over the period 

1/5/2009 to 9/2/2010.  In lieu of actual returns from HFT systems (which are highly 

secret), we chose the most liquid, non-fee-based return data available.  We also 

considered that the strategies these indexes represent are in some cases similar to HFT 

strategies (e.g. long-short equity).  Lastly, these returns imply alpha driven, as opposed to 

beta driven, returns. 

To assess capability of these return streams using Cpl, we calculated cash flows 

net of a weekly fixed cost allocation of .10.  We set the LSL to the maximum allowable 

dollar drawdown of capital invested: 

52

WeeksofNumber
DrawdownCapitalInitialLSL   

We set initial capital to 100, the drawdown of 2.50, and number of weeks to 4.  Thus, the 

stop-loss on the trading system is -.1923.  Furthermore, we reset the amount of trading 

capital quarterly to 100 by subtracting the accumulated trading profits.  Table 2 shows the 

corresponding values this scenario generates for the Sharpe and Cpl ratios. 

Index Description Sharpe Cpl 

                                                 
7 HFRX® and Hedge Fund Research™ are registered trademarks of Hedge Fund Research, Inc. 
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HFRX GL:  Global Hedge Fund Index .159 .460 
HFRX NA:  North America Index   .038 .451 
HFRX EMN:  Equity Market Neutral Index   -.064 .522 
HFRX M:  Macro Index   -.070 .326 
HFRX RVA:  Relative Value Multi-strategy Index   .372 .160 
HFRX EH:  Equity Hedge Index   .061 .272 
HFRX MREG:  Multi-Region Index -.033 .306 
HFRX SDV:  Systematic Diversified Index -.021 .238 
HFRX SS:  Special Situations Index .168 .304 

 
Exhibit 15: Comparing Sharpe and Cpl 

Given the data in Exhibit 15, if we view the time series of profits from the 

perspective of an ATF, and apply Cpl we generate different values relative to the Sharpe 

Ratio, and therefore possibly different decisions as to which HFT systems to invest R&D 

capital in.  This shows that a strategy that makes for a good hedge fund does not 

necessarily make for a good HFT system at an ATF, or vice versa.  None the indexes 

achieve the 1.33 Cpl threshold.  This may explain the large number of hedge fund failures 

since 2008 relative to the few number of ATF failures.   

Capability Studies 

From preferences for risk and return, we can infer specification limits against 

which processes potentially capable of satisfying those preferences can be assessed.  

Then, financial engineers can R&D automated strategies capable of generating return 

processes that meet those specifications.  Thus, research and development of a trading 

system is in part a capability study, as Bothe [2001] defines it “a formal procedure for 

undertaking a systematic analytical investigation to reliably assess a process’s ability to 

consistently meet a specific requirement.”  Since financial innovation is often a 

euphemism for new ways to take advantage of customers, capability demands that new 

products perform to customers specifications, not in conflict with them. 
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Without capability, a trading system may be profitable, even in control, but yet 

fail to be profitable leading to operational failure of the ATF or hedge fund.  A process 

capability study should be performed whenever: 

 The capability of a trading system to meet investor specifications needs to be 

determined.  That is, when a new trading strategy is backtested. 

 Specified tolerances are assessed against the observed variability of the trading 

system output process. 

 Changes and/or improvements to an existing trading system need to be evaluated.  

As Steiner et al. [1997] note, “the effect of a process change can be assessed by 

comparing capability indices calculated before and after the change.” 

Conclusion 

The current metrics of finance do not correctly quantify the ability of an HFT 

system to meet an ATF’s specifications for ROI.  The Sharpe Ratio quantifies expected 

return per unit of risk.  Because the Sharpe Ratio is not path dependent, it does not take 

into consideration drawdown limits or capital resetting.  The Cpl is a better formula for 

ATFs to assess the profitability of HFTs per accounting period.   

Given statistical control and capability as decision framework for research and 

development of HFT systems, we can match the firm’s specifications with systems 

capable of generating sufficient profit to cover fixed costs.  Without a capability study, 

ATFs cannot know if an HFT system will cover its own R&D costs.   If the Cpl for a 

given system is too low, the firm can choose to reduce costs, shift specifications, or 

reduce variation through process improvement.  With this methodology, ATFs can 

evaluate portfolios of HFT systems to determine the best mix of investments.  This 
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problem is similar to the job shop framework, which has been used for decades in 

manufacturing. 

This framework can be expanded similar to manufacturing where alternative 

distributions can be used to create process capability measurements to insure a system 

can meet a predefined reliability.  



 

 27

References 

AIAG Automotive Industry Action Group.  2005.  Statistical Process Control.  2nd edition.   
 
Aldridge, Irene.  2010. “How Profitable Are High-Frequency Trading Strategies?”  Accessed on 

Sept. 21, 2010 at: www.irenealdridge.com/how-profitable-are-high-frequency-trading-
strategies/ 

 
American Society for Quality (ASQ).  2008.  See http://www.asq.org/glossary/p.html. 
 
American Society for Testing and Materials (ASTM).  1976.  ASTM Manual on 

Presentation of Data and Control Chart Analysis.  ASTM Publication STP15D, 134-135. 
 
Bilson, John, Andrew Kumiega and Ben Van Vliet.  2010.  “Trading Model Uncertainty and 

Statistical Process Control.”  Journal of Trading.  5, (3).   
 
Bock, D.  2008.  "Aspects on the control of false alarms in statistical surveillance and 

the impact on the return of financial decision systems."  Journal of Applied 
Statistics.  35, (2), 213-227. 

 
Bothe, D.R.  2001.  Measuring Process Capability.  Cedarburg: Landmark Publishing, Inc.  
 
Brogaard, Jonathan A.   2010.   "High frequency trading and its impact on market quality." 

Northwestern University.  Available at SSRN: http://ssrn.com/abstract=1641387 or 
http://dx.doi.org/10.2139/ssrn.1641387 

 
Chen, Tao, Julian Morris, and Elaine Martin.  2006.  "Probability density estimation via 

an infinite Gaussian mixture model: application to statistical process monitoring."  
Journal of the Royal Statistical Society.  55, (5), 699–715. 

 
Cooper, Rick and Ben Van Vliet.  2012.  “Whole Distribution Statistical Process Control for High 

Frequency Trading.”  Journal of Trading.  7(2), pp. 57-68. 
 
Deming, W. Edwards.  1986.  Out of the Crisis.  MIT Press.  Cambridge, MA 
 
Frisen, M.  2003.  "Statistical surveillance:  Optimality and methods."  International Statistical 

Review, 71, (2), 403-434. 
 
Goetsch, David L. and Stanley B. Davis.  2000.  Quality Management.  Prentice-Hall.  p. 590.   
 
Golosnoy, Vasyl and Wolfgang Schmid.  2009.  “Statistical Process Control in Asset 

Management.”  Chapter in Applied Quantitative Finance, 2nd ed.  Eds. Wolfgang Härdle, 
Nikolaus Hautsch, and Luger Overbeck.  Springer.  Berlin, Germany.  pp. 399-416.    

 
Hamilton, Dane.  2006.  Quoting Paul Roth, partner in Schulte Roth & Zabel in “S&P  
 may form hedge fund operational risk service.”  Reuters.  Dec. 20. 
 
Hassan, Zia, Andrew Kumiega, and Ben Van Vliet.  2010.  “Trading Machines:  Using 

SPC to Assess Performance of Financial Trading Systems.”  Quality Management 
Journal. 17, (2). 

 



 

 28

Hittesdorf, Mick.  2009.  “Get Real.”  Automated Trader.  Q4. pp. 50-56. 
 
Hull, Blair.  2000.  “The Future of Trading.”  Futures Industry Magazine. December/January.  
 
International Standards Organization (ISO).  2011.  See www.iso.org/iso/home.htm.  
 
Juran, J.M. (ed.)  1988.  Juran's Quality Control Handbook, 4th edition.  Table A. 
 
National Institute of Standards and Technology (NIST).  2012.   

See www.itl.nist.gov/div898/handbook/ppc/section4/ppc45.htm 
 
Nelson, Lloyd.  1984.  “Technical Aids.” Journal of Quality Technology. 16 (4), 238-239. 
 
Patnaik, P. B.  1950.  “The use of mean range as an estimator of variance in statistical tests.”  

Biometrika.  37, 78-87. 
 
Ramberg, J. and Schmeiser, B.  1974.  "An approximate method for generating 

asymmetric random variables."  Communications of the ACM. 17 (2), 78–82. 
 
Rowe, David.  2003.  “Statistical process control.”  Accessed at www.risk.net.  OpRisk & 

Compliance.    
 
Schmid, Wolfgang, and Taras Bodnar.  2008.  “Estimation of optimal portfolio compositions for 

Gaussian returns.”  Statistics & Decisions.  26, 179-201. 
 
Schmid, Wolfgang, and V. Golosnoy.  2007.  “EWMA control charts for monitoring optimal 

portfolio weights.”  Sequential Analysis.  26, 195-224. 
 
Schmid, Wolfgang, and Y. Okhrin.  2008.  “Estimation of optimal portfolio weights.”  

International Journal of Theoretical and Applied Finance.  11, 249-276. 
 
Schmid, Wolfgang, and T. Severin.  1998.  “Statistical process control and its application in 

finance.”  Contributions to Economics: Risk Measurement, Econometrics, and Neural 
Networks, Physica-Verlag, Hei.  pp. 83-104.  

 
Sharpe, William.  1994.  “The Sharpe Ratio.”  Journal of Portfolio Management. 21, (1), 49-58. 
 
Shewhart, Walter A.  1986.  Statistical Method from the Viewpoint of Quality Control.  

Dover Publications, New York. p. 37. 
 
Sortino, F. and R. van der Meer.  1991. “Downside Risk: Capturing What's at Stake." 

Journal of Portfolio Management.  17, 27-31. 
 
Steiner, S., B. Abraham, and J. MacKay.  1997.  "Understanding Process Capability 

Indices."   Institute for Improvement in Quality and Productivity research 
report.  University of Waterloo, Ontario, Canada. 
 

Thissen, U., H. Swierenga, . P. de Weijer, R. Wehrens1, W. J. Melssen1, and L. M. C. 
Buydens.  2005.  "Multivariate statistical process control using mixture modeling."  
Journal of Chemometrics, 19, (1), 23–31. 

 



 

 29

Tomasson, H.  2009.  "Statistical models in finance."  In M. Frisen (Ed.), Financial 
Surveillance.  New York: John Wiley & Sons. 

 
Woodall, William and Montgomery, Douglas.  2000.  “Using Ranges to Estimate  

Variability. ”  Quality Engineering.  13, (2). 
 



 

 30

Appendix A 
 
Nelson [1984] defines eight signals in total, each with probability approximately equal to that of 3 

standard deviations (.135%): 

1. Any single measurement above or below the 3 standard deviation UCL or LCL. 
2. 9 points in a row on one side of the mean. 
3. 6 points in a row increasing or decreasing.  
4. 14 points in a row toggling back and forth between increasing and decreasing. 
5. 2 out of 3 points in a row more than 2 standard deviations from the mean in the same 

direction. 
6. 4 out of 5 points in a row more than 1 standard deviation from the mean in the same 

direction. 
7. 15 points in a row all within plus or minus 1 standard deviation. 
8. 8 points in a row all outside 1 standard deviation in either direction. 

 
 
 
 


