
 Electronic copy available at: http://ssrn.com/abstract=2661618

Reducing transaction costs with low-latency trading

algorithms

Sasha Stoikov∗† and Rolf Waeber‡

† Cornell Financial Engineering Manhattan (CFEM), New York, N.Y. 10004 U.S.A.
‡ School of Operations Research and Information Engineering (ORIE),

Cornell University, Ithaca, N.Y. 14853 U.S.A.

September 16, 2015

Abstract

We formulate a trade execution problem at the market microstructure level and
solve it using dynamic programming. The objective is to sell a single lot of an as-
set in a short time horizon T , using the imbalance of the top of book bid and ask
sizes as a price predictor. The optimization problem takes into account the latency
L of the trading algorithm, which affects the prices at which the asset is traded.
The solution divides the state space into a “trade” and a “no-trade” region. We
calculate the cost of latency per lot traded and demonstrate that the advantage of
observing the limit order book can dissipate quickly as execution latency increases.
In the empirical section, we show that our optimal policy significantly outperforms
a TWAP algorithm in liquidating on-the-run U.S. treasury bonds, saving on average
approximately 1/3 of the spread per share if trades are executed with low latency
(≈ 1 millisecond).

Keywords: Optimal asset liquidation, algorithmic trading, transaction costs,
market microstructure, high-frequency trading, optimal stopping, trade execution
latency, cost of latency, dynamic programming.

1 Introduction

The financial services industry has seen a tremendous push towards faster and faster
trading systems and algorithms in the last decade. Fiber optic cables, microwave tech-
nologies, collocation services and high performance computers have been adopted by
most financial firms that trade in large volumes. This so called “arms race” has been
well documented in the popular press, but there is no consensus on whether or not such
investments make economic sense.

∗Corresponding author. Email: sashastoikov@gmail.com

1

 Electronic copy available at: http://ssrn.com/abstract=2661618

The optimal execution literature (see, for instance, Bertsimas and Lo, 1998; Almgren
and Chriss, 2001; Obizhaeva and Wang, 2005; Alfonsi et al., 2010; Gatheral and Schied,
2012) has generally focused on the optimal splitting problem. Essentially, the concern
of these studies is how to divide a large “parent” order into a trade schedule made up
of “child” orders so as to minimize transaction costs. Under general conditions, the
solution to the order splitting problem is a deterministic function of time; that is, the
trading rate does not depend on the immediate market environment Schied et al. (2010).
However, the names of popular trading algorithms offered by brokers – “React”, “Bolt”,
“Stealth”, “Sniper”, “Guerrilla”, “Ambush” and “Dagger” to name a few – imply that
faster algorithms are better. Our goal in this paper is to evaluate and quantify the extent
to which lower latency trading can reduce transaction costs.

Latency occurs for several reasons: first, data (i.e. an order book update) needs
to travel from the exchange to the trading server; second, the server needs to process
the update and decide whether or not to submit an order; third, if an order is sent,
it needs some time to travel back to the exchange. Nowadays, the total latency of
the trade execution is very small–the entire process takes place in milliseconds or even
microseconds.

Latency in trade execution has only recently received attention in the academic
literature. Moallemi and Saglam (2013), for example, estimate the cost of latency by
comparing the value of a pegged limit order strategy with and without latency. They
express this cost in terms of the volatility and the bid-ask spread of an asset. We will
define the value of latency in a similar way, except our trading strategy will involve
market orders. Our motivation for using a pure market order strategy is that such a
strategy allows for realistic backtesting using Level I quotes data and does not rely on
any assumptions of passive executed trading. We assume that the round-trip latency of
an algorithm is fixed and given by a known constant L, which we will assume to be in
the range 0-5,000 milliseconds. In practice, latency is not constant and may be related
to the volatility in the market, see Kirilenko and Lamacie (2015).

Our model determines the optimal time in [0, T] to liquidate one single lot, condi-
tional on the state of the limit order book. We will consider T of the order of 1 minute,
which has traditionally been the realm of high frequency trading (HFT) firms. In this
paper we will quantify to what extent algorithms operating on a longer time scale can
also gain from short term price prediction signals. The optimal stopping problem we
consider is affected by latency drastically. If a decision is made to sell one share at
the bid price at time τ , by the time the order reaches the market, that price may have
changed and will be executed at P bτ+L, the bid price at time τ + L. Our optimization
problem with latency is therefore

sup
t≤τ≤T−L

E[P bτ+L − P bt |Ft] (1)

where Ft is the information available in the order book at time t. The focus of this paper
is to investigate the potential cost saving by using low-latency trading infrastructure,
i.e., the change in transaction cost due to latency as L decreases.

The literature on optimal stopping theory is extensive, consider, for example, the

2

 Electronic copy available at: http://ssrn.com/abstract=2661618

monographs Shiryaev (1978) and Peskir and Shiryaev (2006) as a starting point into
this field of research. We assume that the information contained in the limit order book
can be reduced to a generic HFT signal It which predicts price jumps of the bid price.
The only assumptions for our dynamic programming approach is that It is a Markov
process and that the price dynamics are independent of the actual price level. In this
paper we will focus on the top of book imbalance, that is, It = Bt/(At + Bt) where At
and Bt are the volumes quoted at the best ask and bid prices, respectively. To solve
the above optimal stopping problem, we rely on techniques similar to finding optimal
exercise times of American options. We present a general formulation based on a time-
and space-discretization and dynamic programming, (see, for example, Chapter 8 in
Glasserman (2004)). We then backtest these optimal liquidation strategies on Level I
quotes for 5-years U.S. treasury bonds. To the best of our knowledge this is the first
paper to backtest optimal liquidation strategies on Level I data.

The structure of the paper is as follows. In Section 2, we motivate and formulate the
optimal liquidation problem. In Section 3, we approximate the optimal trade regions by
a dynamic programming approach. In Section 4, we apply our analysis to U.S. Treasuries
data and find that our algorithm significantly beats a TWAP benchmark policy. This
allows us to quantify the cost savings obtained by reducing latency in algorithmic trading.
Section 5 concludes and discusses future research directions.

2 The Optimal Stopping Problem

At the millisecond time scale1, algorithms process order book updates in order to decide
when to submit orders. These updates contain market orders, limit orders and changes
to existing limit orders. HFT firms observe any update in the limit order book to produce
trading signals. In this paper we will focus on one of the most widely documented trading
signal in the order book, the Level-I imbalance:

It =
Bt

At +Bt

where At is the volume offered at the best ask price and Bt is the volume available at
the best bid price at time t. We assume that At > 0 and Bt > 0 for all t ≥ 0. This factor
has significant predictive power for short term price moves, particularly in liquid assets
where the bid ask spread is usually not wider than one tick (see Avellaneda et al. (2011)
for an application to US Equity Level-I data). When the imbalance is close to zero, the
next price move is more likely to be a down move and when the imbalance is close to
one, the next price move is more likely to be an up move. This trading signal is hardly
a secret in the 5 year US treasuries market (as well as in many other markets). Most
sell trades are submitted to the market when the imbalance is low and most buy trades

1As technology evolves, time horizons and latencies have become shorter and shorter. In some mar-
kets, the timescale of interest has gone down to microseconds or even nanoseconds. Our data is rounded
to the nearest millisecond, but the same analysis and techniques can be easily applied to even more
granular time scales.

3

Figure 1: Histograms of imbalances It, the millisecond before a (sell or buy) trade arrives
at the exchange.

are submitted when the imbalance is high (see figure 1). Note that there is no trading
allowed at the mid price in this market. We find that when the imbalance is close to
0.5, there is very little volume traded. We expect this factor to remain an important
predictor of price moves, as it represents the instantaneous imbalance of supply and
demand in the market microstructure.

From the information contained in the filtration Ft we will only use the current best
bid price P bt and the imbalance It to solve the optimal stopping problem (1). We assume
the following properties for the two-dimensional stochastic process (P bt , It):

1. (P bt , It) is a Markov process;

2. Periodicity in the price dynamics, i.e., (P bt+δ − P bt , It) is independent of P bt , for all
δ ≥ 0.

Problem (1) is then equivalent to

sup
t≤τ≤T−L

E[P bτ+L − P bt |It]. (2)

The payoff function at time t = T − L is

gL(x) = E[P bT − P bT−L|IT−L = x] = E[P bL − P b0 |I0 = x] (3)

where we used the Markov property of the imbalance process.
The function gL(x) captures the expected payoff associated with delaying a trade by

L milliseconds, given imbalance x (see Figure 2). Note that for a latency of 1 millisecond,
the payoff is practically zero for all imbalances, since the price after one millisecond is not
likely to change. As the latency L increases, the payoff function becomes steeper. When
the imbalance is relatively low, it is advantageous to sell rather than wait; when the

4

Figure 2: The function gL(x) expressed in fractions of the bid-ask spread. The latency
L is in milliseconds.

imbalance is relatively high, it’s worth to wait for better trading opportunities. Beyond
a latency of 5 seconds, the payoff g(x) is not noticeably different. At every point in time,
we will compare the immediate exercise payoff to the value function

v(t, x) = sup
t≤τ≤T−L

E[P bτ+L − P bt |It = x] (4)

conditional on the trading signal It, where P bt is the arrival price, a standard benchmark
in the optimal execution literature. We do not allow for anticipating liquidation rules,
hence the liquidation time τ needs to be a stopping time adapted to the filtration gen-
erated by It. We denote the set of all such stopping times as T and the supremum is
taken over all stopping times τ ∈ T .

The theory of optimal stopping for Markov processes (see, for example, Chapter 1.2.2
in Peskir and Shiryaev (2006)) shows that it is optimal to liquidate at a time t ∈ [0, T] if
V (It, t) = gL(It) and to wait for a better opportunity if v(t, It) > gL(It). This motivates
the definition of the “trade” and “no-trade” region

D =
{

(x, t) ∈ [0, 1]× [0, T] : v(t, x) = gL(x)
}
,

C =
{

(x, t) ∈ [0, 1]× [0, T] : v(t, x) > gL(x)
}
.

Define
τD = inf {t ≥ 0 : (It, t) ∈ D}

as the first entry time into the set D. For the discrete-time and discrete-space case the
time τD corresponds to the optimal liquidation time. This, however, is not true for the
more general continuous-time and continuous-space case which would require additional

5

Figure 3: Each graph represents the probability of transitioning from state i to state j
in 1 second. Note the peaks represent the probability of remaining in the current state

assumptions on the payoff function g and the process It. We will focus on the discrete-
time and discrete-space case in this paper, but refer the interested reader to Peskir and
Shiryaev (2006) for an in-depth discussion of optimal stopping problems in continuous
time and space.

An intuitive consequence of this formulation is the following proposition:

Proposition 2.1 Fix t ∈ [0, T], x ∈ R, then vL(t, x) is non-increasing in L, for L ∈
[0, T − t].

This proposition shows that trading with larger latency can never be better than trading
with smaller latency (“low latency trading is better”). The proposition holds trivially,
as one can always add “artificial” latency to a trading strategy, and therefore any strat-
egy with longer latency is automatically contained in the set of strategies with shorter
latencies.

3 Discrete Model

We solve the stopping problem stated in (2) using a discrete time, discrete space ap-
proximation where we assume that the imbalance process It takes values in the discrete
set {1, 2, . . . ,M} for some M ∈ N (this can be achieved by computing quantiles of the
imbalance It). Without loss of generality, we assume that bid prices assume values in Z,
which means that our value functions are expressed in fractions of the tick size. Under
this assumption prices could be negative, but as we are interested in relative price moves
this is not a critical extension of reality where prices cannot be negative.

Therefore we consider a Markov chain process (P b(n), I(n)) with countable state
space Z × M . Due to the periodicity assumption of the price process the transition
matrix from one state to the next only depends on the imbalance process I(n).

6

We solve the discrete-time, discrete-space approximation to the optimal stopping
problem

V L(0, i) = sup
0≤τ≤T−L

E[P b(τ + L)− P b(0)|I(0) = i] (5)

using the Bellman equation

V L(n, i) = max
{
GL(i),E[V L(n+ 1, I(n+ 1))|I(n) = i]

}
. (6)

The immediate payoff function GL(i) can be estimated for various latencies as

GL(i) = E[P bL − P b0 |I0 = i]. (7)

To calculate the conditional expectation E[V L(n + 1, I(n + 1))|I(n) = i] in (6) we
use the periodicity assumption of the Markov process (P b(n), I(n)), which implies that
on a price jump from the bid price P b(n) of size d the value function V jumps exactly
by d price levels up, resp., down. This is the key observation that allows us to reduce
the state space to M states and makes the problem tractable. Let’s denote with pdij the

transition matrix of the imbalance process, conditional on the bid price P b jumping up
d price levels, where d ∈ Z. Then, based on the periodicity assumption of the Markov
process, the conditional expectation can be written as:

E[V L(n+ 1, I(n+ 1))|I(n) = i] =
∑
d∈Z

M∑
j=1

pdij(V
L(n+ 1, j) + d).

We use the notation pij for the transition matrix of the imbalance process I(n), then

E[V L(n+ 1, I(n+ 1))|I(n) = i] =
∑
d∈Z

M∑
j=1

pdijV
L(n+ 1, j) +

∑
d∈Z

M∑
j=1

dpdij

=
M∑
j=1

pijV
L(n+ 1, j) +Gδ(i)

where
Gδ(i) = E

[
P b(n+ 1)− P b(n)|I(n) = i

]
. (8)

Let’s further denote with pi· the ith row of the transition matrix P and V L(n+ 1, ·)
the value function at time n+ 1, then the Bellman equation can be rewritten as

V L(n, i) = max
{
GL(i), pi·V

L(n+ 1, ·) +Gδ(i)
}
. (9)

In order to solve the dynamic program (6) we only need the transition matrix P of
the imbalance process I(n) plus an estimate of the payoff function G for the different

7

time lags δ and L. The time step δ can be chosen to match the latency L in which case
the formulation further simplifies to

V L(n, i) = GL(i) +
(
pi·V

L(n+ 1, ·)
)
+
,

where we use the standard notation (a)+ = max(a, 0).
Also, the zero latency case can be considered (in which case G0(i) ≡ 0):

V 0(n, i) =
(
pi·V

0(n+ 1, ·) +Gδ(i)
)
+
.

In the next section we will investigate empirically the shape of different trade and no
trade regions and analyze the correlation between the theoretical value function V and
the actual cost saved V̂ based on backtesting the liquidation strategy on out-of-sample
data.

4 Empirical Case Study: U.S. Treasury Data

We now backtest the optimal trade and no-trade regions, using 5-years on-the-run U.S.
treasury bonds data. The dataset consists of Level-I data (quotes and trades) recorded
from 10:30am to 3pm every day for the first 10 trading days of July 2010 on the eS-
peedTM trading platform. The granularity of the data is up to millisecond precision.2

For this particular asset, the bid-ask spread is almost always one tick (i.e. 1/128th of
a dollar). Hence the dataset is well-suited for our model, which implicitly assumes that
the bid-ask spread is never larger than 1 tick.3 Assets with a one-tick spread are very
common in modern electronic markets. It has been shown in Cont et al. (2010) that size
imbalances at the best bid and ask prices can lead to short term price prediction, under
the assumptions of a simple so-called zero intelligence model. Moreover, Avellaneda
et al. (2011) show that imbalance in quote sizes is a strong predictor of short term price
moves for equities with one cent bid-ask spreads. We therefore expect our method to
easily extend to other assets with a one-tick spread.

In Subsection 4.1, we describe the procedure for computing the value function and
trade region. In Subsection 4.2 we present a method for backtesting our market order
strategies, using a TWAP algorithm as a benchmark. In Subsection 4.3 we discuss the
expected transaction cost savings using an imbalance based algorithm and investigate
the sensitivity of these savings to the latency assumption of the algorithm.

2The authors are very grateful to Jacob Loveless at Cantor Fitzgerald, L.P. for providing this dataset.
3In practice, of course, spreads can be larger than 1 tick size, but often these occurrences last only

for a very short time period. In our testing we filter out the time periods when the spread is larger than
1 tick.

8

Figure 4: The trade regions D are in red and the no-trade regions C are in blue

4.1 Computing the trade region and value function

In order to backtest the optimal liquidation strategies we explicitly construct the finite
state Markov process I(n) and estimate its transition probabilities. Without loss of
generality, we assume that there are 10 states (M = 10), and compute the 10 deciles of
the variable:

It = Bt/(At +Bt),

where At is the best ask size and Bt is the best bid size. We tested different steps δ
and found that δ = 100 milliseconds performs reasonably well. For the remainder of the
paper we will fix δ = 100.

The estimation of the value functions V L(n, i) consist of the following steps:

1. Compute the empirical transition probabilities pij for i, j ∈ [1, 2, 3, . . . , 10]. For
each time stamp (sampled uniformly), record the imbalance decile now I(n) and δ
milliseconds later I(n+ 1).

2. Compute the payoff function GL(i) by averaging (P bt+L−P bt)/s for all occurrences
where It = i (see equation 7).

3. Compute the payoff function Gδ(i) by averaging (P b(n + 1) − P b(n))/s for all
occurrences where I(n) = i (see equation 8), where s is the tick size.

4. Compute the value function V L(n, i) using Bellman’s equation (9).

5. Compute the trade region D = {(n, i) : V L(n, i) = GL(i)}

We avoid biases (for days that have strong directional trends) by estimating the
functions Gd, GL and pij in a way that keeps them symmetric. More specifically, we
consider up and down (sell resp. buy trades) as symmetric events.

9

4.2 Backtesting a market order strategy

In the previous section we computed the discretized value function V L and the corre-
sponding trade region DL. The value function represents the percentage of the bid-ask
spread that our algorithm saves over a naive algorithm that submits market orders with-
out looking at the imbalance.

Backtesting the performance of a trade region D on high frequency data poses two
major challenges, namely that real orders have price impact and latency. When we send
an order to the market, it impacts the price of the stock permanently, a fact that cannot
be captured by historical data. Secondly, there is a latency between the time stamp of
the market data and the time at which an algorithm based on this data would actually
execute.

We address the price impact issue by constraining all algorithms to trade exactly
one lot at a fixed frequency, e.g., T equals 1 minute. For a given trading frequency, we
will assume that all algorithms have a comparable permanent price impact. The Time
Weighted Average Price (TWAP) algorithms, which trades at a deterministic frequency,
irrespective of the imbalance, will serve as a natural benchmark . We define TWAP(T)
to be the average bid price obtained by the TWAP algorithm with trade frequency T .
IMB(T) will refer to the average bid price obtained by the imbalance-based algorithm,
which is also constrained to trade once time interval of length T . Each time interval
contains a random amount of quotes, and a backtest consists in monitoring the process
It for t in [0, T] and submitting a simulated market sell order at time τ , when the process
It is in the trade region DL .

We address the latency issue by introducing a fixed delay of L milliseconds in our
backtests. Any market order submitted at time τ will actually be executed at the best
available price at time τ + L, which might be different from the best available price at
time τ . Hence the realized price of this trade is P bτ+L. Although this latency has no
substantial effect on the benchmark TWAP algorithm, it worsens the performance of
the imbalance-based algorithm significantly.

For each day in our sample, the value of an imbalance-based algorithm trading with
latency L at a frequency T is estimated as follows:

V̂ (T, L) = IMB(T, L)− TWAP (T) =
1

nT

nT∑
i=1

P b(τi + L)− P b(Ti)
s

, (10)

where the day is split into nT intervals of length T = Ti+1 − Ti, τi is the first time the
imbalance enters the trade region D, Ti ≤ τi ≤ Ti+1 − L. In the next section we will
compare V̂ versus V on an out-of-sample data set.

4.3 The impact of latency on the transaction cost

In order to validate our model, we compare the value functions computed in Section 4.1
to the actual realized savings as backtested, using Equation (10). For the kth day in our

10

Figure 5: Comparing V to the backtest V̂ out of sample

dataset, we compute the value function

Vk(T, L) =
1

M

M∑
i=1

V L(0, i;T)

at a given latency L and horizon T , and the trade region Dk. We then use the trade
regions Dk to backtest the empirical performances V̂k+1. We compare Vk and V̂k+1 for
various latencies and various days in Figure 3.

The decision to invest in low-latency technology is a challenging one. The costs of
trading fast are relatively transparent as most exchanges will provide collocation services
for a fee. However, the benefits of trading fast are challenging to estimate, as they may
depend on the type of proprietary signals an algorithm is using. Our model focusses
on one particular factor, the imbalance, which provides an opportunity to delay trades
and save money relative to algorithms that trade deterministically in time. The amount
that an imbalance-based algorithm saves depends on the trading frequency T and the
latency L. Table 1 provides an overview how the latency L and trading frequency T
affect the cost savings from a low-latency trading algorithm for our dataset. The cost
savings are increasing in T , which makes intuitive sense as an algorithm that trades less
frequently has more time to delay a trade and wait for a better trading opportunity. The
cost savings decrease with increasing latency L, as it is less likely to take advantage of a
short lived trading signals when the time for the order to reach the exchange increases
(also see Proposition 2.1). Note that the values are expressed in fractions of the tick
size. For example, an algorithm that trades once a minute (T = 1min), with a latency
of one second (L = 1000ms), may be expected to save 0.17 ∗ 270 ∗ $78 = $3, 580.20 per
day, since there are 270 minutes in a trading day and the notional value of the tick size
is $78 (as is the case for 5-years US treasury bonds). Notice that reducing the latency

11

T L = 1ms L = 100ms L = 1000ms L = 5000ms

10s 0.20 0.17 0.11 0.05
1min 0.32 0.26 0.17 0.07
5min 0.33 0.35 0.18 0.07

Table 1: The performance of the optimal imbalance-based algorithm over TWAP for
various values of T and L. The values are expressed as percentages of the minimum bid
ask spread.

to one millisecond can be expected to save 0.32 ∗ 270 ∗ $78 = $6, 739.20 per day.
The imbalance-based execution algorithm saves on average about 1/3 of the spread

as compared to a naive TWAP strategy if the trading latency is low (around 1ms) and
the trading frequency is not too high (1 trade per minute). A trading firm that trades
at this kind of frequency may find that the savings in execution costs may be worth the
cost of the technology or collocation fees.

5 Conclusions and Future Research

We study an asset liquidation problem over a very short time frame which uses the
dynamics of the limit order book to identify good liquidation times. The problem is
similar to optimally exercising an American option, in that the state space is divided
into a trade and no-trade region, separated by a free boundary. We describe a dynamic
programming method for approximating the optimal trade region. The trade and no-
trade regions allow us to directly backtest our liquidation strategy on empirical data and
we demonstrate that one can save a significant fraction of the bid-ask spread compared
to a naive TWAP algorithm.

There are a few directions that we would like to explore in our future research:

- Extending to various classes of stochastic processes that could lead to efficient
methods of computing the value function and the free boundary. Obtaining closed
form solutions for processes that are easy to calibrate to data could be a promising
avenue to explore;

- Including the possibility of trading with limit orders, this will definitely improve the
performance of the algorithm, however, efficient backtesting remains challenging;

- Testing this type of liquidation approach on other assets. It would be particular
interesting to extend similar trading algorithms to assets where the usual bid-ask
spread is greater than one tick, in which case not only the timing of the market
and limit order, but also the chosen price level will be of importance;

- Extending the analysis to trading signals beyond the imbalance process, something
that’s done by many algorithmic trading firms, but the available literature is very
scarce;

12

- Adjusting the liquidation policy to risk-aversion. This would allow us to embed a
problem like ours within a longer term execution algorithm such as the Almgren
and Chriss (2001) model.

13

References

A. Alfonsi, A. Fruth and A. Schied (2010): Optimal execution strategies in limit
order books with general shape functions. Quantitative Finance 10:143–157.

R. Almgren and N. Chriss (2001): Optimal execution of portfolio transactions. Jour-
nal of Risk 3:5–40.

M. Avellaneda, J. Reed and S. Stoikov (2011): Forecasting Prices from Level-I
Quotes in the Presence of Hidden Liquidity. Algorithmic Finance 1.

D. Bertsimas and A. Lo (1998): Optimal control of execution costs. Journal of
Financial Markets 1:1–50.

R. Cont, S. Stoikov and R. Talreja (2010): A stochastic model for order book
dynamics. Operations Research 58:549–563.

J. Gatheral and A. Schied (2012): Dynamical models of market impact and algo-
rithms for order execution. Available at SSRN: http://ssrn.com/abstract=2034178
.

P. Glasserman (2004): Monte Carlo Methods in Financial Engineering , volume 53.
Springer.

A. Kirilenko and G. Lamacie (2015): Latency and asset prices. Available at SSRN:
http://ssrn.com/abstract=2546567 .

C. C. Moallemi and M. Saglam (2013): The cost of latency in high frequency trading.
Available at SSRN: http://ssrn.com/abstract=1571935 .

A. Obizhaeva and J. Wang (2005): Optimal trading strategy and supply/demand
dynamics. Technical report, Techreport MIT.

G. Peskir and A. N. Shiryaev (2006): Optimal Stopping and Free-Boundary Prob-
lems, volume 10. Birkhauser.

A. Schied, T. Schöneborn and M. Tehranchi (2010): Optimal basket liquidation
for CARA investors is deterministic. Applied Mathematical Finance 17:471–489.

A. N. Shiryaev (1978): Optimal Stopping Rules. Springer.

14

