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Abstract

We propose extensions to the continuous-time random walk (CTRW)
framework so far mainly developed within the econophysics community.
Using numerical methods, we extend the CTRW framework with more
general marginal distributions than previously proposed. There are two
main findings in this respect: First, modeling the returns with a Student-
t distribution gives at least as good price distribution predictions as the
other previously proposed distributions in this framework. Second, a
mixed-Weibull waiting time distribution fits exceptionally well to our
three-week long Nasdag OMX data. When combined with standard fi-
nancial econometric GARCH and ACD models and intraday seasonality
filtering procedures new to the CTRW framework, our models deliver re-
alistic intraday Value-at-Risk and Expected Shortfall predictions. Com-
pared to the basic CTRW model, the total average performance improve-
ment is typically around 70 percent. The effect of filtering out memory
in waiting times is particularly noticeable: around 50 percent of the total
performance improvement. Overall, our extensions and filtering methods
make the CTRW framework a useful tool for intraday risk management
(trading), especially at high frequencies of less than a minute or so.

Introduction

Modeling intraday dynamics of financial prices, and stock market prices in par-
ticular, is known to be extremely challenging. Their random character at daily
(or larger) time-scales is further complicated by market microstructure related
issues at the very shortest intraday time-scales. The consensus is that predic-
tion of future price movements is nearly impossible — markets are thought to be
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efficient in this sense. Thus, the best one might hope for is to predict the most
likely price movements. Technically, one would like to predict the price distribu-
tion for arbitrary time-scales. That would be of interest not only from a trading
perspective but, perhaps more importantly, also from a risk management per-
spective. To estimate the future price distribution with reasonable statistical
precision one needs to assume that certain statistical characteristics are stable
over time. If we are able to make realistic assumptions and can still solve the
intraday price distribution model somehow, then various risk measures, such
as Value-at-Risk (VaR) and Expected Shortfall (ES), would ideally be easily
calculatable for any chosen intraday time-scale to control risk in real time.

Numerous smaller, but closely connected, challenges appear when trying to
forecast intraday price distributions. A special characteristic of high frequency
data is that trades and quotes are irregularly spaced in time: information arrives
in bursts and market players react to new information with different speeds. For
example, after a significant news, there is commonly a period of higher price
turbulence where market players with different risk appetites battle against
each other to finally agree on a new fair price level. Thus, periods of short
waiting times can be expected to be correlated with information arrival [see,
e.g., Easley and O’Hara (1992)]. It is then also quite natural to expect that
return volatility would be clustered at intraday time-scales [see, e.g., Engle and
Russell (1998)], implying that both waiting times between trades (or quotes) and
volatility would display some sort of memory structure. To complicate matters,
the turbulent time periods near market openings and closings are typically found
to be distinctively different from the other more tranquil intraday time periods.
These challenges, and more, await the modeler of intraday price distributions.

In this paper, we study the predictability of future intraday price distri-
butions using the so-called continuous-time random walk (CTRW) framework,
which explicitly allows for a simultaneous modeling of returns and waiting times.
The CTRW framework was initially proposed by Montroll and Weiss (1965), and
later introduced in the econophysics literature by Scalas, Gorenflo, and Mainardi
(2000). A critical assumption of the CTRW framework is that both returns and
waiting times are independent and identically distributed (i.i.d.) random vari-
ables. This assumption is well known to be unrealistic: for example, the idea
behind all GARCH models in financial econometrics is to model return volatil-
ity as a time-dependent process [see, e.g., Bollerslev (1987)]. Analogously, ACD
models assume that waiting times are time-dependent [see Engle and Russell
(1998)]. Because the CTRW framework does not account for time-dependency,
but does account for asynchronous waiting times, it allows us to study the effect
of memory with regards to price distribution prediction.

The strength of the CTRW framework is that it allows for several quantities
to be explicitly calculated. For example, price volatility can be shown to depend
only on the waiting time distribution and the second moment of the return
distribution [see Masoliver, Montero, and Weiss (2003)]. Another important
factor is that the CTRW framework easily provides intraday price distribution
estimates for any time-scale in wall-clock time, while taking advantage of all the
available high-frequency trade time data.



To make the CTRW framework more realistic, we propose new extensions
using a numerical approach. More explicitly, in this paper, we extend the ba-
sic CTRW framework by first assuming that the return distribution is better
described by a Student-t distribution from the family of generalized hyperbolic
distributions. The previous CTRW literature has focused on much simpler dis-
tributions, such as normal or double-exponential distributions. Second, we allow
more flexibility in the waiting times by using a novel mixed-Weibull distribution.
We then incorporate the well known "inverse-U" intraday seasonality in waiting
times. Finally, we document the effect of data filtration with GARCH and ACD
models. Thus, we effectively study the significance of non-Markovian waiting
times and returns. Our empirical VaR and ES results show that the extensions
we propose are indeed valuable and provide direction for further research.

This paper is constructed as follows. In Section 1, we describe the model
and the marginal distributions we propose to use. In Section 2, we describe
the data used in the empirical analysis. Section 3 collects the basic empirical
results. In Section 4, we study the effect of intraday seasonality and temporal
dependence filtering on VaR and ES risk measures. Section 5 concludes. We
include technical material related to the numerical method in the appendix.

1 Model

1.1 General features

We first shortly describe the CTRW framework. For a more detailed introduc-
tion using a slightly different notation, see Masoliver et al. (2006).

We define the (logarithmic) price process as X (t) = log P(t), where P(t)
is the last traded price of a financial instrument which, in our case, is the
stock price.! The times at which trades occur is a random variable, T;. To
simplify notation, the corresponding trade price, X (73), is set to X;. From these
variables we calculate the (logarithmic) returns, AX; = X; — X;_1, and waiting
times, AT; = T; — T;_1. In the standard CTRW model, returns and waiting
times are assumed to be uncorrelated over time and with each other. Then
the price distribution is defined by the marginal distributions of returns and
waiting times.? Since it is assumed that X (0) = 0, we predict the future price
distribution at the moment a trade takes place. Thus, the idea is to sample the
cumulative return series in "trade time" — that is, using a clock that does not
progress homogenously in "wall-clock" time.? Trade time, and related concepts,

1We subtract the price at t = 0 so that X (0) = 0. We could also use other definitions of
returns, based on for example the mid-quote, or use altogether other sampling clocks, such
as "lost time" [see Vuorenmaa (2012)]. We could also condition on other factors, such as
the minimum cumulative volume. These additional factors could affect the predicted price
distribution. In the current context, however, we find our definition to be natural.

21f the waiting times are not exponentially distributed, the CTRW model is not Markovian.
Then the remaining waiting time depends on how much time has passed since the previous
jump or, in more technical terms, the hazard function of waiting times is non-constant.

31n detail, we calculate the cumulative returns as follows: (1) Let (X;,T;) be the price and
time pair for trade i. We start at ¢ = 1 and find the largest index j satisfying T} < T;+t (where



can be argued to be more natural for automated trading, such as high-frequency
trading (HFT) [see, e.g., Easley, Lépez de Prado, and O’Hara (2012)].* The
predicted price distribution, on the other hand, is estimated in the humanly
more natural wall-clock time. We next describe the relationship between the
predicted price distribution and marginal distributions in more detail.

The two main ingredients of the CTRW framework, namely the return and
waiting time distributions, are defined by the joint probability density function,
h(z,t),

h(z,t)dzdt =Pz < AX; <z +dx; t < AT; <t +dt],

where the index ¢ serves to remind that returns and waiting times could, in prin-
ciple, be correlated. As we discuss later, though, here we assume independence
on empirical grounds.® From the above joint probability distribution, the return
and waiting time marginal densities, f(z) and g(t), respectively, are simple to
derive as

fl@) = /Ooh(x,t)dt:IE”[a:<AX<x+dx],
0
g(t) = /Ooh(x7t)dx:IP[t<AT<t+dt].

The crux of the CTRW framework is the time-dependent price distribution
prediction, p(x,t), defined as

p(z,t)de = Plz < X(t) < z + dx; p(x,0) = d(x)],

where §(z) is the Dirac delta function satisfying d(x) = 0 for z # 0 and
[ 0(z)r(z)dz = r(0) for any integrable function r(z). The knowledge of
p(z,t) allows to pin down the probability of the price to be in a certain range in
the future. While this distribution describes the (macroscopic) price behavior,
it is connected to the return and waiting time distributions through

p(x,t) = 0(x)S(t) + /0 /jo h(x — 2’ t —tp(a', t")dz'dt’, (1)

where the survival function, S(t) = [~ g(t')dt’, gives the probability for the
price not changing for a priori known time t.° Notice that, by construction,

t is the time-scale). (2) Record X; — X; as the resulting cumulative return. (3) Increase i by
one step and go back to step 1. (4) End when T; +t > T, where N is the last observation.

4Naturally, we could as well apply a more refined clock in sampling, for example the
"lost time" clock suggested in Vuorenmaa (2012). This would have the additional benefit of
automatically producing non-zero return series and deleting the first-lag autocorrelation in
returns that may affect the returns filtration. Our preliminary work suggests that the results
are largely unchanged compared to the more commonly applied trade time clock.

5The case of non-independent return and waiting time distributions is currently under
study by the authors.

6The first term accounts for the possibility that the price has not yet moved, while the
second term accounts for the possibility that the price is at location 2’ just before time ¢ and
then jumps to x at t.



p(0,1) is affected by the Dirac delta function, whose contribution we disregard
in the figures in the empirical section for simplicity.”

To make Eq. (1) useful, we solve it for p. Taking the Fourier and Laplace
transforms with respect to  and ¢ yields the general solution,

1

p(k,s) = S(S)m (2)
_ 1-—g(s) 1
N s 1—nh(k,s)’

where k and s correspond to z and ¢ in the frequency domain [see Masoliver et al.
(2006)].% Further, assuming that the returns and waiting times are uncorrelated
with each other gives the simple factorization, h(k, s) = f(k)g(s), thus providing
a link between the price and marginal distributions. To find p(k, s) in the time
domain, where we need it in practice, we calculate the Fourier-Laplace inverse
of Eq. (2). In this paper, we study realistic choices of marginal distributions,
for which p(k,s) cannot be analytically inverted. Thus, we need to resort to
numerical methods discussed in Appendix A.2.

1.2 Marginal distributions

Two marginal distributions are relevant in the CTRW framework: the return
distribution, with density f, and the waiting time distribution, with density
g. We next describe the choices we make for both of these distributions, and
expand the universe of distributions previously studied in the CTRW framework
using numerical methods.

1.2.1 Returns

In the finance literature, the shape of a proper return distribution has been
tested at least since the 1960s when the normal distribution was first docu-
mented to produce unrealistically low tail probabilities [see, e.g., Mandelbrot
(1963)]. Consequently, the so-called alpha-stable distributions were proposed as
stock return models. These distributions do not (except in the normal distribu-
tion case) have a well-defined second moment and are thus theoretically difficult
to maneuver, nor have they performed that well in empirical tests. Similarly,
the main reason for the shortage of good return distribution candidates in the
CTRW framework seems to be that the price distribution is not analytically
tractable with most realistic return distributions. There are two benchmark
return distributions that do allow for an analytic solution: normal distribution,

"Since we exclude zero returns in our empirical analysis, the survival function of the waiting
time distribution gives the probability a price has not changed up to a specific time point .
Thus, for small enough time-scales, the CTRW model predicts a peak in the price distribution
at x = 0. In reality, prices can either stay unchanged for an arbitrary time or revert back to
its start level within that same time-scale due to price discreteness.

8We use k and s in the frequency domain, and z and ¢ in the time domain.



with density f,(z) = e=*"/2" /g\/27, and double-exponential distribution, with
density fao(z) = e~ 171/7 /2.

In the CTRW literature, Masoliver et al. (2006) report a general result
showing that at intermediate times, t ~ E[AT], the tail of p(z,t) is given by

(@)~ gy @)

which motivates the use of heavier tail distributions than exponentially decaying
tails. Masoliver, Montero and Weiss (2003) and Masoliver et al. (2006) suggest
to use a heavier tail return distribution of the form’

-1

3)

However, as we find this distribution to converge to the double-exponential
distribution when 8 — oo, and the double-exponential fits reasonably well to
our data, this power law distribution provides little extra value to us.

Outside the CTRW literature, a good candidate for returns (with heavier
than normal tails) is provided by the generalized hyperbolic (GH) distribution
family [see Barndorff-Nielsen (1977)]. The GH distributions have become quite
popular in the financial econometrics literature during the last ten years or so
due to their good performance over many fixed (even intraday) time-scales [see,
e.g., Raible (2000)]. In its general form, the density of a symmetric GH return
distribution is defined by [see, e.g., Eberlein and von Hammerstein (2002)]

A

fgh(x): a (524-132)%]()\_1 (()&\/524—1:2)7

2ra* 260 K\ (0ar) 2

where K, is the modified Bessel function of the second kind. In this paper,
rather than applying the whole GH family, we concentrate on a special case: the
(non-standard) zero-mean Student-t distribution with v degrees of freedom,'’

v+1

fst<z>—ﬁ031w <1+Vf2)_ i @

The Student-t distribution is easier to estimate than the GH distribution family,
and it has been successfully used in the context of many different financial time
series and econometric models, for example GARCH |[see, e.g., Bollerslev (1987)].

1.2.2 Waiting times

The modeling of waiting times — or durations, as they are often called in financial
econometrics — is a much newer topic than the modeling of returns. This is

9In contrast to Masoliver, Montero and Weiss (2003), we scale v with 3.
108tudent-t distribution is recovered from the GH distribution when A = —v/2, § = /v,
and the other parameters are zero.



mainly because accurate intraday data started to be available only in the 1990s.
Engle and Russell (1998) were among the first to model the intertemporally
correlated event arrival times. For example, the waiting times between trades
are not homogenously spaced in time, but vary in random fashion. Interestingly,
there is a special memory structure in that randomness: short waiting times tend
to be followed by short waiting times and long waiting times tend to be followed
by long waiting times. In other words, there is a tendency for waiting times to
cluster similarly as returns do. The problem is, as explained in Section 1, that
the standard CTRW framework assumes i.i.d. waiting times and thus does not
account for any such clustering effects in a natural way although it allows for
asynchronicity automatically.

In the CTRW literature, and more generally in the waiting time literature,
the benchmark distribution is the exponential distribution, g(t) = e=*/#/u. Be-
cause several empirical studies, both in financial econometrics and econophysics,
report a bad fit to real data, other more realistic waiting times candidates have
been proposed and studied in the 2000s. In the CTRW literature, the most well-
known candidates include the Mittag-Leffler function [see Scalas, Gorenflo, and
Mainardi (2000), and Mainardi et al. (2000)], certain power law distributions
[see Masoliver, Montero, and Weiss (2003) and Masoliver et al. (2006)], scaled
exponentials, and Weibull distributions [see Jiang, Chen, Zhou (2008)].

In this paper, we consider the Weibull distribution as our main candidate
for modeling waiting times. Its density and survival functions are known to be

a—1

gu(t) = ¢ <t> e~ (£)" and Sw(t) = e ()7, (5)

A\

The increased presence of trading algorithms dominate the very highest frequen-
cies in modern markets [see, e.g., Vuorenmaa (2013)]. We accommodate for this
by assuming two regimes of waiting times. The first, shorter than approximately
one second (= tg), is characterized by high-frequency and algorithmic trading,
while the second regime is characterized by significantly slower (electronic or
human) trading.!! Thus, we propose to use a mixture of Weibull distributions:

Gmw (t) = pGuwy (t) + (1 — ) gu, (1), (6)

where g,,, are separate Weibull distributions with independent parameters ap-
proximately fitting the regions AT < to and AT > ¢, respectively. Here p ~ 0.3
corresponds to the proportion of HFT related trades. To the best of our knowl-
edge, we are the first to propose this in the CTRW literature.

1.2.3 Estimation method

The estimation of distribution parameters is commonly done by maximum like-
lihood or the method of moments. In this paper, we estimate the waiting time

U High-frequency trading (HFT) and algorithmic trading should not be used interchange-
ably. As explained in Vuorenmaa (2013), both types of fast electronic trading are subsets of
automated trading, but they serve a different purpose: while HFT is mostly about market
making and statistical arbitrage, algorithmic trading attempts to minimize trading costs of
(mainly large institutional) buy and sell orders. Both types of trading affect waiting times.



and return distribution parameters in two steps. First, we require the mean
waiting time and return variance to match their theoretical counterparts. This
requirement is based on an analytic result that in the limit (¢ — oo, k — 0), if the
relevant moments exist, the CTRW price distribution converges to a Gaussian,
irrespectively of the marginal distributions [see, e.g., Masoliver et al. (2006)]:

2 2
g

That is, we estimate the marginal distributions so that the resulting Gaussian
price distribution matches the theoretical result, Eq. (7). Because the exponen-
tial, normal (with mean zero), and symmetric double-exponential distributions
have only one free parameter, they now become fixed.

For the other more complicated marginal distributions with more parame-
ters, we find an analytic relation for the parameters to enforce the moments.
More precisely, for the distribution of Eq. (3) and the Student-t of Eq. (4), we
use, respectively,

_ \/ E[AX?]T(B) . 2B [AX?]

(7)

25°(5-Dr(F-3) BAX[—o
For the Weibull of Eq. (5) and mixed-Weibull of Eq. (6), we use, respectively,
_ EIAT] E[AT] — M\pl'(1+1/ay)
T +1/a) (1—p)I(1+1/as)

When £ is large, the distribution of Eq. (3) converges to the double-exponential
distribution. As this is empirically validated by the authors (but unreported), in
the empirical section we only discuss the double-exponential results. Notice also
that as v — oo, the Student-t distribution converges to the normal distribution.

In the second step of estimation, for the distributions with remaining free
parameters, we use a non-linear least squares method to estimate the parameters
by matching the theoretical cumulative distribution function with the empirical
one. This method is better known as the method of minimum distance. More
specifically, we minimize 3, [F(2;) — F}, (;)]? with respect to all free parameters,

and Ay =

where F(z) and Fn(x) are the theoretical and empirical distribution functions.
For the mixed-Weibull distribution, we initialize the minimization algorithm on
parameter estimates of two Weibull distributions satisfying AT < 1 (in seconds)
and AT > 1, respectively. For the initial value of p, we use the fraction of
waiting times with AT < 1. For the other distributions, the initial parameter
values are inconsequential in our experience. In the empirical results, we only
report the standard errors for the variables estimated by this method.

The above estimation method requires an analytic form for the cumulative
distribution function, which poses a problem for the family of GH distributions
generally. For this reason, we resort to using only a special case of GH, the
Student-t distribution, and defer the more general solution to another paper.

12That the price distribution is approximately Gaussian at long enough time-scales is nu-
merically validated by the authors.



2 Data

We use three weeks of Nasdaq OMX trade price data from March 2013 for
the following six stocks (tickers in parentheses): Apple (AAPL), Boeing (BA),
Chevron (CVX), Google (GOOG), IBM (IBM), and 3M (MMM). These six
stocks are chosen based on their relatively large prices compared to the other
Dow Jones Industrial Average index stocks. The minimum tick size is one cent
for all of our sample stocks and the trades are time-stamped to the precision
of nanoseconds. We use GOOG as our primary example, for which the price
hovers around $800 with a typical bid-ask spread of about $0.25 (see Figure 1).
We use the following data filtering mechanism. We concentrate on trades
taking place within the continuous trading hours, that is, from 9:30am to 4:00pm
(EST). We decide to remove the first and last fifteen minutes of the continuous
trading session to account for these highly turbulent intraday periods. The
opening period is quite standardly removed, especially in the analysis of waiting
times [see, e.g., Engle and Russell (1998)], while the closing period is removed
here as a precaution to decrease the effect of intraday seasonality. We exclude
zero returns and merge trades taking place at the same nanosecond. Merging of
trades with the same time-stamp is standard practice in the analysis of waiting
times [see, e.g., Vuorenmaa (2009)]. Zero returns are excluded as they would
create problems for the continuous distributions in the CTRW framework, and
because they can be expected not to carry significant information of the stock.!?
The total number of removed and saved trades for GOOG are reported in Table
1. Almost half of the returns are excluded from our analysis as zero returns.
The data filtering mechanism is described in more detail in Appendix A.1.
The CTRW model, in its standard form (as described in Section 1), relies
on continuous distributions. In reality, however, stock prices live on a discrete
grid. We consider only stocks with a relatively small tick size. Table 2 shows
that most of the changes for GOOG are larger than eight ticks: 43, 39, and 47
percent for Weeks 10, 11, and 12, respectively. The minimum tick size does not
appear to be restrictive for GOOG. For the cheaper stocks, however, this is not
as clear. For example, MMM, with an average price of $105, has a significant
portion (66 percent) of price changes with one tick apart. Similarly, BA, an
even cheaper stock with an average price of $83, but with significantly higher
number of trades, may be restricted by the tick size as well. Finally, notice
that while GOOG has an average number of observations among the six stock
we analyze (around 5 000 trades per day), AAPL has around four times more,
making it a potentially lucrative target for HFT. Thus, for the robustness of
our CTRW price distribution predictions, AAPL is another noteworthy case.

13Here we depart from the analysis of Dionne et al. (2009), for example, who argue oth-
erwise. We agree with them in that the efficient market hypothesis implies that stock prices
change when new information arrives in the market. But when prices are stale, no new infor-
mation has entered the market and the previous stock price reflects the current information.



3 Empirical analysis

We use the following shorthand notation throughout the empirical section: nor-
mal (N), double-exponential (DE), Student-t (ST), exponential (E), Weibull
(W), and mixed-Weibull (MW). We first analyze our primary example, GOOG,
for Weeks 10, 11, and 12, separately. We then compare these results to the
other stocks for the full three-week period. Later, in Section 4, we measure the
CTRW models’ performance using the 99 percent VaR and ES statistics.

3.1 Return distribution

Descriptive statistics for the pre-filtered returns are reported in Table 3 (Panel
1). We observe that the standard deviation of returns for GOOG, Week 12, is
noticeably larger than for Weeks 10 or 11. Week 12 also experiences the largest
negative return between consecutive trades (0.13 percent). Otherwise, the three
weeks appear similar. The other five stocks we analyze do not differ significantly
in these respects from GOOG. The most volatile stocks are BA and MMM. All
six return series are unconditionally non-Gaussian (test statistics not reported).

The unconditional parameter estimates for GOOG Weeks 10, 11, and 12 are
reported separately in Table 4 (Panel 1). The parameter estimates differ quite
significantly between the three weeks, but stay within a reasonable range. The
most noteworthy result of this table is that the Student-t distribution converges
to the normal distribution for CVX for the full three-week long data (Panel 2).
As we discuss later in more detail, a more advanced data filtering procedure,
which accounts for intraday seasonality and temporal dependency in the second
moment, makes the data more Gaussian. After such filtering, we find that the
Student-t distribution converges to the normal distribution in four out of six
cases (Panel 3). The two cases for which no convergency is observed, GOOG
and AAPL, suggest that fat-tailed distributions are sometimes necessary.

We collect the root-mean-squared deviation (RMSD) statistics in Table 5.
Panel 1 confirms that for GOOG the normal distribution has the largest de-
viation from the empirical distribution. For the other stocks (Panel 2), the
Student-t distribution outperforms (or fits equally well) both the normal and
double-exponential distributions. For AAPL and GOOG, the normal distribu-
tion does the worst, while for BA, CVX, and MMM, the normal distribution
outperforms the double-exponential by a small margin. Excluding zero returns
should act in favor of the normal distribution. After more advanced filtering
procedures, the double-exponential distribution performs even worse (Panel 3).

Figure 2 illustrates the empirical return distributions for GOOG for three
separate weeks. It descriptively confirms the above results. The normal distri-
bution fits the body of the distribution quite well, but it consistently underesti-
mates in the tails. The Student-t and double-exponential distributions do much
better in the tails, the former slighly overestimating in the far end.

Naturally, parameter estimation is hindered by our relatively small sample
size. The fact that the Student-t distribution converges to the normal distribu-
tion in many cases supports this conjecture: without sufficient amount of data

10



in the tails, higher degree of flexibility is not well utilized. The parameter es-
timates depend on what methodology is applied. In principle, we could weight
different regions of the empirical distribution according to our risk preference
and more clearly separate different distribution fits from each other. It is not,
however, our goal in this paper to make definitive conclusions about the perfor-
mance of distributions behaving similarly in the tails. In the current context, it
is more important for us to study how the predicted price distribution is affected
by the choice of reasonable marginal distributions at different time-scales.

3.2 Waiting time distribution

Table 3 (Panel 2) collects the descriptive statistics for waiting times. A couple
of numbers deserve a special mention. For GOOG, we find the mean waiting
time for Week 12 (11sec) to be around twice as large as for Week 10 (6.1 sec).
This corresponds to the higher reported number of trades for Week 10 (see Table
1). For the most actively traded stock, AAPL, the mean waiting time over the
three-week period is only 2.4 sec, while for the least actively traded stock, MMM,
the mean waiting time is 24 sec. However, the minimum waiting time is similar
for all the six stocks, being the smallest for GOOG (0.92us) and largest for BA
(6.3us). Notice that zero waiting times do not exist because we have merged
together trades with the same time-stamp (as explained in Section 2). There
are significant waiting time gaps for all the six stocks. The largest waiting time
is for MMM (440sec), indicating that a fat-tailed distribution may sometimes
be necessary in modeling the waiting times. These results are as expected.
Table 4 also includes the different waiting time distribution parameter esti-
mates. For GOOG, these estimates can be observed to fluctuate quite signifi-
cantly between the three weeks we analyze. The estimates stay within reason-
able limits for all the six stocks, however. From the perspective of predicting the
price distribution at high frequencies, it is worthwhile to pay attention to the
mixed-Weibull model. As described above (in Section 1.2.2), the mixed-Weibull
distribution has two different time regimes: one for short times (less than ap-
prox. 1sec) and another for longer times. For GOOG and AAPL, we find the
estimated probability of a short waiting time, p, to be around 30 percent. For
the less actively traded stocks, this probability is much lower: for MMM (the
least actively traded stock), it is only around 15 percent. AAPL and GOOG also
have noticeably smaller scale parameter estimates for the first regime, Xl, and
AAPL also for the second regime, Ay. Finally, we find the estimates for the two
shape parameters, &; and s, to be rather stable and significantly smaller than
one (the theoretical value for the exponential distribution). The Weibull and
mixed-Weibull shape parameter estimates also imply that the hazard function
is not constant over time, again contradicting the exponential distribution.'*
The RMSD results in Table 5 confirm the above reasoning: for GOOG (Panel
1), the weekly statistics document clear evidence against the exponential distri-

14We do not explicitly consider the possibility of non-monotonic hazard functions here [see,
e.g., Vuorenmaa (2009)] although the mixed-Weibull distribution accommodates for it.

11



bution. Panel 2 confirms the results for the other five stocks. All these results
rank the Weibull distribution as the second best option with about halved de-
viation from the empirical distribution. Most interestingly, we consistently find
the smallest RMSD for the mixed-Weibull distribution. The RMSD is around
ten times, or sometimes even more, smaller than for the Weibull distribution.
This gives some concrete indication of how well the the idea of two regimes
works. It is worth noticing that, similarly as for returns, more advanced filter-
ing techniques increase the performance of the standardly applied exponential
distribution. However, this performance increase is not substantial when com-
pared to the performance of the Weibull and mixed-Weibull distributions.
Figure 3 illustrates the empirical waiting time distributions for GOOG. This
figure confirms descriptively that the exponential distribution tends to overes-
timate at the smallest times and underestimate at the largest times. The shape
of the Weibull distribution is better, but it tends to overestimate in the tails.
The mixed-Weibull distribution produces the best fit. The survival functions are
plotted in Figure 4, which show three different "knees’ at approximately 10~ sec,
103 sec, and 1sec. This also motivates the use of two different regimes in the
mixed-Weibull distribution. While the Weibull distribution is unable to fit these
knees, the mixed-Weibull is able to do so, except perhaps for the first knee where
we observe a small departure from the empirical survival function. Based on
these results, we subsequently focus on the Weibull and mixed-Weibull results.

3.3 Price distribution

As mathematically formulated in Section 1, the CTRW framework attempts to
make predictions for the price distribution utilizing both trade and wall-clock
time. We now compare the different CTRW model predictions to the observed
empirical price development using time-scales of reasonable widths. Since we are
mostly interested in the high-frequency domain, we focus on price distribution
predictions over a relatively small time-scale, which we here set to 10 sec.

We illustrate the difference between the CTRW model price distribution
prediction and the empirical price distribution with a short (10sec) and a long
(20 min) time-scale. In the figures, we show four different marginal distribution
combinations based on the results of the previous section. For comparison, we
include exponential waiting times with normally distributed returns as our fifth
model, although neither marginal distribution was found to be very realistic
above. As an example, Figure 5 shows the prediction for GOOG for the three
separate weeks with a time-scale of 10sec. As expected for such a small time-
scale, the exponential-normal model seriously underestimates the tails. On the
other hand, all four of our proposed models perform quite well, especially for
Weeks 10 and 12. The Weibull-Student-t model performs the best in the tail
regions, which is also expected since the Student-t distribution accommodates
for fatter tails than the double-exponential distribution. For Week 12, however,
we find a clear asymmetry. For that particular week, the right-hand tail happens
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to be much thinner than the left-hand tail.'®> For Week 11, the best fitting model
underestimates the negative tail density by a factor of ten or so. In the figures,
the yellow vertical lines correspond to the empirical 99 percent VaR on both the
negative and positive realm. The problem in the negative tail appears only in
the region exceeding that VaR value. The associated underestimation of risk can
be expected to be better captured by the 99 percent ES rather than the same
confidence level VaR since ES describes the tail risk more accurately. We use
both commonly applied risk metrics in the next section for diagnosing problems.
The price distribution prediction results with a larger time-scale of 20 min
for GOOG are illustrated in Figure 6. For all the three weeks separately, the
five models are tightly jammed together. This is an expected consequence of the
asymptotic result towards Gaussianity we discussed in Section 1. In practice,
this means that it does not matter what ingredients we put in the CTRW model,
the predicted price distribution is much the same once the time-scale is large
enough. In reality, though, we find more density mass near the zero returns
than expected by the CTRW framework. Another region where the models
fail is the tail. More precisely, for Week 10, the tails for GOOG are slightly
underestimated, while for Week 11 the difference is more significant. For Week
12, the right-hand tail is overestimated. The first percentiles (the vertical yellow
lines) indicates that most of the problems appear near or beyond this limit.
VaR and ES metrics are commonly applied in finance, but typically require
a relatively large number of observations. Thus, we do not expect the above
results to be reliable enough for decision making. In what follows, we extend
the CTRW framework in other dimensions than just fine-tuning the marginal
distributions. We then quantify the performance using the VaR and ES metrics
with the full three-week long data for all the six stocks. We believe this is a
practically meaningful way to quantify how good the CTRW models really are.

4 Other extensions

We next study whether the detected points of failure of the CTRW framework,
particularly the sometimes poor fit in the tails of the price distribution, could
be accounted for. We posit two hypotheses of the likely cause, neither of which
have been considered before in this framework to the best of our knowledge. We
first consider the effect of intraday seasonality and derive a prediction formula
for it. We then study the effect of temporal dependence in waiting times and
returns by filtering them out by using standard financial econometrics methods.

15 At larger time-scales (one day or larger), this phenomena is commonly known as the
"leverage effect" and says that negative returns tend to be of larger magnitude than positive
returns. We have not attempted to incorporate this feature into the CTRW framework,
because it may be of less importance at high frequencies on which we concentrate.
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4.1 Deseasonalization

Average waiting times in stock markets typically vary significantly over a trad-
ing day in a predictable manner: short waiting times are expected near the
opening and closing of the day while long waiting times are expected outside
these turbulent time periods [see, e.g., Vuorenmaa (2009)]. Thus, the expected
value of waiting times, E [AT], has an "inverse-U" intraday pattern, while for
volatility it is the other way around.

In the CTRW framework, the diurnal variation can be taken into account
by conditioning the relevant functions on time of the day, 7 :

flz,7), g, 7), h(z,t,7), and p(x,t, 7).

Usually, in the econometric literature, the diurnal pattern is estimated using
cubic or piecewise linear splines, kernel methods, dummy variables, or linear
regression on time. Here we simply partition the day into different intervals and
divide out the seasonal variation:

) E[AT]
AT, = AT, 120
E[AT];

(8)
where E[AT] ) is the average duration in period j containing observation i.
Table 6 reports B [AT] ;) for the six stocks we analyze. The first and last fifteen
minutes produce the lowest mean waiting times, in line with our expectations.
We also confirm the inverse-U pattern, with a maximum at 12:45pm—1:45pm.

We fit the waiting time distribution, §(¢), to the deseasonalized data. Time
dependence can be reinstated in the waiting time distribution by

E [AT] A<t E [AT] )

gt 7) = g
G7) E[ATly " \ BIAT],

where k(7) denotes period k containing the time of the day, 7. We may also
reinstate the seasonality in the time-dependent cumulative returns distribution.
Assuming p(z,t) is the price distribution using the deseasonalized waiting time
distribution §(t),

E [AT] ) ' -

p(l’,t,T):ﬁ x7t7
( E[AT]

The effect is demonstrated in Figure 7, showing that the predicted price distrib-
ution is wider for the morning hours than mid-day. The effect of seasonality also
becomes stronger at larger time-scales (here 20 min). Thus, intraday seasonality
can be expected to have a significant impact on the VaR and ES statistics, as
we verify later. We then account for intraday seasonality using Eq. (8) rather
than Eq. (9). This is simply because we analyze the data ex post. In real-time
risk management or trading, the latter approach would be preferred.

As already described in Section 2, our first choice of dealing with season-
ality is to remove the first and last fifteen minutes before the application of
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the CTRW model. This is partly for convenience. When compared to the sea-
sonality adjustment method outlined just above, we find both ways to improve
the results, although data removal is a safer choice. This may be due to two
reasons: First, there are simply not enough data to find a stable relationship
between time and the different variables. Second, there are more important
factors to consider in the CTRW framework than seasonality. In the light of
empirical evidence, we believe that the latter reason rings truer. It appears that
the first and last fifteen minutes of trading consist of rapid price movements
that clearly violate the inherent CTRW model assumption of i.i.d. returns and
waiting times. In the last section, we study the effect of these time periods, too.
Before that, however, we study how important the i.i.d. assumption is over the
calmer trading period, excluding the problematic opening and closing periods.

4.2 GARCH/ACD-filtering

The CTRW framework does not allow for any temporal dependency in waiting
times or returns. However, stock market data exhibit both types of dependency,
strong for short lags and significant even at much longer lags. In more technical
terms, the sample autocorrelation function (ACF) decays as a power law. This
phenomenon is termed long-range dependency [see, e.g., Beran (1992)]. The
existence of significant autocorrelation in the second moment of returns, known
as volatility clustering, is regarded as one of the key stylized facts of stock
market returns. To improve performance, we attempt to filter out temporal
dependency from returns and waiting times before the estimation of CTRW.
The modeling of returns is standardly done as follows. The simplest form of
the generalized autoregressive conditional heteroskedastic (GARCH) model [see
Bollerslev (1986)], with one lag, zero mean, and i.i.d. normal errors, is

AXZ‘ = ’Uil/Zéi,

v =w+aAXE |+ Buig,

where the constraints w > 0, & > 0, and [ > 0 ensure the conditional variance
is non-negative, and a + 5 < 1 guarantees stationarity.

The standard model for waiting times is the autoregressive conditional dura-
tion (ACD) model [see Engle and Russell (1998)]. We use a simple specification
for waiting times between each trade, each coupled with i.i.d. Weibull errors,

AT = wiey,

w; = %‘F’YAle_l + 5’([)1‘_1,

where s > 0, v > 0, and 4 > 0 in an analogous fashion to the GARCH model
for returns.'® Similarly to the GARCH model, numerous extensions to the ACD

16We use a Matlab package for ACD estimation, available in public domain (by Marcelo Per-
lin): https://sites.google.com/site/marceloperlin/matlab-code/estimation-and-simulation-of-
acd-models-in-matlab (Accessed 1.6.2013). We modify it to take into account the stationarity
requirement. We use the unconditional mean waiting time as a starting value.
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model exist, but we refrain from using them to be conservative.!”

We use the residuals of these models as the input data in the CTRW frame-
work.'® These residuals are much less autocorrelated than the original return
and waiting time series, as measured by the Ljung-Box test statistic (see Table
7). The effect of the Weibull-ACD(1,1) model is particularly noticeable: in some
cases, for example MMM, the sample autocorrelation cannot be easily distin-
guished from a Gaussian white noise series. The Normal-GARCH(1,1) does not
appear to fit the return data so well. As an example, for GOOG and AAPL, a
very significant amount of autocorrelation remains after filtering (LB > 700).
This is expected to a large extent. Volatility clustering is not typically nearly as
strong at high frequencies — especially in trade time — as it is at lower frequen-
cies in wall-clock time (e.g., a day), where the GARCH models are commonly
applied. The untypically low GARCH parameter 5 estimates (B < 0.8), except
for MMM and CVX, prove that the volatility clustering effect is indeed weak.

The sample ACF shown in Figure 8 illustrates this point: while the Weibull-
ACD(1,1) model does a very good job in removing autocorrelation from the orig-
inal (unfiltered) series, the Normal-GARCH(1,1) model does not. For GOOG,
for example, the absolute return ACF stays significantly above the upper con-
fidence bound. This does not, of course, imply that no other GARCH model
would not remove temporal dependence more efficiently, but such a study is out
of the scope of this paper. In fact, there exists numerous ACD and GARCH
models accounting for special features of financial time series [for a review,
see, e.g., Terdsvirta (2009)]. Also, GARCH models have been modified high-
frequency data in mind [see, e.g., Dionne, Duchesne, and Pacurar (2009)].

4.3 Performance evaluation

In this last empirical section, we evaluate the performance of different CTRW
model specifications. We evaluate how the different marginal distributions affect
performance and how much deseasonalization and GARCH/ACD-filtering add
value. The performance evaluation is done with metrics familiar from financial
risk management: VaR and ES statistics are commonly applied to evaluate the
riskiness of an asset portfolio. We use these metrics to evaluate how different
our CTRW model predictions are from the empirically realized values.
Typically, VaR and ES statistics are calculated for the negative (left-hand)
tail. We also consider the positive tail. As yardsticks for aggregate performance
across all stocks, we use both the root-squared-mean deviation (RSMD) and
error in the mean. The closer these yardsticks are to zero, the better is the
prediction of the CTRW model. Thus, in our view the best model specification
is such that the realized risk is equal, or very close, to the estimated (predicted)
risk. In other words, in the best possible scenario, VaRes:/VaRemp = 1 and
ESecst/ESemp = 1, for both the negative and the positive tail separately. In
case of an equal performance between different CTRW model specifications, we

1"The only departure from the standard ACD model is the use of Weibull errors instead of
exponential errors. We find the Weibull errors to significantly improve the fit.
18We scale the residuals to keep E[AX?] and E[AT] constant.
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prefer overestimation to underestimation of risk on the grounds that the latter is
potentially more dangerous from the point of view of prudent risk management.

There are two different types of seasonality adjustments we make. The first
option is to simply remove the first and last fifteen minutes of trading. The
second option is to apply the seasonality adjustment procedure described in
Section 4.1. We find that both procedures are useful even on a stand-alone
basis, but the result is best when they are combined. In the tables (unless
otherwise mentioned), we exclude the opening and closing time periods and
then make the seasonality adjustment.

We first describe the Value-at-Risk results. Table 8 reports the performance
of the different model specifications in terms of 99 percent VaR before desea-
sonalization and GARCH/ACD-filtering. We find significant underestimation
of risk for most stocks, but its magnitude is related to the time-scale. For
example, at the shortest price distribution prediction time-scale we consider
(10sec), the performance of all our models is bad for BA, particularly with ex-
ponentially distributed waiting times and normally distributed returns (E-N).
A longer time-scale (2min) tends to make the fit worse for the other stocks.
With the largest time-scale (20min), the results get a bit better again, with
for example GOOG performing exceptionally well in both tails. The results for
the largest time-scale demonstrate the aforementioned asymptotic result that
all the model predictions are similar to each other — and to E-N, in particular.

Table 9 reports the VaR results after deseasonalization and GARCH/ACD-
filtering. The E-N results are generally improved across all our time-scales. For
example, at the shortest time-scale, the underestimation found for BA decreases
from 0.4 (left-hand tail) and 0.5 (right-hand tail) to 0.75 and 0.67, respectively.
Similarly, the model with mixed-Weibull distributed waiting times and double-
exponentially distributed returns (MW-DE) improves from 0.55 and 0.68 to
0.99 and 0.89, respectively. Basically, all models perform much better, partic-
ularly at the middle-sized and largest time-scales. The estimates now seem to
be well-centered around the empirical values on average. To better grasp the
performance gain due to deseasonalization and GARCH/ACD-filtering, we vi-
sualize the tabled VaR values in Figure 9. The increased amount of white and
green space in the right-hand side of the figure shows the effect of deseasonal-
ization and GARCH/ACD-filtering. Red space (indicating underestimation of
risk), on the other hand, appears to dominate the left-hand side of the figure.

Expected Shortfall can be argued to more accurately represent tail risk than
VaR, because ES is the expected loss beyond a certain limit (here 1 percent).
Thus, we repeat the above study for ES. The results in Tables 10 and 11 are simi-
lar to the VaR results presented above, but provide somewhat clearer evidence of
the improved performance due to deseasonalization and GARCH/ACD-filtering.
At the smallest time-scale, for example, the E-N model performance for BA rises
from 0.27 (left-hand tail) to 0.70. Better performing models are the MW-DE
model (left-hand tail 0.97) and W-DE (left-hand tail 0.99). At the largest time-
scale, the E-N model performance for GOOG rises from 0.93 (left-hand tail) to
0.97. The W-DE model is again very close to the realized empirical value. The
tabled ES values are illustrated in Figure 10. There is a clear shift from a red
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to a white-greenish color, representing the improved CTRW model performance
due to deseasonalization and GARCH/ACD-filtering.

Thus far we have documented how the different CTRW models compare
to each other, with and without deseasonalization and GARCH/ACD-filtering.
Now we break down the effects of the individual components. More precisely,
we seek to know what extensions matter the most. To make the results trans-
parent, we calculate the RMSD and error in mean values for each CTRW model
specification. Table 12 shows RMSD and error in mean values in terms of VaR.
The column labeled "Filtering" denotes the three different filtering methods we
apply: deseasonalization (D), GARCH (G), and ACD (A). Generally speaking,
the more filtering is introduced, the smaller the deviations from the empirical
values become. If all filtering methods are turned on (denoted DGA), the per-
formance statistics decrease to about half or more of the unfiltered values. For
example, RMSD (error in mean) for the best performing model (MW-ST) at the
smallest time-scale decreases from 0.21 (—0.15) to 0.09 (—0.01). Notably, ACD-
filtering has the largest effect across all the CTRW model specifications. For the
same MW-ST model, its effect is around 50 percent. The effect is even larger at
the middle-sized time-scale. The error in mean values are more dependent on
the time-scale, however: at the smallest time-scale, introducing ACD-filtering
causes the error in mean values to sometimes change the sign from a negative to
a positive value, but this does not take place at the larger time-scales. MW-DE
and MW-ST typically perform the best at the smallest time-scale, W-DE and
W-ST at middle sized time-scales, while all the models perform equally well
at the largest time-scale. With all filtering turned on, the RMSD metric gives
roughly the same performance at all time-scales with most variation across the
models at the smallest time-scale. While the models perform the best at the
smallest time-scale, the differences between our four model specifications (i.e.,
excluding E-N) are however too small for making definitive conclusions.

Table 13 reports the corresponding results for ES. These results are perhaps
less satisfying but more stable than the VaR results. Thus, they potentially
reveal meaningful differences between the models. For example, for the best
performing model (MW-DE) at the smallest time-scale, RMSD (error in mean)
decreases from 0.27 (—0.21) to 0.13 (—0.01). It is striking that at the smallest
time-scale, the error in mean is zero for the W-ST model after the ACD-filtering
is introduced. The other models do very well in this respect as well, except E-
N, for which the RMSD and error in mean values are consistently the largest.
Deseasonalization and GARCH-filtering do not appear to be that important
invidually nor together. The effect of deseasonalization, however, turns out to
be more significant when the time-scale is middle sized or large.

Finally, in Tables 14 (VaR) and 15 (ES), we report the performance of the
different CTRW model specifications without removing the opening and closing
periods. The difference to the previous tables is that now the effect of sea-
sonality removal is more visible. Without any filtering methods, the models
have larger RMSD and error in mean values. Thus, while it is not necessary
to remove the problematic opening and closing periods for good performance,
deseasonalization and GARCH/ACD-filtering is required.

18



In summary, the above results show that the ACD-filtering component is by
far the most important. In ranking, it is followed by deseasonalization especially
at the middle-sized or large time-scales. The least important component appears
to be GARCH-filtering. This is in line with what we would expect: standard
GARCH models are not ideally suited for high-frequency data. ACD models,
on the other hand, are specifically developed such data in mind.

5 Conclusions

In this paper, we describe the so-called continuous-time random walk (CTRW)
framework in its generality. For the first time in literature, we take a detailed
look at different CTRW model predictions by comparing them to the realized
empirical price distributions. More exactly, we evaluate how accurate the in-
traday price distribution predictions are. We show that the simple no-memory
structure of the CTRW framework limits the attainable accurary of the intra-
day price distribution predictions. Inspired by financial econometrics practice,
we propose a few extentions to the standard CTRW and demonstrate their
usefulness from a risk management perspective. The enhanced intraday price
distribution predictions match much better to the realized empirical price dis-
tributions than the basic CTRW predictions do. We focus on evaluating the
performance of the different CTRW models using the conventional financial risk
management metrics of Value-at-Risk (VaR) and Expected Shortfall (ES).
The extensions we make are as follows. First, we extend the universe of
potentially useful marginal distributions using numerical methods. For returns,
we find the Student-t distribution of the family of generalized hyperbolic (GH)
distributions to add much value over the normal distribution. The double-
exponential distribution performs similarly to the Student-t distribution. For
waiting times, we propose the mixed-Weibull distribution. In total, there are
five different CTRW model specifications we compare: exponential-normal (E-
N), Weibull-Student-t (W-ST), Weibull-Double-Exponential (W-DE), mixed-
Weibull-Student-t (MW-ST), and mixed-Weibull-double-exponential (MW-DE).
Typically, the winner in terms of the most realistic VaR and ES values, is MW-
DE, and the runner-up is MW-ST. The differences are however quite small,
except for E-N, which is consistently the worst performer. Although the newly
proposed mixed-Weibull distribution clearly fits the body of the waiting time
distribution better than Weibull does, the predicted fatter-tailed price distribu-
tion of the W-DE (W-ST) matters more in terms of the tail-sensitive VaR and
ES statistics. We find the fat-tailedness of W-DE to be attractive when the
turbulent opening and closing trading periods are included in the analysis.
Second, we make extensions with regards to intraday seasonality adjust-
ment and temporal dependence. We find that seasonality matters especially for
waiting times. The VaR and ES statistics improve at least a few percentages
when seasonality is explicitly accounted for. There are two types of temporal
dependence we consider. We filter out temporal dependence in returns using
the standard generalized autoregressive conditional heteroskedastic (GARCH)
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model. We find its effect to be quite low, which is is understandable because our
data are asynchronously spaced at high frequencies. The asynchronous nature
is precisely the reason why the waiting time filtering performs very well. Of all
our extentions, we find the standard autoregressive conditional duration (ACD)
model to have the most important effect on the VaR and ES statistics.

In practical terms, we find our enhanced CTRW model specifications to im-
prove performance over the standard CTRW model by around 40 percent. This
increase is mostly due to more accurate tail modeling. Filtering out temporal
dependence by the ACD model adds another 30 percentages compared to the
basic model. Thus, in total, the performance gain we find is around 70 percent.

As the tails of the price distribution are potentially very important in finan-
cial decision making, our results should prove valuable for improving intraday
risk management. The value is heightened by the fact that automated trad-
ing, and its subclass high-frequency trading (HFT) in particular, make up a
significant portion of the total daily volume in some markets. By construction,
the CTRW framework extracts information from all the asynchronously spaced
observations that happen at subsecond time-scales and turn them to humanly
understandable predictions in wall-clock time for any desired time-scale. This
should be valuable for risk averse institutional investors executing large orders.

There are several directions for future research. First, more realistic mar-
ginal distributions could be applied. We find the GH distribution family to
provide good candidates in this respect. In terms of waiting times, more work
could be done with respect to mixtures of distributions along the lines of the
proposed mixed-Weibull, for example. The effect of temporal dependence pro-
vides another interesting avenue. For example, GARCH effects can be better
accounted for by applying specialized GARCH models for high-frequency data.
The next step would be to include the non-Markovian effects in the CTRW
framework, especially for waiting times. Finally, the independence assumption
between returns and waiting times that was assumed in this paper can be re-
laxed in a mathematically rigorous fashion. We have made some progress along
these lines and are keen to continue further.
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A Appendix

A.1 Data pre-filtering
The logic of our pre-filtering algorithm is the following:
1. Import data for a given date.

2. Remove data outside continuous trading hours, 9:30am and 4pm. (We also
discard data outside of 9:45am and 3:45pm unless otherwise mentioned.)

3. Merge trades time-stamped at the same nanosecond and save the last
trade price.

4. Form the logarithmic price series.

ot

Calculate the return series. Zero returns are removed by merging with the
next increment until the return is non-zero.

Time-stamp each increment with date and time.
Append the dataset to the full incremental dataset.

Go back to step one.

© » 3o

After each date is imported, cumulatively sum the full incremental dataset,
starting from X (0) = 0.

A.2 Numerical solution
A.2.1 Method

The algorithm we use to calculate p(z,t) from the marginal distributions f(x)
and g(t) works as follows. First, we calculate [f(k;)] and [g(s;)] at pre-defined
values of k and s.! The Laplace transform of the Weibull distribution is not
available in a convenient analytic form, so we calculate the values [g(s;)] by
numerically integrating g(¢)e™%¢. Similarly, we use Matlab’s Fast Fourier Trans-
form (FFT) to calculate [f(k;)] from f(z). Second, we use Eq. (2) to calculate
[p(ki, s;)] and then obtain its Fourier and Laplace inverses. The Laplace inverse
is based on a method introduced by Valsa and Brancik (1998), which turns the
integral over s into a finite sum over the discrete locations s;.2° For the Fourier
inverse we use Matlab’s inverse-FFT algorithm. With these two methods we can
apply the inverse Fourier and Laplace algorithms to [p(k;, s;)] in either order.
We next describe the Laplace and Fourier inversion algorithms. We then
check the validity of this method against two known analytic solutions: (1) nor-
mal returns and exponential waiting times [see Scalas, Gorenflo, and Mainardi

Here i = 1...Ng (= 32768) and j = 1...Ns(= 40). The accuracy can be arbitrarily increased
by increasing N, and Ns. The values of s; depend on t.

20We have built our routine on top of a publicly available INVLAP Matlab package, avail-
able at http://www.mathworks.com/matlabcentral/fileexchange/ 32824-numerical-inversion-
of-laplace-transforms-in-matlab. (Accessed 1.2.2013).
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(2004)], and (2) coupled double-exponential returns and exponential waiting
times [see Masoliver et al. (2006)].

A.2.2 Laplace transform inversion

To explain the idea behind the numerical Laplace inverse method introduced
by Valsa and Brancik (1998), we examine the Bromwich integral form of the
Laplace inverse:
Y4100 1 .
t) = —ef d
g(t) /M_OO 5.-¢ 9(s)ds,
where g(s) is assumed regular for Re(s) > 0 and vanishing for |s| — oco. The

integration contour is along the imaginary axis, with Re(s) = . In this method,
the exponential e*? is first approximated by

a 0 n 1
est ~ ]' _ € _ ea, Z (_1) (n+ 5)

T e=st 4 e2aest  2cosh(a — st) (n+ $)?72 + (a — st)?’

n=0

which is accurate in the limit a > ~t. Changing the order of integration and
summation, we get

> y+ioco —1"(n 1
g(t) %ﬂe“Z/ ! (CD"n+3) 59(s)ds.
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Since g(s) vanishes at infinity, the integration contour can be closed with an
infinite semicircle around the positive real axis. The key point is that since
g(s) has no poles in this area, the integral can be calculated as a sum over the
residues, which are located at zeros of the denominator:

ati(n+ 3)m

S =
= t

Thus, this method turns the integral over s into an infinite sum over t-dependent
discrete locations s;. Truncation of this sum is another source of numerical error.
In this regard, the method includes further optimization of the sum for faster
convergence.

A.2.3 Fourier transform inversion

The Fourier inverse integral can easily be discretized and written as a discete
inverse-FFT transformation. We first consider the forward Fourier transform.
Assuming f(z) to be non-zero only in the interval 0 < z < L,, we write the
Fourier transform as

Flk) = /Oo ¢ f(2)dz = /OL ¢+ f () da.

— 00
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Discretizing with grid spacing dx and 6k, and defining z,, = ndz and k,, = ndk,
gives

N,—1 SkéxNg

f(km> =0z Z eXp(ixnkm)f(xn) = &EZ (6 71\27;1.)7mn . f(.’)?n)

n=0 n

where N, = L,/dx. We then require dkdxN, /2 = 1, and denote wy, =
exp(—2ni/N,), giving

Nz—1

flkm) = oz Z Wy " f(xn) = 6ttty (f (zn), m),

n=0

where fft,,(f(z,), m) is the standard FFT. Assuming ifft,, is the inverse-FFT,

we have
1

fn: Sz

ity (f (), ).

A.2.4 Analytic solutions

For the first analytic solution, we use exponentially distributed waiting times
and normally distributed returns. Then the solution to Eq. (1) can be written
as an infinite sum over the number of jumps up to time ¢ [see Scalas, Gorenflo,
and Mainardi (2004)],

p(z,t) =Y P(n,t)ful),
n=0

where P(n,t) gives the probability of n jumps at time ¢ and f,(z) gives the
returns distribution after n jumps. The function P is given by the Poisson
distribution,

P(n,t) = L/'[f) e t/m,
n!
The function f,(z) is the Fourier inverse transform of f(k),
folx) = 4(x)
falz) =

Thus,

t/w" 1 a?
—exp|——= || -

n! \/QWJ\/E 2no?

When comparing this solution to the numeric one, we truncate the sum at N

terms. IV is taken much larger than the expected number of jumps up to time

t: N =~ 10t/u. We discover a very good convergence between the analytic and
numerical solutions (see the left-hand panel of Figure 11). At relevant density

plx,t) = e V1 | 5(z) + Z

n=1
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values, the analytic and numerical densities agree point-by-point to the accuracy
of 1/1000.

Another analytic solution can be found for exponentially distributed waiting
times and double-exponentially distributed returns. Also the waiting times and
returns are non-trivially coupled, so that the multivariate distribution is

1 px? t
h(z,t) = - - 2.
(1) 2vy/mut eXp( 4ty? u>

Masoliver et al. (2006) study this case and find

1 N s e o
p(z.t) =e " | 6(x —&-7/ 8 T/ ge )
( ) () 7\/77' 0

We fit the model on real data and compare the two solutions, showing a good
convergence (see the right-hand panel of Figure 11). At relevant values of the
density, the analytic and numerical densities agree point-by-point to the accu-
racy of 1/100. The slight decrease in performance is probably related to the
complexity of the model, given that the waiting times and returns are coupled.
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Table 1: Pre-filtering statistics.

Stock Trades AT #0 AX#0 P
GOOG Week 10 36248 28612 17794 829
GOOG Week 11 22947 17971 11395 824
GOOG Week 12 18312 15050 9449 812
AAPL 308543 228681 134425 437
BA 82377 49409 23074 83
CVvX 78486 54542 24919 119
GOOG 77507 61633 38638 824
IBM 71573 48427 26687 211
MMM 37896 25986 13536 105

Note: AX # 0 is the number of valid observations.

Table 2: Trades in the range of [i,j] ticks.

Stock AY) (AY) (AY)] (AV)p
GOOG Week 10 0.17 0.16 0.24 0.43
GOOG Week 11 0.2 0.17 0.24 0.39
GOOG Week 12 0.16 0.14 0.22 0.47
AAPL 029 028 028 015
BA 0.74 023 003 0
CVX 0.71 0.26 0.04 0
GOOG 0.18 0.16 0.24 0.43
IBM 0.52 0.34 0.12 0.02
MMM 0.66 028  0.05 0
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Table 5: Root-mean-squared deviation of the best fit.

Stock Normal D-Exp ST Exp  Weibull MW
Panel 1 (Before)
GOOG Week 10 0.039 0.014  0.017 0.208  0.074  0.005
GOOG Week 11 0.042 0.018 0.02 0.197  0.082 0.006
GOOG Week 12 0.043 0.014  0.019 0.17 0.082 0.005
Panel 2 (Before)

AAPL 0.033 0.028 0.021 0.202 0.061 0.004
BA 0.069 0.08 0.069 0.137 0.048 0.003
CVvX 0.073 0.088 0.073 0.11 0.053 0.004
GOOG 0.042 0.012 0.017 0.2 0.078 0.005
IBM 0.052 0.052  0.045 0.131 0.0564  0.003
MMM 0.072 0.082 0.072 0.096 0.038 0.002
Panel 3 (After)

AAPL 0.033 0.032 0.021 0.183 0.067  0.004
BA 0.091 0.124  0.091 0.117  0.045 0.004
CvX 0.083 0.118  0.083 0.102 0.053 0.004
GOOG 0.039 0.012 0.016 0.182 0.084 0.005
IBM 0.052 0.078  0.052 0.118 0.056 0.004
MMM 0.07 0.103 0.07 0.083 0.04 0.003

Note: Panels 1, 2 and Panel 3 denote before and after deseasonalization and
GARCH/ACD-filtering, respectively. RMSD = \/Zz(F(sci) — Ep(x:))2/n,
where F(z;) is the theoretical CDF and F, (z;) is the empirical CDF.

Table 6: Mean waiting time in each time-slot (in seconds).

Stock 09:30-09:45 09:45-10:45 10:45-11:45 11:45-12:45

AAPL 0.9 1.5 2.5 2.9
BA 5.8 8.9 12.8 17
CVX 7.1 9.2 124 15.3
GOOG 3 4.7 8.9 10.7
IBM 7.7 9.2 11.7 14.8
MMM 15 15.8 25 28.5

12:45-13:45 13:45-14:45 14:45-15:45 15:45-16:00 Aggr.

AAPL 3.4 3.1 2.2 0.9 2.1
BA 18.4 17.9 14.7 8.8 13
CVX 18.5 14.5 11.9 4.8 11.8
GOOG 12.9 10.8 7.9 2.5 7.2
IBM 15.6 13.9 10.3 4.1 11.1
MMM 34.4 27.6 21.1 9.5 221
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Table 8: Performance in terms of VaR (99 percent) before filtering.

Time-scale Stock Tail MW-DE MW-ST W-DE W-ST E-N

10sec AAPL  Left 0.77 0.77 0.85 0.85  0.62
Right 0.74 0.73 0.81 0.82 0.6

BA Left 0.55 0.52 0.57 0.53 0.4
Right 0.68 0.64 0.71 0.67 0.5

CvX Left 1.12 1.05 1.15 1.08 0.86
Right 0.94 0.88 0.97 091 0.72

GOOG  Left 0.85 0.85 0.97 0.97 0.6
Right 1.01 1.01 1.14 1.15 0.7

IBM Left 0.92 0.89 0.95 0.93 0.68
Right 0.94 0.91 0.97 0.95 0.7

MMM  Left 1.06 0.99 1.06 0.99 0.8
Right 1.06 1 1.06 1 0.8

2 min AAPL  Left 0.79 0.8 0.83 0.83  0.77
Right 0.64 0.64 0.67 0.67  0.62

BA Left 0.58 0.57 0.6 0.59  0.53
Right 0.58 0.57 0.6 0.59  0.53

CvX Left 0.83 0.81 0.85 0.84 0.78
Right 0.83 0.81 0.85 0.83 0.77

GOOG  Left 0.79 0.81 0.86 0.87  0.72
Right 0.88 0.9 0.96 097 0.81

IBM Left 0.64 0.64 0.66 0.66  0.59
Right 0.69 0.69 0.71 0.71  0.64

MMM  Left 0.77 0.75 0.79 0.77 0.7
Right 0.77 0.75 0.78 0.76 0.7

20 min AAPL  Left 0.92 0.92 0.93 0.93 0.92
Right 0.69 0.69 0.69 0.69  0.68

BA Left 0.83 0.83 0.84 0.83 0.82
Right 0.61 0.61 0.61 0.61 0.6

CvX Left 0.94 0.93 0.94 094 093
Right 0.92 0.92 0.93 092 091

GOOG  Left 0.99 1 1.01 1.02  0.98
Right 0.96 0.96 0.98 0.98  0.95

IBM Left 0.71 0.71 0.72 0.72  0.71
Right 0.78 0.78 0.79 0.79  0.78

MMM  Left 0.84 0.84 0.85 0.84 0.83
Right 0.77 0.76 0.77 0.76  0.75

Note: Ratio between the estimated and empirical VaR (VaRes:/VaRemp)
before deseasonalization and GARCH/ACD-filtering.
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Table 9: Performance in terms of VaR (99 percent) after filtering.

Time-scale Stock Tail MW-DE MW-ST W-DE W-ST E-N

10 sec AAPL  Left 0.92 0.91 1.01 1.01  0.76
Right 0.91 0.91 1.01 1 0.76

BA Left 0.99 0.93 1.02 0.96 0.7
Right 0.89 0.83 0.91 0.86  0.67

CvX Left 1.21 1.13 1.24 1.16  0.95
Right 1.05 0.99 1.08 1.01  0.83

GOOG  Left 1.04 1.03 1.18 1.18  0.76
Right 1.11 1.11 1.26 1.26 081

IBM Left 1.05 0.99 1.09 1.02 081
Right 1.04 0.98 1.08 1.02 0.8

MMM  Left 1.13 1.05 1.12 1.05 0.88
Right 1.16 1.08 1.15 1.08 0.9

2min AAPL  Left 0.96 0.96 1 1 0.94
Right 0.85 0.85 0.87 0.88  0.82

BA Left 0.86 0.84 0.88 0.86 0.8
Right 0.83 0.81 0.85 0.83  0.77

CvX Left 1.04 1.02 1.07 1.04 0.98
Right 1.01 0.99 1.03 1.01  0.95

GOOG  Left 1 1.02 1.09 1.1 0.93
Right 1.08 1.09 1.17 1.18 1

IBM Left 0.83 0.81 0.85 0.83  0.77
Right 0.92 0.9 0.94 0.93 0.86

MMM  Left 1.04 1 1.06 1.02  0.95
Right 0.96 0.93 0.98 0.95 0.88

20 min AAPL  Left 1.09 1.09 1.1 1.09  1.09
Right 0.79 0.79 0.79 0.79  0.79

BA Left 0.93 0.92 0.93 0.93 092
Right 0.81 0.81 0.82 0.81 0.8

CvX Left 1.03 1.03 1.03 1.03  1.02
Right 0.96 0.95 0.96 0.96 0.95

GOOG  Left 1.05 1.05 1.07 1.07  1.04
Right 1.19 1.19 1.21 1.21  1.18

IBM Left 0.84 0.83 0.84 0.84 0.83
Right 0.94 0.93 0.94 094 093

MMM  Left 0.94 0.94 0.95 094 093
Right 0.91 0.91 0.92 0.91 0.9

Note: Ratio between the estimated and empirical VaR (VaRes:/VaRemp)
after deseasonalization and GARCH/ACD-filtering.
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Table 10: Performance in terms ES (99 percent) before filtering.

Time-scale Stock Tail MW-DE MW-ST W-DE W-ST E-N

10sec AAPL  Left 0.75 0.76 0.83 0.84  0.59
Right 0.69 0.7 0.76 0.77  0.54

BA Left 0.39 0.36 0.41 0.37  0.27
Right 0.63 0.58 0.65 0.6 0.44

CvX Left 1.02 0.92 1.03 094 0.75
Right 0.75 0.67 0.76 0.69  0.55
GOOG  Left 0.78 0.82 0.87 0.92  0.52
Right 0.98 1.03 1.09 1.16  0.65

IBM Left 0.8 0.8 0.82 0.82  0.57
Right 0.84 0.83 0.86 0.86 0.6

MMM  Left 0.93 0.85 0.93 0.84 0.67
Right 0.9 0.82 0.9 0.81 0.64

2 min AAPL  Left 0.78 0.79 0.82 0.82 0.7
Right 0.55 0.56 0.58 0.58  0.53

BA Left 0.53 0.52 0.55 0.54  0.47
Right 0.57 0.56 0.59 0.58  0.51

CvX Left 0.78 0.75 0.8 0.77  0.71
Right 0.74 0.71 0.76 0.74  0.68
GOOG  Left 0.67 0.71 0.74 0.77 0.6
Right 0.89 0.94 0.97 1.02  0.79

IBM Left 0.59 0.6 0.61 0.62  0.54
Right 0.66 0.67 0.68 0.69 0.6

MMM  Left 0.77 0.73 0.78 0.75  0.67
Right 0.69 0.65 0.7 0.67 0.6

20 min AAPL  Left 0.92 0.92 0.93 0.93 0.92
Right 0.58 0.58 0.58 0.58  0.57

BA Left 0.83 0.82 0.84 0.83 0.81
Right 0.56 0.56 0.57 0.57  0.55

CvX Left 0.89 0.89 0.9 0.89  0.88
Right 0.93 0.93 0.94 093 092
GOOG  Left 0.94 0.96 0.97 0.98  0.93
Right 0.86 0.88 0.89 0.9 0.85

IBM Left 0.63 0.63 0.63 0.63  0.62
Right 0.78 0.78 0.78 0.79  0.77

MMM  Left 0.81 0.8 0.81 0.8 0.79
Right 0.81 0.81 0.82 0.81  0.79

Note: Ratio between the estimated and empirical ES (ESest/ESemp)
before deseasonalization and GARCH/ACD-filtering.
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Table 11: Performance in terms of ES (99 percent) after filtering.

Time-scale Stock Tail MW-DE MW-ST W-DE W-ST E-N

10 sec AAPL  Left 0.91 0.92 1.01 1.02 0.74
Right 0.89 0.9 0.98 0.99 0.72

BA Left 0.97 0.88 0.99 0.9 0.7
Right 0.67 0.61 0.69 0.62  0.49

CvX Left 1.21 1.1 1.23 1.12 091
Right 0.92 0.83 0.93 0.85  0.69

GOOG  Left 0.98 1.03 1.09 1.16  0.68
Right 1.07 1.12 1.2 1.27  0.75

IBM Left 0.98 0.89 1.01 0.92 0.72
Right 1 0.91 1.03 0.94 0.74

MMM  Left 1.1 0.98 1.09 0.97  0.81
Right 1.14 1.02 1.13 1 0.84

2min AAPL  Left 0.96 0.96 1 1 0.92
Right 0.79 0.79 0.82 0.83 0.76

BA Left 0.77 0.74 0.79 0.76  0.69
Right 0.81 0.78 0.83 0.81  0.73

CvX Left 1.03 1 1.06 1.02  0.95
Right 0.9 0.87 0.93 0.9 0.83

GOOG  Left 0.91 0.95 0.99 1.03  0.82
Right 1.06 1.11 1.16 1.21  0.96

IBM Left 0.79 0.77 0.82 0.799  0.73
Right 0.89 0.86 0.91 0.88  0.81

MMM  Left 1.02 0.97 1.04 0.99 0.92
Right 0.9 0.85 0.91 0.87 0.8

20 min AAPL  Left 1.1 1.1 1.11 111 1.09
Right 0.64 0.64 0.64 0.64 0.64

BA Left 0.91 0.91 0.92 0.91 0.9
Right 0.78 0.78 0.79 0.79  0.77

CvX Left 0.9 0.9 0.91 0.9 0.89
Right 0.98 0.98 0.99 0.98  0.97

GOOG  Left 0.98 0.99 1 1.01 097
Right 1.19 1.21 1.22 1.24 1.18

IBM Left 0.84 0.84 0.85 0.84 0.83
Right 0.92 0.92 0.93 092 091

MMM  Left 0.88 0.87 0.89 0.88  0.87
Right 0.93 0.92 0.93 093 091

Note: Ratio between the estimated and empirical ES (ESest/ESemp)
after deseasonalization and GARCH/ACD-filtering.
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Table 12: Performance statistics in terms of VaR, (99 percent).

Time-scale Filtering MW-DE MW-ST W-DE W-ST E-N

Panel 1 (RMSD metric)

10sec ok 0.2 0.21 0.18 0.19 0.36
D** 0.19 0.2 0.18 0.19 0.34
*G* 0.2 0.22 0.17 0.19 0.37
DG* 0.19 0.21 0.16 0.18 0.35
A 0.13 0.11 0.16 0.13 0.21
D*A 0.14 0.11 0.17 0.14 0.2
*GA 0.1 0.09 0.13 0.11 0.21
DGA 0.11 0.09 0.14 0.12 0.21

2 min HoHk 0.28 0.29 0.26 0.27 0.33
D** 0.23 0.24 0.21 0.22 0.28
*G* 0.27 0.28 0.25 0.26 0.32
DG* 0.22 0.23 0.2 0.22 0.27
XA 0.11 0.11 0.1 0.11 0.15
D*A 0.11 0.11 0.11 0.11 0.14
*GA 0.1 0.11 0.09 0.1 0.14
DGA 0.1 0.11 0.1 0.11 0.14

20 min ok 0.21 0.21 0.2 0.2 0.21
D** 0.16 0.16 0.16 0.16 0.16
*G* 0.21 0.21 0.2 0.2 0.21
DG* 0.17 0.17 0.16 0.17 0.17
A 0.13 0.13 0.13 0.13 0.13
D*A 0.13 0.13 0.13 0.13 0.13
*GA 0.11 0.12 0.11 0.12 0.12
DGA 0.12 0.12 0.12 0.13 0.12

Panel 2 (Error in mean)

10sec kK —0.12 —0.15 —0.07 -0.1 —0.34
D** —0.1 —0.13 —0.05 —-0.08 —0.32
*G* —0.14 —-0.17 -0.09 -0.13 -0.35
DG* —0.12 —0.15 —0.06 —0.1 —0.33
*EA 0.05 0.02 0.11 0.07 —-0.19
D*A 0.06 0.02 0.12 0.08 —0.18
*GA 0.03 —0.01 0.09 0.04 —0.2
DGA 0.04 —0.01 0.1 0.05 —-0.2

2 min ok —0.27 —0.27 —0.24 —-0.24 —-0.32
D** —0.21 —0.21 —0.17 —0.18 —0.26
*G* —0.25 —0.26 —0.22 -0.23 —-0.31
DG* —0.2 —0.21 —-0.16 —-0.17 —-0.25
A —0.07 —0.08 —-0.04 -0.04 -0.13
D*A —0.06 —0.07 -0.03 -0.03 -—0.12
*GA —0.06 —0.07 —-0.03 -0.04 —-0.12
DGA —0.05 —0.06 -0.02 -0.03 -0.11

20 min HoHk —0.17 —0.17 -0.16 —-0.16 —-0.18
D** —0.1 —0.1 —0.09 -0.09 -0.11
*G* —0.17 —0.17 —-0.16 —-0.17 —0.18
DG* —0.11 —0.11 —0.11 —-0.11 —-0.12
XA —0.06 —0.06 -0.06 —-0.06 —0.07
D*A —0.05 —0.05 —-0.04 —-0.04 —-0.05
*GA —0.06 —0.06 —-0.05 —0.05 —0.07
DGA —0.04 —0.05 —0.04 —-0.04 —-0.05

Note: The column "Filtering" denotes deseasonalization (D), GARCH (G), and ACD (A).
RMSD = \/ZZ (VaRest; /VaRemp; — l)2 /n and Mean =3, (VaRest; /VaRemp; — 1) /7.
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Table 13: Performance statistics in terms of ES (99 percent).

Time-scale Filtering MW-DE MW-ST W-DE W-ST E-N

Panel 1 (RMSD metric)

10sec ok 0.27 0.29 0.24 0.27 0.44
D** 0.26 0.28 0.24 0.27 0.43
*G* 0.26 0.29 0.23 0.27 0.44
DG* 0.25 0.28 0.23 0.27 0.43
A 0.13 0.13 0.13 0.15 0.29
D*A 0.13 0.14 0.13 0.15 0.28
*GA 0.13 0.14 0.13 0.15 0.29
DGA 0.13 0.15 0.14 0.16 0.29

2min HoHk 0.33 0.33 0.31 0.31 0.39
D** 0.3 0.31 0.28 0.29 0.36
*G* 0.31 0.33 0.29 0.3 0.38
DG* 0.28 0.3 0.26 0.28 0.34
XA 0.16 0.16 0.14 0.15 0.22
D*A 0.15 0.16 0.14 0.15 0.21
*GA 0.14 0.16 0.13 0.14 0.2
DGA 0.14 0.15 0.13 0.15 0.19

20 min ok 0.24 0.24 0.24 0.24 0.25
D** 0.21 0.21 0.21 0.21 0.22
*G* 0.24 0.24 0.23 0.24 0.25
DG* 0.2 0.21 0.2 0.21 0.21
A 0.16 0.16 0.16 0.16 0.17
D*A 0.17 0.18 0.17 0.18 0.18
*GA 0.14 0.15 0.14 0.14 0.15
DGA 0.16 0.16 0.16 0.16 0.16

Panel 2 (Error in mean)

10sec kK —-0.21 —0.23 —-0.17 —-0.19 —-0.43
D** —0.2 —0.22 —0.16 —-0.18 —0.42
*G* —0.2 —0.24 —0.16 —0.2 —0.42
DG* —-0.2 —0.24 —0.16 —-0.2 —0.41
XA —0.02 —0.05 0.03 0 —-0.27
D*A —0.01 —0.05 0.03 0 —0.27
*GA —0.02 —0.07 0.03 —-0.02 —-0.27
DGA —0.01 —0.07 0.03 —-0.02 —-0.27

2 min ok —0.31 —0.32 —0.28 -0.29 —-0.38
D** —0.27 —0.28 —-0.24 —-0.25 —-0.34
*G* —-0.3 —0.31 —0.27 —-0.28 —0.36
DG* —0.26 —0.27 —-0.23 —-0.24 —-0.33
A —0.12 —0.13 -0.09 -0.09 -0.19
D*A —0.11 —0.12 -0.08 —-0.08 —-0.19
*GA —0.1 —0.12 —-0.07 —-0.08 —0.18
DGA —0.1 —0.11 -0.06 —0.08 —0.17

20 min HoHk —0.2 —0.2 —0.2 —0.2 —0.22
D** —0.15 —0.15 —0.14 —-0.14 —-0.16
*G* —0.2 —0.2 —0.19 —0.2 —0.21
DG* —0.15 —0.15 -0.14 -0.14 —-0.16
*EA —0.09 —0.09 —0.08 —0.08 -0.1
D*A —0.09 —0.09 —0.08 —0.08 —-0.1
*GA —-0.09 —0.09 —-0.08 —0.08 -0.1
DGA —0.08 —0.08 —0.07 —-0.07 —0.09

Note: The column "Filtering" denotes deseasonalization (D), GARCH (G), and ACD (A).
RMSD = \/S, (ESest, | ESemp, —1)* /n and Mean = 3, (EScat, /ESemp, — 1) /n.
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Table 14: Performance statistics in terms of VaR (99 percent), 9:30am-4:00pm.

Time-scale Filtering MW-DE MW-ST W-DE W-ST E-N
Panel 1 (RMSD metric)
10 sec HoHk 0.24 0.25 0.2 0.21 0.41
D** 0.18 0.19 0.16 0.16 0.34
*G* 0.23 0.25 0.19 0.21 0.41
DG* 0.19 0.21 0.16 0.18 0.36
A 0.11 0.09 0.14 0.12 0.21
D*A 0.11 0.09 0.14 0.12 0.2
*GA 0.09 0.08 0.1 0.09 0.23
DGA 0.09 0.08 0.11 0.1 0.23
2min oAk 0.35 0.35 0.33 0.33 0.4
D** 0.26 0.26 0.24 0.24 0.31
*G* 0.34 0.34 0.31 0.32 0.38
DG* 0.25 0.26 0.23 0.24 0.3
A 0.14 0.14 0.12 0.12 0.19
D*A 0.12 0.12 0.1 0.1 0.17
*GA 0.12 0.13 0.1 0.11 0.17
DGA 0.11 0.12 0.09 0.1 0.15
20 min HoAk 0.3 0.3 0.29 0.29 0.3
D** 0.18 0.18 0.18 0.18 0.19
*G* 0.27 0.27 0.27 0.27 0.28
DG* 0.2 0.2 0.19 0.2 0.2
A 0.14 0.14 0.14 0.13 0.14
D*A 0.13 0.13 0.13 0.13 0.13
*GA 0.14 0.14 0.14 0.14 0.14
DGA 0.13 0.13 0.13 0.13 0.13
Panel 2 (Error in mean)
10sec oAk —0.19 —0.21 —0.14 —0.16 —0.39
D** —0.11 —0.13 —0.06 —0.08 —0.32
*G* —0.2 —0.23 —0.15 —0.18 —0.4
DG* —0.14 —0.18 —0.09 —-0.13 —-0.35
A 0.04 0.02 0.1 0.08 —0.19
D*A 0.05 0.02 0.1 0.08 —0.19
*GA 0 —0.04 0.06 0.01 —0.22
DGA 0.01 —0.03 0.07 0.02 —0.22
2 min HoAk —0.33 —0.33 —0.31 —0.31 —-0.38
D** —0.24 —0.24 —0.21 —-0.21 —-0.29
*G* —0.32 —0.33 —0.29 —-0.3 —0.37
DG* —0.23 —0.24 —0.2 —0.21 —0.29
A —0.11 —0.11 —0.09 —-0.08 —0.17
D*A —0.09 —0.09 —0.06 —0.06 —0.15
*GA —0.09 —0.11 —0.06 —0.08 —-0.15
DGA —0.08 —0.09 —0.05 —0.06 —0.13
20 min oAk —0.27 —0.27 —-0.27 —-0.27 —0.28
D** —0.13 —0.13 —0.12 —0.12 —-0.14
*G* —0.25 —0.25 —0.24 —0.25 —0.26
DG* —0.15 —0.15 —0.15 —-0.15 —0.16
A —0.11 —0.1 —0.1 —0.1 —0.11
D*A —0.06 —0.06 —0.06 —0.06 —0.07
*GA —0.09 —0.1 —0.09 —0.09 —0.1
DGA —0.07 —0.07 —0.07 —0.07 —0.08

Note: The column "Filtering" denotes deseasonalization (D), GARCH (G), and ACD (A).
RMSD = \/21 (VaRest; /VaRemp; —1)? /n and Mean = 3, (VaRest; /VaRemp; — 1) /n.
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Table 15: Performance statistics in terms of ES (99 percent), 9:30am-4:00pm.

Time-scale Filtering MW-DE MW-ST W-DE W-ST E-N

Panel 1 (RMSD metric)

10sec ok 0.35 0.34 0.32 0.31 0.52
D** 0.29 0.28 0.26 0.26 0.47
*G* 0.31 0.34 0.28 0.31 0.49
DG* 0.27 0.3 0.24 0.28 0.45
A 0.12 0.11 0.09 0.11 0.33
D*A 0.12 0.11 0.1 0.12 0.32
*GA 0.12 0.15 0.1 0.15 0.31
DGA 0.12 0.15 0.11 0.15 0.31

2min HoHk 0.44 0.42 0.42 0.4 0.49
D** 0.35 0.34 0.33 0.32 0.41
*G* 0.39 0.4 0.37 0.37 0.44
DG* 0.31 0.32 0.29 0.3 0.37
XA 0.22 0.2 0.19 0.17 0.28
D*A 0.2 0.18 0.17 0.16 0.26
*GA 0.17 0.18 0.14 0.15 0.23
DGA 0.15 0.16 0.13 0.14 0.21

20 min ok 0.35 0.34 0.34 0.33 0.35
D** 0.23 0.23 0.23 0.22 0.24
*G* 0.32 0.32 0.32 0.32 0.33
DG* 0.24 0.24 0.23 0.24 0.24
A 0.19 0.18 0.18 0.17 0.19
D*A 0.18 0.17 0.18 0.17 0.19
*GA 0.17 0.17 0.17 0.17 0.18
DGA 0.17 0.17 0.17 0.17 0.18

Panel 2 (Error in mean)

10sec kK —0.32 —0.31 -0.29 -0.28 —-0.51
D** —0.26 —0.25 —0.22 —-0.2 —0.45
*G* —0.28 —0.32 —-0.25 —-0.28 —-0.48
DG* —0.23 —0.27 -0.19 -0.23 —-0.44
*EA —0.09 —0.08 -0.05 -0.03 —-0.32
D*A —0.08 —0.06 —-0.03 -0.02 —-0.31
*GA —0.07 —0.11 —-0.02  —-0.07 -0.3
DGA —0.06 —-0.1 —0.01 —0.06 —-0.3

2 min ok —0.42 —0.41 —-0.4 —-0.38 —0.47
D** —0.33 —0.31 —0.31 -0.29 -0.39
*G* —0.37 —0.38 —0.34 —0.35 —0.43
DG* —0.29 —0.3 -0.26 —-0.27 —-0.35
A —-0.2 —0.18 -0.18 —-0.16 —0.27
D*A —0.18 —0.16 —0.15 —-0.13 —-0.24
*GA —0.15 —0.16 —0.11 —-0.13 —-0.21
DGA —0.12 —0.14 —0.09 -0.11  -0.19

20 min HoHk —0.32 —0.32 -0.32 -0.31 —-0.33
D** —0.18 —0.17 —0.17 —-0.16 —0.19
*G* -0.3 -0.3 -0.29 -0.29 -0.31
DG* —0.18 —0.18 -0.17 -0.17 —-0.19
XA —0.15 —0.14 —0.14 —-0.13 —-0.16
D*A —0.13 —0.12 -0.12 -0.11 -0.14
*GA —0.12 —0.13 —0.12 -0.12 —-0.14
DGA —0.11 —0.11 —0.1 —0.11 -0.12

Note: The column "Filtering" denotes deseasonalization (D), GARCH (G), and ACD (A).
RMSD = \/S, (ESest, | ESemp, —1)* /n and Mean = 3, (EScat, /ESemp, — 1) /n.
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