Evolving Trading Rule-Based Policies

Robert Gregory Bradley'?, Anthony Brabazon'?, and Michael O’Neill'-3

! Natural Computing Research and Applications Group
University College Dublin, Ireland
2 School of Business, University College Dublin, Ireland
3 School of Computer Science and Informatics, University College Dublin, Ireland
robert.bradley@ucdconnect.ie, anthony.brabazon®@ucd.ie, m.oneill@ucd.ie

Abstract. Trading-rule representation is an important factor to con-
sider when designing a quantitative trading system. This study imple-
ments a trading strategy as a rule-based policy. The result is an intuitive
human-readable format which allows for seamless integration of domain
knowledge. The components of a policy are specified and represented
as a set of rewrite rules in a context-free grammar. These rewrite rules
define how the components can be legally assembled. Thus, strategies
derived from the grammar are well-formed, domain-specific, solutions. A
grammar-based Evolutionary Algorithm, Grammatical Evolution (GE),
is then employed to automatically evolve intra-day trading strategies for
the U.S. Stock Market. The GE methodology managed to discover prof-
itable rules with realistic transaction costs included. The paper concludes
with a number of suggestions for future work.

1 Introduction

A rule-based trading system typically relies on a series of conditional rules to
make trading decisions. This is in contrast to a discretionary system which pri-
marily relies on human judgement. Discretionary traders function without ex-
plicitly quantified rules and instead act on mental rules which are developed
through experience. An obvious problem with this approach is that the decision-
making process can be skewed by human emotions such as fear and greed [7].
Although there are successful traders who function exclusively using these tech-
niques, there are many advantages to quantifying one’s rules. Quantifying a
strategy and representing the logic in computer code allows for system automa-
tion, speeding up the decision-making process, and for the statistical analysis of
the trading strategy via backtesting. In addition, it facilitates the application of
advanced machine learning techniques in order to optimise system parameters.
In this study we employ an evolutionary algorithm called Grammatical Evolution
(GE) [§] to automatically evolve profitable trading models. GE has previously
been applied to for-ex trading [I] and to stock market trading [2] . These studies
evolve expressions which evaluate to real-numbers, and rules are formulated by
comparing these values to threshold values in order to generate a trading en-
try signal. The exit strategies employed are static which is a simplification of

C. Di Chio et al. (Eds.): EvoApplications 2010, Part II, LNCS 6025, pp. 251-260] 2010.
© Springer-Verlag Berlin Heidelberg 2010

252 R.G. Bradley, A. Brabazon, and M. O’Neill

the process of real-world trading. In contrast, this study structures a grammar
such that a trading strategy is comprised of entry and exit rules which sensi-
bly combine technical indictors resulting in a more intuitive and comprehensive
representation of a trading strategy.

1.1 Structure of Paper

The remainder of this paper is structured as follows. Section 2] outlines the con-
struction of a rule-based policy as applied to the problem of trading-rule design.
Section [3] illustrates how a set of rewrite rules can govern the steps in creating
a well-formed, domain-specific policy. In section] Grammatical Evolution is
employed to heuristically navigate the search space of possible trading rules in
order to find ones which are high-quality. The results of our experiments are
presented in section Bl The last section outlines the conclusions of the study and
suggests a number of avenues of future work.

2 Rule-Based Policies

Representation is a key factor when designing a trading strategy. One intuitive
approach is to represent a strategy as a rule-based policy. This approach has
previously been used to develop automated agents for a well known arcade game
[6], and more generally provides a framework which encapsulates many real-
world decision scenarios. A rule-based policy is a set of rules with the following
structure

IF [Condition] holds, THEN do [Action]

The policy also includes logic to decide which rule in the set should be executed
given a particular state of the environment. Rule-based policies are a particularly
useful representation for financial trading rules as they are human readable and it
is a straightforward task to embed domain knowledge. In applying these policies
we need to specify four things:

1. What are the possible actions?

2. What are the possible conditions and how are they constructed from obser-
vations?

3. How to make rules from conditions and actions

4. How to combine the rules into policies

We will address each of these in turn.

For the purpose of our study we are limiting the system to five basic actions
as outlined in Table [l below: EnterLong, ExitLong, EnterShort, ExitShort and
DoNothing. On the close of each time interval (one minute intervals in the case
of our experiments), a trading agent is confronted with the problem of deciding
which of these actions to take.

Evolving Trading Rule-Based Policies 253

Table 1. The above table shows the list of actions which are used in the construction
of trading rules

Action Description
EnterLong Open a long position
ExitLong Close long position
EnterShort Open a short position
ExitShort Close short position
DoNothing Take no action

An action is taken if the condition associated with the executed rule holds
true. The market position is updated accordingly, as per Table [l In the case
where conditions belonging to multiple rules are satisfied simultaneously, the
policy must include logic to prioritize one action over another.

Table 2. This table shows the market position state changes resulting from a sequence
of actions

Action DoNothing EnterLong ExitLong EnterShort ExitShort
Position Flat Long Flat Short Flat

A trading rule condition is a Boolean expression of observations and compar-
ison operators. The system designer decides on the set of observations, where
members of the set could range from a simple closing price to a sophisticated
statistical metric. In this study we have limited our observation set to four tech-
nical indicators (see Table [B]). The length of this list is arbitrary, and can be
extended with any number of variables, indicators, and analytics.

Table 3. This list of technical indicators serve as the building blocks in the construction
of trading rule conditions

Analytic Description

SMA simple moving average which gauges momentum
WMA weighted moving average which gauges momentum
STOC Stochastic indicator which gauges overbought/oversold levels
ADX ADX indicator gauges strength of trend

A trading strategy is then constructed by logically combining one or more
rules of the form IF [Condition] holds, THEN do [Action]. Each of the actions
listed in Table [[l have a rule which decides whether or not the action should
be taken based on a boolean condition. The policy includes logic which decides
which rule should be executed given the current market position [9]. For example,
if we are already long then it makes no sense to execute the ExitShort rule. This
feedback loop from the environment to the policy produces more logical trading
decisions.

254 R.G. Bradley, A. Brabazon, and M. O’Neill
3 Grammatical Representation

A context-free grammar is a set of one or more rewrite rules of the form NT'— >
T, where NT is a nonterminal which maps to one or more terminals and/or
nonterminals. This study employs a metasyntax called Backus Naur Form (BNF)
to express the rewrite rules. We define a root nonterminal < policy >, see Fig.
[M, which is mapped to the policy framework discussed in Section 2l

<Policy> si= if (Long){
if (<LongExitCondition>){
ExitLong;
}
}

else if (Short){
if (ShortExitCondition){
ExitShort;
}
}
else if(Flat){
if (<LongEntryCondition>){

EnterLong;

}

else if(<ShortEntryCondition>){
EnterShort;

}

}

Fig. 1. The root nonterminal maps to the policy framework which includes terminals
and non terminals

Rewrite rules are also added to define how conditions may be constructed from
observations and operators. This allows us to incorporate our domain knowledge
into the grammar, resulting in a set of rules that governs how a well-formed policy
can be assembled.

<condition> ::= <ma><greatless><ma>
| <stochastic> <greatless> <threshold>
| (<condition>\&\&<condition>)

<maindicator> = SMA(<number>)
| WMA (<number>)
<oscillator> := STOC (<number>)
| ADX (<number>)

Fig. 2. A partial BNF grammar showing three production rules used to create well-
formed conditions

We embed our domain knowledge in the grammar by defining rewrite rules
which ensure that sensible conditions are created. For example, it would not be
sensible to directly compare a moving average and a stochastic indicator, which
oscillates between 0 and 100. Thus, we create separate nonterminals for each type
of indicator. This inhibits ill-formed conditions such as (SM A(10) > STOC(65))
being created. Fig. 2lshows the production rules used to build conditions. A more

Evolving Trading Rule-Based Policies 255

comprehensive set of observations might require additional domain knowledge
to be included in the grammar.

Digit concatenation [3] can also be applied to the creation of constants within
a strategy. Uses of constants in trading rules include for example, the param-
eterisation of technical indicators, and the creation of appropriate thresholds
for (as an example) oscillator indicators. We define rewrite rules to control the
range of values which a constant can take. The integer parameter passed to tech-
nical indicators specifies the number of intervals over which the indicator will
be calculated. Domain knowledge is embedded in our rewrite rules so that this
parameter is limited to an appropriate range of values. For example, in deter-
mining the number of periods over which a technical indication can ‘look back’
we need to consider the likely trading frequency. In this paper, we focus on high-
frequency trading and we limit the range of this parameter to 2000, which is
about 5 days of trading given a 1 minute frequency. Therefore, the production
rules in Fig. B below allow for the generation of integers in the range [1,1999].

<number> = <1-9>

| <1-9><0-9>

| <1-9><0-9><0-9>
112131415161 71819
0 | <1-9>

<1-9>
<0-9>

Fig. 3. The production rules which define how digits can be concatenated to create an
indicator look-back parameter constant

Similarly, a set of rewrite rules are defined to govern how digits may be con-
catenated to create the threshold constant. This threshold is compared to the
oscillator indicators, for example (STOC/(55) > 80). Domain knowledge is em-
bedded in these production rules to limit this constant to be in the range [0,95]
in increments of 5. A more complex grammar might define rewrite rules for
a number of other constants which are used in a policy, with domain-specific
knowledge applied to each constant if necessary.

4 Evolution of Trading Policies

Rule-based trading policies derived from our context-free grammar are guaran-
teed to be well-formed solutions. However, we are still faced with the challenge
of deriving a successful trading strategy. A huge number of different strategies
can be derived depending on the derivation sequence executed, and hence we
need to traverse this search space in an efficient manner. To do this we adopt an
evolutionary approach.

The GE algorithm was inspired by the genotype to phenotype mapping pro-
cess in biology. This process involves the mapping of DNA to proteins. In the
case of GE, integer strings drive the selection of rewrite rules from our grammar
which results in a mapped policy.

256 R.G. Bradley, A. Brabazon, and M. O’Neill

4.1 Data Review

The dataset, see Fig. @ used in this study is comprised of 200 trading days of
1 minute bars for the CAT stock which is listed on the NYSE. Normal trading
hours on the NYSE are 9.30 to 16:00 EST, resulting in 390 minutes of trading per
session, producing a dataset of 78,000 samples. Each bar contains a price for the
open, high, low, and closing trades for that minute. The dataset is partitioned
to produce an in-sample section from Monday 2007-01-22 to Friday 2007-04-20,
and an out-of-sample section which ranges from Monday 2007-04-23 to Friday
2007-07-20. The first partition is used to train a population of policies, and the
second to test the best individuals out-of-sample.

Dataset - NYSE CAT Stock - 1 Minute Frequency
T T T T

Wb o In-sample partiion i
—— Out-of-sample partition

Closing price ($)

25
interval x10'

Fig. 4. Dataset of CAT high frequency data

4.2 Methodology

The results for the data-mining of trading policies using GE were averaged over
30 separately-seeded runs in order to allow us to assess the statistical significance
of the performance metrics. A single run involves an in-sample training phase
and an out-of-sample testing phase. Phase one trains a GE population of 300
individuals for 50 generations. On each generation of the algorithm, each integer
string in the population is mapped to a trading policy. The in-sample dataset
is then iterated from start to end. The trading policy is executed at the close
of each interval and a trading action from the set listed in Table [is signaled.
This action is then applied to the open of the next interval. For example if an
EnterLong signal is generated on the close of interval 2007-01-22 09:56 a new
trade is initiated on the open of the next interval 2007-01-22 09:57. Signals are
only accepted up to and including the second last interval of the day. On the last
interval of each day any open position (long or short) is closed and the market

Evolving Trading Rule-Based Policies 257

position is set to flat. This ensures no positions are held overnight. The running
return of the strategy is stored at each interval.

On reaching the end of the training set the vector of returns is analyzed to
determine the performance of the individual. The performance metric used in this
paper is an information ratio where the average daily return minus transaction
costs is divided by the standard deviation. This metric is a risk-adjusted measure
which favors strategies with stable daily returns. The calculated ratio is the
fitness of the strategy being evaluated. On completion of a generation, each
strategy in the population has a fitness score as calculated above. Roulette wheel
selection is employed with a steady-state replacement strategy, see Goldberg [5].
The population is evolved for 50 generations and the best trading policy is then
tested on the out-of-sample dataset to assess the robustness of the strategy
on unseen data. The experimental parameters used for this study are listed in
Table @

Table 4. Experimental Parameters

Parameter Value
Pop size 300
Mutation .001
Crossover .9
Generations 50

Runs 30
Selection Roulette wheel

Replacement Steady-state

5 Results

The results of our experiments are now presented. A population of 300 individ-
uals was trained on partition one of the dataset discussed in Section E 1] for 50
generations. The best individual from the population was then tested out-of-
sample on partition two. Thirty separately seeded runs were carried out.

Table [l shows the performance of the best individual against a number of
benchmarks, averaged over 30 runs. The average best policy, not including trans-
action costs, returned 57.83% annualized in-sample. The standard deviation of

Table 5. Statistics derived from the annualized percentage return of the best policy
against a number of benchmarks, averaged over 30 runs

In-sample Out-of-sample
Mean Std Dev Info-ratio Mean Std Dev Info-ratio
Best policy 57.83 32.85 1.76 13.85 30.96 0.45
Best policy - costs 51.56 29.55 1.75 9.41 30.96 0.30
Random agent -6.07 35.32 -0.17 2.27 30.23 0.08
Random agent - costs -354.21 35.13 -10.08 -287.05 29.37 -9.77
Buy only 0.19 NA NA 19.94 NA NA

Buy only - costs -0.28 NA NA 19.13 NA NA

258 R.G. Bradley, A. Brabazon, and M. O’Neill

this level over the runs was 32.85%. The mean return dropped to 13.85% out-
of-sample. When transaction costs were included the in-sample mean return
dropped to 51.56%, while the out-of-sample performance fell to 9.41%.

Two benchmarks were employed. The first, a zero-intelligence agent, executes
an action from the set{ Buy, Sell, Do Nothing} with equal probability on the close
of each interval. Due to the uniformity of the sampling distribution this random
strategy will complete a trade every 4 intervals on average. This results in a
large volume of trades making transaction costs a significant factor. The average
best policy fails to significantly out-perform the random agent when costs are
not included, however with transactions costs of 1 cent per share included the
performance of the zero-intelligence strategy is drastically reduced. We note that
a zero-intelligence agent with a high trading frequency (about 100 trades a day)
might not be a realistic benchmark when compared to an evolved policy trading
at a potentially much lower frequency.

The second benchmark in our experiment is an intra-day buy-and-hold strat-
egy. Each day this agent initiates a long position at the market open and goes
flat at the market close. The best evolved individual significantly outperforms
this benchmark in-sample. The opposite is true out-of-sample. The benchmark’s
superior performance over the second partition is due to the aggressively bullish
trend in the second half of our dataset, see Fig. @ Although the benchmark
has superior performance the risk profile is very different to that of the evolved
strategies. The buy and hold strategy is exposed to the systematic risk of the
market 390 minutes a day. A typical evolved policy is in the market a lot less
than this. One such policy is described below.

5.1 Example Evolved Policy

This section takes a closer look at a profitable policy evolved using Grammatical
Evolution. Fig. [l shows the root nonterminal in our BNF grammar which maps
to a basic template. The policy template is comprised of a number of rules, and
the rules’ conditions are represented by nonterminals in our grammar. GE is used
to evolve these conditions using the rewrite rules defined in Fig. 2l An example
evolved trading policy is shown in Fig. Bl The result is human-readable, and can
be easily visualized in any standard technical indicator charting software.

The logic of the policy framework favors long positions over short as the
EnterLong condition is checked before the EnterShort condition. The complete
dataset used in this study is relatively bullish and the rule in Fig.[Elhas essentially
switched off short trades by evolving a condition for the EnterShort rule which
will always evaluate to false as the ADX indicator is not likely to breach the 65
level. With the EnterShort rule out of the picture the EnterLong condition is
checked at each interval to find a good entry point. This policy made 67 trades
in-sample, and 44 out-of-sample, see Table [6l The average trade duration was
approximately 60 minutes across the two partitions with a standard deviation
of 65 minutes. The table also shows the mean return and the standard deviation
of the return on these trades in basis points.

Evolving Trading Rule-Based Policies 259

if (Long){
if (((STOCHFD_TA(3,46)>40)&& ((STOCHFD_TA(5,92)>55) && (ADX_TA (92)<40)))){
ExitLong;
¥

else if(Short){
if (((ADX_TA(48)>85)&&(ADX_TA(719)>85))){
ExitShort
}
else if (Flat){
if ((((((STOCHFD_TA(63,69)<60)&& ((STOCHFD_TA(1,321)>5)&& (ADX_TA(21)<80)))&&
(((STOCHFD_TA(5,50)>5) && (ADX_TA (95)<65)) && (STOCHFD_TA(759,8)<30)))&&
((WMA_TA(74)<SMA_TA(28))&&(SMA_TA(581)>SMA_TA(1))))&&(STOCHFD_TA(2,2)<30))){

EnterLong;

}

else if ((ADX_TA(578)>65)) {
EnterShort;

¥

Fig. 5. Example policy evolved by Grammatical Evolution

Table 6. Trade duration (in minutes) and return (in basis points) statistics for the
example evolved policy

In-sample Out-of-sample
Mean Std Dev Mean Std DEv
Trade duration (mins) 45 52 75 80
Return (bps) 10.32 2347 19.82 36.78
Return with costs (bps) 8.78 23.47 18.50 36.78

6 Conclusion and Future Work

In this study Grammatical Evolution was used to evolve well-formed trading rule-
based policies for a large-cap U.S. stock. A policy is derived from a grammatical
representation of the components which make up a policy. Despite the fact that
we limited the system to a very simple set of building blocks, GE managed to
uncover some profitable rules when realistic transaction costs were included.

In spite of the promise of these results, no absolutely definitive conclusions
can be drawn from a set of experiments based on a single stock over a single
time period. We intend to pursue a number of avenues to extend this work.
For example, in this study the best policy from the population trained over
a 3 month period is traded out-of-sample for the next 3 months. This is a
conservative approach as it is ambitious to expect a simple technical trading
rule to yield robust results over such a large window. A moving window ap-
proach, where the training set is incremented periodically and the population
is trained for a number of generations at each increment, has been shown to
yield superior returns [4] over a static approach, like the one adopted in this
study. We intend to investigate this approach in more detail. We also intend
to analyze the phenotypic characteristics of the system during evolution to
give greater transparency into the distribution of intelligence inherent in the
population.

260 R.G. Bradley, A. Brabazon, and M. O’Neill

References

1. Brabazon, A., O’Neill, M.: Evolving technical trading rules for spot foreign-exchange
markets using grammatical evolution. Computational Management Science 1(3),
311-327 (2004)

2. Brabazon, A., O’Neill, M.: Intra-day trading using grammatical evolution. In:
Brabazon, A., O’Neill, M. (eds.) Biologically Inspired Algorithms for Financial Mod-
elling, pp. 203-210. Springer, Berlin (2006)

3. Dempsey, 1., O’'Neill, M., Brabazon, A.: Grammatical constant creation. In: Deb,
K., et al. (eds.) GECCO 2004. LNCS, vol. 3103, pp. 447-458. Springer, Heidelberg
(2004)

4. Dempsey, 1., O’Neill, M., Brabazon, A.: Adaptive trading with grammatical evolu-
tion. In: Proceedings of the 2006 IEEE Congress on Evolutionary Computation, pp.
9137-9142. IEEE Press, Los Alamitos (2006),
http://ncra.ucd.ie/papers/cec2006_adaptiveTrading.ps|(Vancouver July 6-21,
2006)

5. Goldberg, D.E.: The Design of Innovation: Lessons from and for Competent Genetic
Algorithms. Kluwer Academic Publishers, Dordrecht (2002)

6. Istvan, S., Andrés, L.: Learning to play using low-complexity rule-based policies:
Tllustrations through ms. pac-man. J. Artif. Intell. Res. (JAIR) 30, 659-684 (2007),
http://www.jair.org/media/2368/1ive-2368-3623-jair.pdf

7. Lo, A.W.: The adaptive markets hypothesis: Market efficiency from an evolutionary
perspective. Journal of Portfolio Management (2004) (forthcoming)

8. O’Neill, M., Ryan, C.: Grammatical Evolution. Kluwer, Dordrecht (2003)

9. Saks, P., Maringer, D.: Evolutionary Money Management. In: Giacobini, M., et al.
(eds.) EvoWorkshops 2009. LNCS, vol. 5484, pp. 162-171. Springer, Heidelberg (2009)

http://ncra.ucd.ie/papers/cec2006_adaptiveTrading.ps
http://www.jair.org/media/2368/live-2368-3623-jair.pdf

	Evolving Trading Rule-Based Policies
	Introduction
	Structure of Paper

	Rule-Based Policies
	Grammatical Representation
	Evolution of Trading Policies
	Data Review
	Methodology

	Results
	Example Evolved Policy

	Conclusion and Future Work

