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 Abstract  
 
I determine the optimal trading strategy for an institutional trader who wants to purchase a large 
number of shares over a fixed time horizon. First, I consider when a multi-period trader can submit 
limit orders as well as market orders. I develop a simple binomial model where limit orders either 
execute or not and solve it analytically. I find that the optimal sequence of limit orders involves 
dynamic aggressiveness. That is, if a given limit order executes (or not), then the next limit order 
optimally has a slightly less (more) aggressive price. I find that this trading strategy frequently 
beats (or at least ties) the benchmark trading strategies from the existing literature. Second, I 
develop an elaborate model of a multi-period trading algorithm that allows multiple orders over 
multiple periods to be submitted to a dynamic limit order book exchange. I calibrate the simulation 
to real-world summary statistics based on order data. For each trading problem, I use genetic 
algorithm optimization to numerically determine the optimal trading algorithm over a large 
number of simulated trials. I find that the optimal trading algorithm typically involves dynamic 
aggressiveness. Further, I find that if the fund manager is opportunistic, then the optimal algorithm 
involves only limit orders with low price aggressiveness. Conversely if the fund manager is 
committed, then limit orders should be followed by market orders at the end. I find that if the fund 
manager is informed and not using effective spread to measure the cost of trading, then market 
orders should be front-loaded in time. Conversely, if effective spread is used or the fund manager 
is uninformed, then less aggressive orders should be spread evenly over time. I find that these 
trading algorithms frequently beat (or at least tie) the benchmark trading algorithms from the 
existing literature. 
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 Consider an institutional trader who wishes to buy 100,000 shares of a given stock over a 

trading day on a limit order book exchange. What orders should the trader submit? There are many 

choices. First is the choice of order type: market order versus limit order.1 A market order will get 

the shares requested, but at a higher cost. A limit order will cost less if it executes, but it may not 

execute. Second, if a limit order is used, then there is a choice of price. A higher limit buy price 

will be more likely to execute, but a lower limit buy price is a better price. Third is the choice of 

order size. Should the trader submit a smaller number of big orders or a larger number of small 

orders? Fourth is the choice of dynamic strategies. If new information arrives, should the 

unexecuted portion of a limit order be cancelled and resubmitted at an updated price? Since market 

orders pay the spread, should one strategically wait for moments when the spread is relatively 

small? And there are many more dynamic strategies that one could imagine. 

 This paper analyzes the optimal trading strategy of a buy-side trader who wants to purchase 

a large number of shares over a fixed time horizon. Specifically, I consider two research questions. 

First, when a multi-period trader can submit a limit or market order, is it possible to beat 

benchmark trading strategies from the existing literature? Second, when a multi-period trading 

algorithm can depend on a rich set of state variables from a dynamic limit order book model 

calibrated to real-world parameters, is it possible to beat trading algorithms from the existing 

literature? 

 To answer these questions, I develop two models. First, I develop a simple binomial 

representation of trading in partial equilibrium (i.e., where an individual optimizes while taking 

the rest of the world as given). In this model trading is done with unit-sized limit orders and market 

orders. The model is binomial in the sense that orders either fully execute or don’t execute. Since 

                                                 
1 A market order is a request to buy or sell a specific quantity of shares at available market price(s). A limit order is 
a request to buy or sell at a specified price as many shares as possible up to desired quantity. 
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all orders are unit-sized, there is no case of partial execution. I find the analytic solution for the 

optimal trading strategy for both single-period and multiple-period problems. I find that the 

optimal multi-period trading strategy involves what I call “dynamic aggressiveness.” Dynamic 

aggressiveness means that the optimal sequence of limit orders involves small changes in price 

aggressiveness2 from node-to-node over a binomial tree. That is, if a given limit order executes (or 

doesn’t), then the next limit order optimally has a slightly less (more) aggressive price. This trading 

strategy frequently beats (or at least ties) the benchmark trading strategies from the existing 

literature. 

 Secondly, I develop an elaborate model of a multi-period trader who submits orders to a 

dynamic limit order book exchange in partial equilibrium. The buy-side trader is trying to satisfy 

an overall trading request by a fund manager. The model is wide-open. Limit or market orders of 

any size can be submitted. Prices are on a discrete penny grid. Unexecuted limit orders can be 

cancelled at any time. The buy-side trader can select from a huge range of trading algorithms. 

Trading algorithms can depend on a rich variety of state variables such as the current bid, ask, 

midpoint, bid depth, ask depth, order arrival from other traders, order type from other trades, order 

size from other traders, own quantity executed so far, number of periods remaining, lagged values 

of any variable, etc. I calibrate the model to real-world summary statistics for order arrival, order 

size, and intraday price volatility. For each trading problem, I use genetic algorithm optimization 

to numerically determine the optimal trading algorithm over a large number of simulated trials.  

I find that the optimal trading algorithm typically involves dynamic aggressiveness. I find 

that if the fund manager is opportunistic (e.g., suffers no disutility from failure to obtain the 

requested quantity), then the optimal algorithm should use only limit orders with low price 

                                                 
2 For limit buy (sell) orders, a higher (lower) price is more aggressive. 
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aggressiveness, because these trades will earn the spread. Conversely, if the fund manager is 

committed (e.g., strongly wants the requested quantity and so would suffer large disutility from 

failure to obtain it), then the optimal algorithm uses limit orders followed by market orders at the 

end, because the market orders will guarantee purchasing the requested amount. I find that if the 

fund manager is informed and performance is not measured using effective spread, then the 

optimal algorithm uses market orders that are front-loaded in time so as to trade before prices move 

in the predicted direction. Conversely, if performance is measured using effective spread or the 

fund manager is uninformed, then the optimal algorithm uses less aggressive orders spread evenly 

over time. The reason is that under effective spread the benchmark is the contemporaneous quote 

midpoint, which moves up or down with the price, so there is no failure penalty to trading later in 

the day. Also, if the fund manager is uninformed, then there isn’t any predicted direction of prices 

to avoid. I find that the optimal trading algorithms frequently beat (or at least tie) the benchmark 

trading strategies from the existing literature. 

This paper sits at the intersection of two streams of literature. One stream of literature 

analyzes the optimal execution problem of a large, multi-period trader in partial equilibrium. 

Bertsimas and Lo (1998), Harris (1998), Almgren and Chriss (1999, 2001), Vayanos (2001), 

Huberman and Stanzl (2005), Obizhaeva and Wang (2012), and others analyze a multi-period 

trader whose trades have temporary and/or permanent price impact in partial equilibrium.3 These 

models have contributed to our knowledge of optimal multi-period trading strategies, but the need 

for tractability has previously limited consideration to market order strategies only. Both of my 

models allow both limit and market orders. 

                                                 
3 Obizhaeva and Wang (2012) develop an interesting variation in which the multi-period trader’s market orders deplete 
a block-uniform limit order book on continuous prices. 
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 Another stream of literature theoretically analyzes limit order book exchanges. Dynamic 

limit order book models have been developed by Parlour (1998), Foucault (1999), Parlour and 

Seppi (2003), Foucault, Kadan, and Kandel (2005), Goettler, Parlour, and Rajan (2005, 2009), 

Rosu (2009), Colliard and Foucault (2012), and Buti and Rindi (2013). These models have 

contributed useful characterizations of limit order book markets, but their significant complexity 

has required the simplification that each endogenous agent be limited to a single period for order 

submission. Both of my models allow an endogenous trader to submit multiple orders over 

multiple periods. 

 The paper is organized as follows. Section 1 develops a simple binomial model of multi-

period trading and solves it analytically. Section 2 develops an elaborate model of a multi-period 

trading via a dynamic limit order book, calibrates it, and numerically solves for the optimal trading 

algorithm. Section 3 concludes. An appendix contains all proofs. 

1.  A Simple Binominal Model 

1.1  The Single-Period Version 

I develop a simple binomial model of a pure, open limit order market. This type of market 

structure is used by NYSE-ARCA, BATS, Direct Edge, the Tokyo Stock Exchange, Euronext, and 

many other exchanges around the world. This simple model provides insight and intuition into 

optimal trading strategy that carries over to the rich simulation model in the next section of the 

paper. 

I begin with a single-period version. For simplicity, the initial limit order book for a given 

stock is empty. A single seller wishes to trade with a single buyer. Both traders need to set a limit 

order price. By convention, the seller is exogenous. The seller submits a limit sell order at a limit 

sell price s  for one unit of the asset. The limit sell price s  is drawn from an uniform distribution 
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over the continuous interval  ,v d v d  , where v  is the public value of the stock and d  specifies 

the amount of dispersion of potential prices. The buyer is endogenous. The buyer submits a limit 

buy order at a limit buy price b  for one unit of the asset. He chooses the limit buy price b  from 

the same the continuous interval  ,v d v d  . Define limit buy price aggressiveness ,a  as the 

excess of the limit price above the public value, .a b v   

Both orders are submitted simultaneously. Both orders execute in full when s b  and both 

fail to execute when s b . It immediately follows that the limit buy’s probability of execution p  

is the probability that s b , which is 

 
 

    2

b v d b v d
p

v d v d d

   
 

  
.                                         (1) 

This way of modeling a limit buy captures the key property that a higher buy price b  increases the 

probability of execution p . At the extreme, a buy price of v d  yields a 100% probability of 

execution. I interpret this case as a market buy order.4 For simplicity, I adopt the convention that 

the two orders execute at the buy price b .5  

The buyer wishes to minimize his expected disutility  E D  at the end of the period. If the 

limit buy executes, then he receives disutility from the cost of trading b v , the excess price paid 

relative to the public value v .6 If the limit buy fails to execute, then he receives a failure penalty 

                                                 
4 Equivalently, this can be interpreted as a marketable limit buy. The simple binomial model does not distinguish 
between a market buy and a marketable limit buy. 
5 It is easy to show that the results of the model are qualitatively similar for the alternative convention that they execute 
half the time at the buy price and half the time at the sell price. 
6 This measure of the cost of trading is very similar to the effective half spread, which for buy trades is defined as the 
trade price minus the quote midpoint. In this simple model, the cost of trading is equal to price aggressiveness, 
a b v  . In the rich simulation model in the next section, we will measure the cost of trading with four different 
metrics. 
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,k  which represents the buyer’s disutility for failing to obtain the desired amount. The buyer’s 

decision problem is to choose the limit buy price b  so as to minimize his expected disutility 

      1
b

Min E D p b v p k    .                                           (2) 

A higher b  increases p  which reduces the chance of receiving the failure penalty k  for 

failing to execute. The tradeoff is that a higher b  increases the cost of trading b v  when execution 

happens. The proposition below gives the analytic, single-period solution. 

Proposition 1. If 3k d , then the optimal limit price aggressiveness is 

 1

2
a k d d   ,                                                         (3) 

the corresponding probability of execution is 

1
4

k d
p

d


   ,                                                              (4) 

and the corresponding expected disutility is 

 
2 26

8

dk d k
E D d

d

 
  .                                                   (5) 

If 3k d , then the optimal limit price aggressiveness is a d , the corresponding probability of 

execution is 1p  , and the corresponding expected disutility is   .E D d  

 The key driver of the optimal trading strategy is the failure penalty k . If the failure penalty 

is low enough  3 ,k d  then the optimal order submission is a limit buy with an interior optimum 

price aggressiveness .a d  The price aggressiveness is increasing in the failure penalty k and 

decreasing in the dispersion d. Conversely, if the failure penalty is high enough  3 ,k d  then the 

optimal order submission is a market buy at the corner solution price aggressiveness .a d  

1.2  The Multi-Period Version 
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Now I extend the simple binomial model to a multi-period version. There are T order 

submission times 1, 2, ,t T  and a terminal time 1T  .7 Let tv  be the public value of the stock 

at time t. This public value is conditional on all public information at time t, including the history 

of all prior trades and quotes in the stock. Let next time’s public value be given by 1 1t t tv v    , 

where 1t   is next time’s innovation in the pubic value. 

At any node on a binomial tree, a single exogenous seller wishes to trade immediately. At 

time t , the seller submits a limit sell at a sell price ts  for one unit that expires after one time period. 

The limit sell price ts  is drawn from an uniform distribution over the continuous interval 

 , .t tv d v d    

A single endogenous long-lived buyer wishes to purchase N  units by the terminal time 

1T  . Since there is only one unit available for sale at a given time, this will require the execution 

of N  limit or market buy orders of one unit each. We constrain N T  so that it is feasible in 

some state of nature to purchase the desired quantity. We also impose the economically sensible 

non-negativity constraints 0,  0,d N   and t 0v d   at all times.  

Consider a buyer who at time t has already succeeded in purchasing n  units. At the  ,t n  

node of a binomial tree, the buyer cancels any unexecuted limit buy from the previous time8 and 

submits a new limit buy order at a buy price ,t nb  for one unit. He chooses ,t nb  from the same 

                                                 
7 In principle, T could be arbitrarily large. There could be so many periods that one period could represent one second 
or even one millisecond. 
8 In the simple binomial model, canceling any unexecuted limit buy always leaves the buyer either better off or 
indifferent compared to having two limit buys outstanding at the same time. To see this, recall that only one unit is 
available for sale in any period and thus, it is not possible for two buy orders to execute in the same period. Further, 
if the prior buy price is higher than the current period optimal buy price, then the prior buy is too high and the buyer 
is better off by canceling it. If the prior buy price is lower than the current optimal buy price, then the prior buy price 
is dominated and the buyer is indifferent to its existence. So in the latter case, we adopt the tie-breaking convention 
that he cancels it. 
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interval  ,t tv d v d   as the contemporaneous seller. As before, the limit buy price 

aggressiveness ,t na  is defined as the excess of the limit price above the public value, , , .t n t n ta b v   

Both orders are submitted simultaneously. Both orders execute in full when ,t t ns b  and 

both fail to execute otherwise. The limit buy’s probability of execution ,t np  is the probability that 

,t t ns b , which is given by 

 
 

   
, ,

, 2
t n t t n t

t n
t t

b v d b v d
p

v d v d d

   
 

  
.                                     (6) 

The long-lived buyer’s disutility function at the terminal  1,T n  node is 

  1, 1        for 0,1, ,T n TD TCT k N n n N      ,                        (7) 

where 1TTCT   is the total cost of trading prior to time 1T   (which includes the final trading time 

T) and the second term is the trader’s degree of disutility due to the quantity underfill N n . 

 Let ,t nJ  be the long-lived buyer’s derived disutility function at the  ,t n  node. By dynamic 

programming, the decision problem at the  ,t n  node is given recursively by 

,
, , 1,

t n
t n t n t n

b
J Min E J     .                                                               (8) 

where n  is the random number of units purchased through the next time 1t   and 1, 1,T n T nJ D 

for all values of n. At any given  ,t n  node, if n N , then an order will be submitted that will 

either execute or not. However, if n N , then no order will be submitted since the full desired 

quantity has already been purchased. Thus, derived disutility ,t nJ  at the  ,t n  node can be written 

as 
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 
,

,

, 1, 1 , 1,

, , 1,

 1 if 

                                        if .
t n

t n

t n t n t n t n
b

t n t n t n
b

t

Min p J p J n N
J Min E J

TCT n N

  



       


                         (9) 

In the case that n N , the absence of further orders means that the current derived utility equals  

the terminal disutility, which also equals the total cost of trading that has already been realized 

prior to the current date tTCT  and no failure penalty due to quantity underfill.  

In the case that n N , we can write the derived disutility as the expected value of terminal 

disutility under the optimal trading strategy as determined recursively backwards by dynamic 

programming. In the event that the time t order executes, then the updated expected value of 

terminal disutility is 

  1, 1 , 1, 1 1, 1( 1)t n t t n t t n t nJ TCT b v f k N n h             ,                           (10) 

where tTCT  is the total cost of trading prior to time t, ,t n tb v  is the increment to the total cost of 

trading caused by the time t order executing, 1, 1t nf    is defined as the expected future addition to 

the total cost of trading starting from the  1, 1t n   node, and 1, 1t nh    is defined as the expected 

number of units to be purchased in future trades starting from the  1, 1t n   node. Both 1, 1t nf    

and 1, 1t nh    are the forecasted outcome of future trades under the optimal trading strategy. 

In the event that the time t order doesn’t execute, then the updated expected value of 

terminal disutility is 

  1, 1, 1,t n t t n t nJ TCT f k N n h       ,                                                  (11) 

where 1,t nf   and 1,t nh   are defined analogously starting from the  1,t n  node.  

Again there is a trade-off. A higher buy price ,t nb  increases the probability of execution 

,t np which reduces the chance of receiving the failure penalty (disutility) for a quantity underfill, 
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but it increases the increment to the total cost of trading ,t n tb v  when execution does happen. The 

proposition below gives the analytic, multi-period solution. 

Proposition 2. The solution is specified by binomial trees for ,  ,  ,  and .a p f h  At the  ,t n  nodes of 

these trees where the trader is not done  n N , the optimal limit price aggressiveness is 

  , 1, 1, 1 1, 1 1,

1
, 1
2t n t n t n t n t na Min d f f k h h d     

        
,                                 (12) 

the probability of execution at the optimal limit buy price is 

,
, 2

t n
t n

a d
p

d


 ,                                                                   (13) 

the expected total cost of trading on future trades is 

   , , , 1, 1 , 1,1t n t n t n t t n t n t nf p b v f p f       ,                                          (14) 

and the expected number of units to be purchased in future trades is 

   , , 1, 1 , 1,1 1t n t n t n t n t nh p h p h      .                                                    (15) 

At the  ,t n  nodes of these trees where the trader is done  n N , no further orders will be 

submitted and so , , ,0,  0,  0,t n t n t nf h p    and ,t na
 

is undefined. For all terminal nodes, 

1, 1,0,  and 0.T n T nf h     The   a and p  trees do not include the terminal date 1T  .
 
Further, a 

binomial tree for the derived disutility minus the total cost of trading prior to time t  ,t n tJ TCT  

is given by equations (9), (10), and (11). On the initial date, the total cost of trading before the 

first trade 1 0TCT   and so the first node (1,0) of this binomial tree yields the ex-ante derived 

disutility 1,0.J  
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The binomial trees are calculated backwards from the last date to the first. Start at the date 

1T   nodes for the f  and h  binomial trees (which are equal to zero), next calculate the date T  

nodes for the a  and p  binomial trees using (12) and (13), then calculate the date T  nodes for the

f  and h  trees using (14) and (15), …, keep calculating the a  and p  trees first and then the f  

and h  trees second on each date all the way back to date 1. Finally, the J TCT
 
binomial tree 

can be calculated from the ,  ,  ,  and a p f h  trees using (9), (10), and (11) starting at date T and 

working back to date 1.  

1.3  The Character of the Optimal Trading Strategy 

 A numerical example will illustrate the character of the optimal trading strategy. Suppose 

that the long-live buyer wishes to purchase 4 units  4N   has 8 time periods  8T   to do so. 

Further suppose that the remaining parameters are 0 $30.00,  $0.10,v d   and 0.32.k   Given 

these parameters, the failure penalty is relatively high  3 .k d  

Figure 1 shows a binomial tree for the optimal limit price aggressiveness a  and a binomial 

tree for the probability of execution p . Starting at the (1,0) node of the upper tree, the optimal 

limit price aggressiveness on date 1 is 1,0 $0.00,a   meaning the date 1 limit buy price is set equal 

to the date 1 true value 1,0 1b v . Looking at the corresponding (1,0) node of the lower tree, this 

order has a probability of execution
 1,0 50%p  . If this order fails to execute, then you go to the 

up-node (2,0) in both trees. At this node, you cancel the time 1 limit order and submit an optimal 

time 2 limit order with a slightly more aggressive price 2,0 $0.01a   (meaning a limit buy price 

2,0 2 .01)b v  , which corresponds to a slightly higher probability of execution 2,0 56%p  . 

However, if the time 1 order succeeds in executing, then you go to the down-node (2,1) in both 

trees. At this node, you submit an optimal time 2 limit order with a slightly less aggressive price 
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2,1 $0.01a    (meaning a limit buy price 2,1 2 .01b v  ), which corresponds to a slightly lower 

probability of execution 2,1 44%p  .  

I call this pattern of slightly higher price aggression on up-steps and slightly lower price 

aggression on down-steps “dynamic aggressiveness.” That is, from any node if the current limit 

order fails to execute, then the next step at the up-node will optimally be at a slightly more 

aggressive price with a slightly higher probability of execution. Intuitively, the failure to execute 

makes the remaining problem more difficult (you have one less period to purchase the same 

number of units as before) and so you act more aggressively. Conversely, if the current limit order 

succeeds in executing, then the next step at the down-node will optimally be at a slightly less 

aggressive price with a slightly lower probability of execution. Intuitively, the success at execution 

makes the remaining problem less difficult (you have one less unit to purchase in the remaining 

time) and so you act less aggressively.  

Dynamic aggressiveness characterizes nearly all of the 2T  possible paths that you might 

take over the binomial tree. For example, suppose your first four steps happen to be up, down, 

down, and up. Then, your price aggressiveness and probability of execution will slightly increase, 

decrease, decrease, and increase. 

More specifically, dynamic aggressiveness characterizes any path over the entire diamond-

shaped zone with the yellow shading (light grey shading with solid borders in black and white) on 

the binomial trees. I call this area the Limit Order zone, because it turns out that it is always optimal 

to submit non-marketable limit orders  , 1t np   in this zone (this result is proven in Proposition 

4). Specifically, the Limit Order Zone contains all  ,t n  nodes where the trader is not done 

 n N  and where there is a positive amount of slack time (i.e., more time periods left than 
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remaining units to be purchased 1T t N n    ). The following proposition formally specifies 

this characterization. 

Proposition 3. In the Limit Order Zone, the optimal strategy exhibits dynamic aggressiveness. That 

is, from any  ,t n node in this zone: 

 If the order fails to execute, then you go to the up-node  1,t n  where the optimal strategy 

is to cancel the unexecuted order and submit a new limit buy at a more aggressive price 

1, ,t n t na a   with a higher probability of execution 1, ,t n t np p  . 

 If the order succeeds in executing, then you go to the down-node  1, 1t n   where the 

optimal strategy is to submit a limit buy at a less aggressive price 1, 1 ,t n t na a    with a 

lower probability of execution 1, 1 ,t n t np p   .  

To get a feel for dynamic aggressiveness, take a look at the lower binomial tree for the 

probability of execution in Figure 1. You can readily see the probability of execution at any node 

in the Limit Order Zone is an intermediate value between the following two connected nodes. 

Formally, one can make a stronger statement. Part of the proof of Proposition 3 (see the appendix) 

is to prove that the probability of execution at any node where the trader is not done  n N  is a 

weighted average of the following two connected nodes 

 , , 1, 1 , 1,1t n t n t n t n t np w p w p     ,                                           (16) 

where the weight  , 1, 1 1, 2t n t n t nw p p    . Logically, if the  ,t n
 
node is in the middle, then one 

of the following connected nodes will have a higher probability of execution and the other will 

have a lower probability of execution. 
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 An interesting case is when there have been four failures to execute in a row (the up-up-

up-up-node). This is the (5,0) node, where there are only four time periods left and there remains 

four units to be purchased. In other words, there is zero slack time. The only way to guarantee 

execution is with the “corner solution" strategy of submitting four market buys over the next four 

time periods. The optimal limit price aggression for these four orders is the maximum possible 

5,0a  6,1a  7,2a  8,3 $0.10a d   (meaning the most aggressive possible sequence of bid prices 

5,0 5 ,b v d   6,1 6 ,b v d   7,2 7 ,b v d   and 8,3 8 ).b v d   These market buys will execute with 

certainty 5,0p  6,1p  7,2p  8,3 100%p  . I call the upper right triangle with green shading 

(medium grey shading in black and white) of the binominal trees the “Market Order / Maximum 

Aggressiveness Zone.” The name describes the optimal trading strategy in this zone (see 

Proposition 4 below).9 

 Another interesting case is when there have been four successes in executing in a row (the 

down-down-down-down-node). This is the (5,4) node, where the entire desired quantity has 

already been purchased. Hence, no more orders are submitted and the probability that an order will 

be executed is zero 5,4 6,4 7,4 8,4 0%.p p p p     I call the lower right triangle with red shading 

(dark grey shading in black and white) of the binominal trees the “Done” zone.10  

                                                 
9 When the failure penalty is high  3 ,k d the nodes above the southwest edge of the Market Order / Maximum 

Aggressiveness Zone are unreachable. To see this, consider the (5,0) node which is on the southwest edge. Here it is 
optimal to submit a market buy that is certain to execute 

5,0 100%.p 
 
Thus, it is certain that the trader will go to the 

down-node (6,1) next and cannot reach the up-node (6,0). 
10 The nodes below the NorthWest edge of the Done Zone are unreachable. To see this, consider the (5,4) node which 
is on the NorthWest edge. Here no more orders are submitted and so the probability that an order will be executed is 
zero 

5,4 0%.p   Thus, it is certain that the trader will go to the up-node (6,4) next and cannot reach the down-node 

(6,5). 
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Now consider an example where the failure penalty is relatively low  3 .k d  Reduce the 

failure penalty to 0.28k   and keep the rest of the parameters the same: 4,N   8,T  0 $30.00,v   

and $0.10.d   Figure 2 shows the binomial trees in this case. The main difference in this case is 

in the Market Order / Maximum Aggressiveness Zone. Here the optimal limit price aggression is 

less than the maximum possible ,t na d  (meaning the bid prices are less than the maximum 

possible , ).t n tb v d 
 
These non-marketable limit orders have a probability of execution less than 

100%, and specifically in this case, , 95%.t np 
 

This limit order exhibits the Maximum 

Aggressiveness that is acceptable to this trader and it is greater than the aggressiveness of any 

order in the Limit Order Zone.11  

 Indeed, it is interesting that all of the nodes in this zone have a probability of execution 

which is identical to probability of execution for the same parameter values in single-period case. 

This makes sense when you consider that all of the nodes on the last trading date, (8,0), (8,1), (8,2), 

and (8,3), in fact only have one trading opportunity left and so logically the probability of execution 

 8,0 8,1 8,2 8,3 95%p p p p     must be the identical to the single-period solution. Further, the 

remainder of nodes in this zone have two following connected nodes with a 95% probability of 

execution. Since all nodes are a weighted average of the following two connected nodes by 

equation (16), they must have the same 95% probability of execution.12  

The proposition below specifies that the character of the optimal solutions that we have 

discussed for these particular numerical examples holds in general. 

                                                 
11 When the failure penalty is low  3 ,k d  the optimal limit orders in the Market Order / Maximum Aggressiveness 

Zone have a probability of execution of less than 100%. Hence, all of the nodes can be reached. 
12 The situation changes when we get to the limit order zone, because at least one of the following connected nodes 
has a lower probability of execution. For example, the (7,4) node in the limit order zone is connected to the (8,4) node 
with a 95% probability and to the (8,5) node with a 0% probability. The weighted average of these two following 
connected nodes yields a 50% probability for the (7,4) node. 
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Proposition 4. The binomial trees for the optimal limit price aggressiveness and the probability of 

execution have three zones: 

1. A Limit Order Zone, where it is optimal to submit a non-marketable limit order.  

2. A Market Order / Maximum Aggressiveness Zone. In this zone, if the failure penalty is 

high enough  3k d , then it is optimal to submit a market order. Conversely, if the 

failure penalty is low enough  3k d , then it is optimal to submit a non-marketable limit 

order with higher price aggressiveness than any node in the limit order zone. 

3. A Done Zone, where the trader is done  n N  and so no further orders are submitted. 

Under dynamic aggressiveness, if the  ,t n  node order fails to execute, then the remaining 

trading problem is more difficult and thus requires a more aggressive strategy. Pursuing this 

reasoning, multiple failures to execute cause the trader to cross-over into a more aggressive 

zone, namely, the Market Order / Maximum Aggressiveness Zone. Intuitively, all of the slack 

time is gone and so the trader must act very aggressively. Conversely, N  successes in executing 

cause in the trader to cross-over into a less aggressive zone, namely, the Done Zone. Here the 

trader adopts the least aggressive strategy possible: stopping trading.  

Next I compare the optimal strategies identified so far to two benchmark strategies from 

the existing literature. First, Bertsimas and Lo (1998) analyze a strategy of submitting equal-

sized market orders each period. They prove that this is the optimal strategy in their framework 

in the special case when the underlying price innovations are zero mean independently and 

identically distributed random shocks (i.e., white noise). Second, Harris (1998) finds that it is 
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optimal for a trader to start with (equal-sized) limit orders in order to attempt to get a lower 

price, but if this fails, then submit a market order at the end to guarantee execution.13  

Since these two benchmark strategies are different than the dynamic aggressiveness 

strategy that Proposition 3 proves is optimal strategy, they must yield worse (i.e., higher) or the 

same ex-ante expected disutility in all cases. One tie case is the one that Harris (1998) considers, 

which can be viewed as a special case of the binomial model when only a single order is 

requested  1N   and the failure penalty is high  3k d . Figure 3 shows the binomial trees 

in this case. Here the optimal strategy begins by submitting a limit order at a low -$0.06 

aggressiveness with an 18% chance of execution. If it executes, you are done. If not, the next 

limit order will be more aggressive with a 20% chance of execution. The pattern continues at 

each node going along the upper edge of the binomial tree. From each node, you will be done 

if your order executes or you will submit a more aggressive next time if it fails. In the last 

period, you submit a market order. In this special case, the optimal strategy exactly matches the 

second benchmark from the existing literature. But in all other cases, the dynamic 

aggressiveness strategy beats the two benchmark strategies from the existing literature. 

2.  A Rich Simulation Model 

2.1  Model Setup 

 Many buy-side institutions separate the “selection” task and the “implementation” task. 

For each fund (e.g., mutual fund, pension fund, endowment fund, etc.), there is a fund manager 

who decides what securities to buy and sell in what overall amounts at what times, which is called 

selection. The fund manager’s trading requests are sent to a buy-side internal trader. This employee 

                                                 
13 Harris and Hasbrouck (1996) also discuss the idea that a patient liquidity trader might begin by submitting a limit 
order, and if need be, switch to a market order at the end. Handa and Schwartz (1996) also analyze a limit order first 
and market order last strategy compared to a market order first strategy. 
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decides what order types at what order prices in what order sizes should be sent to what exchanges 

or broker-dealers at what times, which is called implementation.  

 I develop a rich simulation model from the point of view of the internal trader.  This 

employee takes the fund manager’s request as given and tries to figure out the best way to 

implement the request so as to minimize the fund manager’s disutility function (see below). 

 The fund manager’s request is a request to buy a specific quantity of a particular security 

expressed as a percentage of average daily volume.14 For example, a request to purchase 1% of 

average daily volume would be an easy request, whereas a request to purchase 30% of average 

daily volume would be a difficult request. Multiplying (Requested Buy as a percentage of Average 

Daily Volume) times (Average Daily Volume measured in round lots) yields the requested number 

of round lots N .15 

 There are two types of agents. One agent is the endogenous, long-lived, buy-side trader. 

Other agents are exogenous, short-lived traders who can submit a variety of orders.16  

The trading day is divided into 20 order submission times 1, 2, , 20t    that are 20 minutes 

apart. Let T  be the fund manager’s order submission deadline to fulfill the purchase request and 

1T   be a terminal valuation time after the deadline. For example, a fund manager’s deadline of 

1T   (corresponding to 9:40 a.m.) would be very impatient, whereas a fund manager’s deadline 

of 20T   (corresponding to 4:00 p.m.) would be very patient.  

                                                 
14 I only consider buy requests. Sell requests are incorporated implicitly as the mirror image of buy requests. I only 
consider requests to trade in a single security. Bertsimas and Lo (1998) show that portfolio requests are readily 
accommodated by accounting for the multivariate stochastic process across securities. 
15 One round lot is equal to 100 shares. 
16 Like the rest of the optimal execution literature, both of my models are based on partial equilibrium (that is, 
individual optimality). Compared to general equilibrium, the strength of this approach is its enormous generality. By 
calibrating the actions of other agents to real data, it avoids having to impose strong assumptions, such as all agents 
in the economy are rational, have full understanding of distributions, have sophisticated computational ability, etc. 
The inherent weakness of this approach is that it cannot address the interaction of multiple strategic agents. 
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The two classes of agents alternate in submitting orders. At time 1t  , other traders submit 

an order and then the buy-side trader submits an order. At time 2t  , other traders submit an order 

and then the buy-side trader submits an order. And so on until the deadline time t T , when other 

traders submit their final order by the deadline and then the buy-side trader submits a final order 

by the deadline.  

The fund manager’s disutility function 1TD   at the terminal valuation time 1T   is 

    1 1 1 1,0 ,0m
T T T TD TCT U Max N n O Max n N A           ,                    (17) 

where 1
m

TTCT   is the total cost of trading at the terminal valuation time based on metric m 

(explained below), U  is the fund manager’s failure penalty (i.e, the fund manager’s underfill 

disutility per round lot for getting too little), N  is the number of round lots requested by the fund 

manager, 1Tn   is the cumulative number of round lots purchased by 1T  , O  is the fund manager’s 

overfill disutility per round lot for getting too much, A  is the fund manager’s risk aversion, and 

  is the standard deviation of trade prices. The second term is the fund manager’s degree of 

disutility due to a quantity underfill (when 1Tn N  ), the third term is the fund manager’s degree 

of disutility due to a quantity overfill (when 1Tn N  ),  and the fourth term captures the fund 

manager’s disutility due to execution price risk. The parameters ,  ,  and U O A  are required to be 

non-negative. In practice, we do not observe algorithms overfilling the fund manager’s request. 

Therefore, I set O  to a relatively large value such that the optimal algorithm always avoids 

overfilling. 

 I incorporate four alternative metrics that are widely-used in practice for measuring the 

cost of trading m
kC  due to the thk  trade under metric m: 
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     :     2ES
k k k kEffective Spread C I P M  ,

 
                                  (18)

  :     2IS
k k k ISImplementation Shortfall C I P M  ,                                   (19) 

      :     2VWAP
k k k VWAPVolume Weighted Average Price C I P P   ,                             (20) 

     :     2C
k k k CClosing Price C I P P  ,

 
                                     (21) 

where kI  is an indicator variable that equals +1 if the thk  trade is a buy and -1 if the thk  trade is a 

sell, kM  is the quote midpoint immediately before the thk  trade, ISM  is the quote midpoint at the 

time of fund manager’s request (interpreted as before the start of the trading day), VWAPP  is the 

weighted average trade price over the trading day as weighted by the volume of each trade, and 

CP  is the last trade price of the trading day. The total cost of trading over all trades 1, 2, ,k K   

that take place before the deadline is 

   1 1
1

K
m m

T k IS C IS T
k

TCT C I M M N n 


    ,                                   (22) 

where ISI  is an indicator variable that equals +1 under Implementation Shortfall and 0 otherwise 

and CM  is quote midpoint at the close of the trading day. The second term is an extra opportunity 

cost component that is part of Implementation Shortfall (but not the other metrics), which measures 

the foregone profits (or losses) on the quantity underfill (or overfill)  1 .TN n   

I incorporate the possibility that the fund manager may be informed. Let s  be the fund 

manager’s private signal prior to the trading day about the terminal value of the security and let 

1s v  be the difference between that signal and the time 1 public value of the security. Let 1 1Tv v   

be the cumulative innovation in the pubic value of the security from time 1 to time T+1. Define 

the fund manager’s information   as the correlation between signal difference 1s v  and the 
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cumulative innovation 1 1.Tv v   For example, if the fund manager’s information 0  , then the 

fund manager is uninformed. Conversely, if the fund manager’s information 1  , then the fund 

manager is perfectly informed.  

When the fund manager is unformed, the public value innovations are equally likely to be 

positive or negative. Conversely, if the fund manager is truly informed and chooses to request 

buying, then it must have been because the fund manager’s signal reflected good news (i.e., the 

signal difference is positive 1 0).s v   Under perfect information  1   the fund manager’s 

good news signal must have been correct, and so in this case, the public value innovations are 

strictly positive.17 

Like the simple binomial model, the rich simulation is a model of a pure, open limit order 

market. Unlike the previous model, the initial limit order book is not necessarily empty.  

The buy-side trader has a rich set of orders to choose from. Each period either a market 

order or a limit order may be submitted. A limit order may have any limit price as selected from a 

discrete price grid with penny increments. A market or limit order may be for any integer amount 

of round lots. At any time you may simultaneously cancel an unexecuted limit order and submit 

an updated limit or market order.  

2.2  Model Calibration 

In the model, I have calibrated the actions of other traders to real-world summary statistics 

based on order data. In 2000 the Securities and Exchange Commission (SEC) adopted Rule 60518 

that mandated the disclosure of monthly summary statistics by each exchange (or other market 

                                                 
17 A fund manager who is truly informed and gets a signal of bad news which leads to a sell request is incorporated 
implicitly as the mirror image of a signal of good news leading to a buy request. In the mirror image case under perfect 
information  1   the fund manager’s signal must have been correct and so public value innovations would be 

strictly negative. 
18 It was formerly named Rule 11Ac1-5. 
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center) for each individual stock based on order data. I select the Better Alternative Trading System 

(BATS) BZX exchange to calibrate to because its market structure is a pure, open limit order book 

just like my model. As a starting point, I calibrated other traders orders using the Rule 605 data for 

Microsoft for the month of December 2011. 

Table I shows the calibrated inputs to the simulation. Panel A shows the probability of 

various order types. The Rule 605 data shows that market orders and marketable limit orders 

represent 61.5% of all Microsoft orders on BATS. So I assigned 30.75% to market buys and 

30.75% market sells. Conversely, non-marketable limit orders represent 38.5% of all Microsoft 

orders on BATS. So I assigned 19.25% for non-marketable limit buys and 19.25% for non-

marketable limit sells. 

Panel B shows the probability of order size by order type. The Rule 605 data reports the 

total shares for market orders and marketable limit orders. I divided the monthly figure by 21 

trading days in December 2011, by 20 intervals per day, and by 100 shares per round lot to obtain 

230.4 round lots per 20-minute period. I assigned probabilities to various market order sizes to 

obtain an average size of 230.4 round lots. Similarly, the total shares for non-marketable limit 

orders were divided by 21 trading day, by 20 intervals per day, and by 100 shares per round lot to 

obtain 276.7 round lots per 20-minute period. I assigned probabilities to various (non-marketable) 

limit order sizes to obtain an average size of 276.7 round lots. Implicitly, the average calibrated 

order in the simulation represents the aggregate order quantity over a 20-minute interval. 

 Panel C shows the probability of price changes. I selected intraday Trade and Quote (TAQ) 

data for Microsoft in December 2011 and sampled trade prices every 20 minutes. To determine 

the intraday volatility, I computed the mean absolute deviation of the 20-minute prices as 0.033. I 

assigned probabilities to public value innovations such that the mean absolute deviation was 0.033. 
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Finally, out of all Microsoft non-marketable limit orders on BATS, 0.0% were inside-the-quote, 

87.4% were at-the-quote, and 12.6% were behind-the-quote. To approximately capture this 

distribution, I assigned a probability of non-negative limit price deviation to be 0.0%, the 

probability of -$0.01 limit price deviation to be 87.4%, and the probability of a -$0.02 and -$0.03 

limit price deviation to add up to 12.6%. 

2.3  The First Stage of Analysis 

 The rich simulation model provides a wide variety of state variables that may be relevant 

to trading algorithms. In the first stage of analysis, I brainstormed a wide variety of trading 

algorithms. Specifically, I tested 46 trading algorithms which exhibited the following types of 

variations: 

 Submitted limit buys with varying degrees of price aggressiveness relative to the bid (e.g., a 

penny behind the bid, equal to the bid, a penny above the bid, etc.) and with varying 

cancellation and resubmit policies (e.g. no cancellation, cancel and resubmit every 4 periods, 

cancel and resubmit every 8 periods, etc.), 

 Submitted market buys with varying sizes (e.g., a few large orders, more smaller orders, many 

tiny orders every period, etc.), 

 Opportunistically submitted additional market buys when the spread was smaller than usual 

(e.g., when the spread is less than 8 cents, when the spread is less than 6 cents, when the spread 

is less than 4 cents, etc.),  

 Submitted limit orders with dynamic aggressiveness relative to the bid or relative to the 

midpoint and ending with a market buy 

 Submitted limit orders with varying time-of-day algorithms (more front-loaded, even, or more 

back-loaded) and ending with a market buy. 
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 The algorithms above were tested on a wide range problems. I varied the requested buy 

amount as a percentage of daily volume (10%, 50%, 100%),  the deadline (2 periods, 10 periods, 

and 20 periods), the failure penalty (U = 0.00 and U = 0.50), fund manager risk aversion (none = 

0, medium = 100, high = 1,000), fund manager information (none = 0, medium = 0.50, and high = 

1.00), and performance metric (effective spread, implementation shortfall, volume-weighted 

average price, and closing price). Combining all of the variations, I tested 972 problems.  

 For each iteration of the simulation, there are four random variables that must be updated 

for each of the 20 time periods, plus a few more one-time random variables, for a total of 87 

random variables. For each problem, I tested each algorithm with 500 iterations of the simulation 

and computed the average disutility over all iterations. I repeated this process for all 46 algorithms 

and identified the winning algorithm with the lowest average disutility. I determined the winning 

algorithm for all 972 problems.  

2.4  The Second Stage of Analysis 

 In the second stage of analysis, I combined all of the winning algorithms from the first 

stage into a single combined algorithm. The combined algorithm is very general and flexible. It is 

controlled by 19 parameters that can reproduce all of the winning algorithms from the first stage 

of analysis as special cases. The combined algorithm encompasses a vastly larger space of possible 

algorithms than the original first-stage algorithms and the 19 parameters can be precisely fine-

tuned to achieve the optimal result. 

  Specifically, the combined algorithm allows: (1) limit order only algorithms, (2) market 

order only algorithms, and (3) algorithms that start with limit orders and then switch to market 

orders when a certain number of periods remain. For the third algorithm, the switch point (in 

periods remaining) is an adjustable parameter. 
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 Let tx  be the number of round lots submitted in period .t  The combined algorithm allows 

two functional forms for number of round lots to submit 

 
  1

          when 1

when 1,
T t function

t
T t t function

Round N I
x

Round N n I






 

    
                          (23) 

where T t   is the submission rate when T t  periods remain under the first functional form, T t   

is the submission rate when T t  periods remain under the second functional form, 1tn   is the 

cumulative number of round lots purchased by the prior period 1,t   functionI  is a dummy parameter 

that selects between the two functional forms, and the continuous quantity tx  is rounded to the 

nearest integer.  

 The sequence of first function submission rates 1 2 1, , , ,T T      is specified by three 

parameters as a quadratic function of the periods remaining T t . Similarly, the sequence of 

second function submission rates 1 2 1, , , ,T T      is specified by another three parameters as a 

quadratic function of the periods remaining T t . Thus, these two sequences describe smooth 

submission rates over time that have a great deal of flexibility in functional form based on 

intercept, slope, and curvature parameters. 

 The first stage of analysis found that algorithms that use limit orders were sometimes based 

on the first functional form and sometimes on the second, but market orders only algorithms were 

always based on the second functional form. Intuitively, market orders execute in full each period, 

so only the quantity remaining to be obtained 1tN n   is relevant the next period’s submission 

rate. By contrast, limit orders can have multiple orders outstanding that could execute any moment, 

so the target quantity N  may determine the relevant quantity scale. Thus, I restrict market order 

only algorithms to the second functional form.  
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 Two additional parameters allow an extra quantity in the first period and/or an extra 

quantity in the last period. The extra quantity in the beginning is useful as a way to execute the 

initial quantity available on the limit order book or alternatively to start with a large nonmarketable 

limit order algorithm, which then switches to gradually cancelling any unexecuted limit orders and 

resubmitting them at updated prices. An extra quantity at the end is useful to finish off limit order 

algorithms by placing a market order on the last period for whatever the remaining quantity is. 

 The sequence of limit order prices is based on the current bid price plus a smooth function 

of price aggressiveness relative to the current bid price. Three parameters allow the price 

aggressiveness function to be a quadratic function of the periods remaining T t . This function 

on the real number line is rounded to the nearest penny price on a decimal price grid and then 

added to the current bid price. For example, if the price aggressiveness function rounded to the 

near penny is +1 cent, then the limit price will be the current bid price + 1 cent. Another parameter 

controls the frequency of cancelling old stale limit orders and resubmitting new limit orders at an 

updated price. 

 Finally, four dynamic aggressiveness parameters are added to the price function outlined 

above. If the algorithm is behind by a certain percentage amount, then the price is raised by a 

certain number of pennies. If the algorithm is ahead by a certain percentage amount, then the price 

is lowered by a certain number of pennies. For example, when there are 10 periods remaining out 

of an original 20 periods, a uniform algorithm should have obtained 50% of the requested quantity 

already. Suppose that only 30% has been obtained so far, which is 20% behind. If this is further 

behind than one parameter allows, then the price would be raised by the cents specified by another 

parameter.  
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 For each problem as specified by the exogenous parameters, I solve for the optimal 

combined algorithm. I did this by using genetic algorithms to determine the values of the 19 

parameters that minimize the disutility function. Genetic algorithms are an approach to 

optimization that is based on a genetic evolution paradigm. It is particularly useful when many of 

the parameters take on discrete values and thus cannot be optimized by traditional hill-climbing 

techniques. 

In my application, genetic algorithms starts with random draws from the permitted range 

of the 19 parameters to form one “genetic unit.” Many genetic units are generated. Each genetic 

unit is evaluated for its “fitness.” This means that each trial trading algorithm is tested in the rich 

simulation against a limit order book and this process is repeated over and over again to determine 

the average disutility value based on 500 iterations of the limit order book. After all genetic units 

are tested, the best genetic units are kept and the worse units are discarded. The best genetic units 

are recombined with each other (“they have sex”) and a certain amount of random parameter 

mutations are added. Then the entire cycle repeats. The fitness of the new genetic units is 

determined and so on. The evolutionary process continues until the optimal genetic unit with the 

highest fitness is found. A typical computer run would take about five hours to determine the 

optimal trading algorithm such that continued computation yielded no more reduction in the 

average disutility function.  

2.4  Results 

For the figures show below, the default parameter values are a buy request that is 10% of 

average daily volume, average daily volume = 2,222 round lots (the Microsoft average for 

December 2011), the fund manager’s deadline 20T   (corresponding to 4:00 p.m.), the failure 

penalty U = 0.00, risk aversion A = 0, fund manager’s information = 0, and the performance metric 
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is implementation shortfall. Thus, the default buy request is 10%*2,222 round lots and rounded to 

the nearest integer to get 222 round lots. 

Figures 3 - 7 show the cumulative round lots purchased over time by the optimal trading 

algorithm for different trading problems. Solid-filled markers indicate that a market order or 

marketable limit order was submitted this period. Unfilled markers indicate that a nonmarketable 

limit order was submitted this period.   

Figure 4 shows the average cumulative round lots purchased over time by the optimal 

trading algorithm under different failure penalties. The solid curve is for the high failure penalty 

(U = 0.50) and the dashed curve is for no failure penalty (U = 0.00). Under a high failure penalty, 

the optimal trading algorithm is to submit nonmarketable limit orders for first nine periods and 

then switch to submitting marketable orders for ten more periods. The solid curve shows the 

cumulative lots purchased over time on average over many scenarios (iterations). But irrespective 

of whether the initial set of limit orders buys few lots or many lots in a given scenario, the 

subsequent marketable orders speed up or slow down, so that this algorithm purchases exactly the 

requested 222 round lots by the end. By contrast, under a zero failure penalty the optimal trading 

algorithm is to submit strictly nonmarketable limit orders for all 20 periods. Since there is no 

penalty for failing to obtain the requested quantity, every single limit order must earn a negative 

cost (a.k.a., a profit). In general, a larger quantity of limit order lots are submitted than execute, 

Thus, great care is taken to avoid going over the requested 222 round lots, since there is a large 

penalty for going over the requested amount. As a consequence, the average outcome is purchasing 

177 round lots by the end. 

Figure 5 shows the average cumulative round lots purchased over time by the optimal 

trading algorithm under different portfolio manager’s degree of information ranging from 0.00 
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(uninformed) to 0.20 (relatively high info). The dashed curve shows that when the portfolio 

manager is uninformed (info = 0.00), the optimal trading algorithm is to submit limit orders so as 

to purchase 97 lots by period 19 and then a final market order at the end to get the remaining 

quantity. When the degree of information is 0.05, the limit orders become more front-loaded so as 

to purchase 146 lots by period 17 and purchase the rest with market orders. As the degree of 

information increases, the optimal algorithm becomes more front-loaded. This makes intuitive 

sense given we are only considering buying requests,19 because a higher degree of information 

implies a forecast that the price is more likely to increase and front-loading buys a at a lower price 

before the price has risen. When the degree of information is 0.15, the limit orders become so 

front-loaded as to purchase 139 lots by period 6 and purchase the rest with market orders by period 

15. Finally, when the degree of information is 0.20 (or anything higher), the optimal algorithm is 

market buy for the full amount in the first period, which is the ultimate extreme in front-loading. 

Figure 6 shows the cumulative round lots purchased over time by the optimal trading 

algorithm under different risk aversions. The large-dashed curve shows that when the portfolio 

manager is risk neutral, the optimal trading algorithm is to submit limit orders so as to purchase 

97 lots by period 19 and then a final market order at the end to get the remaining quantity. The 

small-dashed curve (solid curve) shows when the portfolio manager has medium (high) absolute 

risk aversion, the optimal algorithm becomes more front-loaded (even more front-loaded). This 

makes intuitive sense, because buying lots early in the day reduces the standard deviation of trade 

prices relative to the implementation shortfall benchmark, which is the quote midpoint before the 

start of the trading day. 

                                                 
19 Selling requests are incorporated indirectly as the mirror image of buying requests. 
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Figure 7 shows the cumulative round lots purchased over time by the optimal trading 

algorithm under different performance metrics. The solid curve shows the default case that we 

have considered above, namely implementation shortfall, which optimally involves submitting 

limit orders so as to purchase 97 lots by period 19 and then a final market order at the end to get 

the remaining quantity. The other three performance metrics, Volume Weighted Average Price, 

Effective Spread, and Closing Price, lead to mildly more front-loaded algorithms that start with 

limit orders and then switch to marketable orders to get the full amount by the end. 

Table II shows the optimal trading algorithm by failure penalty, risk aversion, and 

performance metric. Panel A shows when the failure penalty is zero, which represents the most 

purely opportunistic fund manager. Strikingly, the optimal algorithm disutility is always negative. 

This because the optimal algorithm in each case involves limit buys only – no market buys. If there 

is no failure penalty for failing to get the requested quantity, then the only trades that you want to 

do are those that incur a negative cost of trading, meaning a profit. In other words, you want every 

single trade to make a profit. The last column indicates whether the optimal algorithm involves 

interior optimum values (i.e., not corner solutions) for the dynamic aggressiveness parameters. In 

most cases (10 out of 12), they do.  

Panel B shows when the failure penalty is high (0.50). In every case, the optimal algorithm 

involves limit buys early, followed by market buys later. The dynamic aggressiveness results are 

a little more mixed with the majority (7 out of 12) using dynamic aggressiveness. 

I also compare these optimal algorithms to two benchmark algorithms from the existing 

literature. Recall that the market order only benchmark algorithm is to place equal-sized market 

orders over the entire trading horizon and the limit-then-market benchmark algorithm is to place 

equal-sized limit orders first followed by a market order to get any remaining amount in the last 
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period. Table II reports the average disutility obtained by the optimal algorithm and the two 

benchmark algorithms. The optimal algorithms beat the market order only algorithm in all cases, 

beat the limit-then-market algorithm in 21 cases, and tie the limit-then-market algorithm in 3 cases. 

In these cases, the optimal strategy is equal-limits-then-market algorithm. In summary, the optimal 

trading algorithm frequently beats (or at least ties) the benchmark trading algorithms from the 

existing literature. 

Table III shows the optimal trading algorithm by fund manager’s information, deadline, 

and performance metric. Panel A shows when the fund manager’s information is zero. When the 

deadline is very short (2 periods), then the optimal trading algorithm is very aggressive with large 

market buys. When the deadline is medium or long (10 or 20 periods), then the optimal trading 

algorithm is mainly limit buys, but with market buys at the end to get the requested amount. All 

of the optimal trading algorithms in Table III use dynamic aggressiveness. 

Panel B shows when the fund manager’s information is high (0.50). As before when the 

deadline is very short, it is best to go with large market buys. However, when the deadline is 

medium or long and the performance metric is not effective spread, then it is also best to submit 

large market buys. The intuitive explanation for this has three steps: (1) the fund manager has a 

private signal of good news leading to a buy request, (2) statistically the fund manager is correct 

leading to a price increase over the trading day on average, and (3) anticipating this, it is best to 

purchase the security early in the day before the price has risen very much.  

An interesting exception to this logic occurs when the performance metric is effective 

spread. In this case, it is best to submit mainly limit buys, but with market buys at the end. The 

benchmark under the effective spread metric is the contemporaneous midpoint of each trade. This 

has the unique property that the benchmark moves upward if trades are later in the day at higher 
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prices. So under effective spread, there is no measured cost penalty for trading later in the day and 

it is best to spread out the trades over time. By contrast, the benchmark in the other three 

performance metrics (the request midpoint, the volume-weighted average price, and the closing 

price) are unaffected by the timing of trades. So under these three metrics, it is best to aggressively 

front-load the trading when you anticipate that the price will rise on average. 

Finally, Table III reports the average disutility obtained by the optimal algorithm compared 

to the two benchmark algorithms. The optimal algorithms beat the market order only algorithm in 

all cases, beat the equal-limit-then-market algorithm in 15 cases, and tie the equal-limit-then-

market algorithm in 9 cases because the equal-limit-then-market algorithm is the optimal algorithm 

in those cases. In summary, the optimal trading algorithms frequently beat (or at least tie) the 

benchmark trading algorithms from the existing literature. 

3.  Conclusion 

I determine the optimal trading strategy for an institutional trader who wants to purchase a 

large number of shares over a fixed time horizon. First, I consider when a multi-period trader can 

submit limit orders as well as market orders. I develop a simple binomial model where limit orders 

either execute or not and solve it analytically. I find that the optimal sequence of limit orders 

involves dynamic aggressiveness. That is, if a given limit order executes (or not), then the next 

limit order optimally has a slightly less (more) aggressive price. I find that this trading strategy 

frequently beats (or at least ties) the benchmark trading strategies from the existing literature. 

Second, I develop an elaborate model of a multi-period trading algorithm that allows multiple 

orders over multiple periods to be submitted to a dynamic limit order book exchange. I calibrate 

the simulation to real-world summary statistics based on order data. For each trading problem, I 

use genetic algorithm optimization to numerically determine the optimal trading algorithm over a 
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large number of simulated trials. I find that the optimal trading algorithm typically involves 

dynamic aggressiveness. Further, I find that if the fund manager is opportunistic, then the optimal 

algorithm involves only limit orders with low price aggressiveness. Conversely if the fund 

manager is committed, then limit orders should be followed by market orders at the end. I find that 

if the fund manager is informed and not using effective spread to measure the cost of trading, then 

market orders should be front-loaded in time. Conversely, if effective spread is used or the fund 

manager is uninformed, then less aggressive orders should be spread evenly over time. I find that 

these trading algorithms frequently beat (or at least tie) the benchmark trading algorithms from the 

existing literature.  

 

 

Appendix 

Proof of Proposition 1. When 3k d , the optimal limit price aggressiveness is obtained by 

substituting (1) into (2) and taking the derivative with respect to b . The second order condition is 

positive and thus the objective function is minimized. The probability of execution is obtained by 

substituting (3) in place of b v  in (1). The expected disutility is obtained by substituting (3) and 

(4) into (2). When 3k d , substitute 3d  in place of k  in (3), (4), and (5) to obtain  ,a d  1,p   

and   .E D d  By definition the price aggressiveness can’t go above d , so for any value of 3k d  

the solution is constrained to the corner solution ,a d  1,p   and   .E D d  Q.E.D. 

Proof of Proposition 2. The optimal limit price aggressiveness is obtained by substituting (6), (10), 

and (11) into (9) and taking the derivative with respect to b . The second order condition is positive 

and thus the objective function is minimized. The probability of execution is obtained by 

substituting (12) in place of ,t n tb v
 
in (6). Equation (14) for the expected total cost of trading on 
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future trades at the  ,t n  node is the probability weighted average of the expected total cost of 

trading on future trades at  1, 1t n   node and the  1,t n  node, where the incremental cost of 

trading ,t n tb v  is added when the current order executes. Equation (15) for the expected number 

of units to be purchased in future trades at the  ,t n  node is the probability weighted average of 

the expected number of units to be purchased in future trades at  1, 1t n   node and the  1,t n  

node, where the number of units is incremented by one unit when the current order executes.  

Q.E.D. 

Combined Proof of Propositions 3 and 4. The first step of the combined proof is to show that the 

probability of execution at any node where the trader is not done  n N  is a weighted average 

of the following two connected nodes. The proof is based on the connection between the f and h 

variables at a given node and the f and h variables at the following connected notes. Substituting 

(12) into (13) and then twice substituting (14) and (15) into the resulting equation yields  

     

   
   

   
   

1, 1, 1 2, 1 1, 2,

, 1, 1 1, 1 1 2, 2 1, 1 2, 1

1, 1 2, 2 1, 1 2, 1

1, 2, 1 1, 2,

1

1
1

4
1 1 1

1 1

t n t n t t n t n t n

t n t n t n t t n t n t n

t n t n t n t n

t n t n t n t n

p b v f p f

p p b v f p f
d

p h p h
k

p h p h

      

          

       

    

     
            

      
       

.

d

 
 
 
 
 
 
 
    
 

                         (17) 

Rearranging (17) yields 

     

   
  

  

1, 1, 1 2, 2, 1 2, 1 2,

, 1, 1 1, 1 1 2, 1 2, 2 2, 2 2, 1

2, 2, 1 2, 1 2,

1

1
1 .

4

1

t n t n t t n t n t n t n

t n t n t n t t n t n t n t n

t n t n t n t n

p b v f f k h h

p p b v f f k h h
d

f f k h h d

        

            

     

         
                 

         

       (18) 

Substituting from (12) into (18) yields 
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 
 

1, 1, 1,

, 1, 1 1, 1 1, 1

1,

2

1
2 .

4
2

t n t n t n

t n t n t n t n

t n

p a a d

p p a a d
d

a d d

  

     



     
           

       

                                             (19) 

Substituting from (13) into (19) yields 

     

    
    

 

1, 1, 1,

, 1, 1 1, 1 1, 1

1,

2 1 4 1

1
2 1 4 1 .

4
4 1

t n t n t n

t n t n t n t n

t n

p d p d p

p p d p d p
d

d p d

  

     



   
 

         
     

                                  (20) 

Rearranging (20) yields equation (16), in which the probability of execution at any node where the 

trader is not done  n N  is a weighted average of the following two connected nodes. Equation 

(16) will yield dynamic aggressiveness in the Limit Order Zone once it is proven that up-nodes 

have higher probabilities and down-nodes have lower probabilities. 

 The next step is to define the Market Order / Maximum Aggressiveness Zone for both the  

a and p binomial trees at the set of all nodes where there is non-positive slack time (i.e., the same 

or fewer time periods left than remaining units to be purchased 1T t N n    ). At all terminal 

nodes, there are no future trades, so 1, 1,0,  and 0.T n T nf h  
 
Substitute these equations into (12) 

for all of the nodes on the last trading date  t T  in the Market Order / Maximum Aggressiveness 

Zone to get 

 
,

1
when 3

2
          when 3

T n

k d k d
a

d k d

     
  

,                                        (21) 

and substitute this into (13) to get 

,

when 3
4

1       when 3
T n

k d
k d

p d
k d

    
  

.                                            (22) 
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(21) and (22) are identical to the single-period solution. All of the nodes in this zone on earlier 

trading dates  t T  have two following connected nodes with a probability of execution given 

by (22). Since all nodes are a weighted average of the following two connected nodes by equation 

(16), their probability of execution must also be given by (22). Inverting (13) yields  

 , ,2 1t n t na d p  .                                                                   (23) 

Substituting (22) into (23) yields (21). 

 The next step is to define the Limit Order Zone for both the  a and p binomial trees at the 

set of all nodes where the trader is not done  n N  and there is positive slack time (i.e., more 

time periods left than remaining units to be purchased 1T t N n    ). Consider all of the nodes 

in the Limit Order Zone that border the Market Order / Maximum Aggressiveness Zone (i.e., have 

one following connection in the Market Order / Maximum Aggressiveness Zone and one following 

connection not in the Market Order / Maximum Aggressiveness Zone). Since all nodes are a 

weighted average of the following two connected nodes by equation (16), these nodes must have 

a probability of execution that is strictly less than (22) and substituting into (23) yields an optimal 

limit order aggressiveness strictly less than (21). 

The next step is to define the Done Zone for both the  a and p binomial trees at the set of 

all nodes where the trader is done  .n N  For all of the nodes in the Done Zone, no more orders 

will be submitted and so the probability that an order will execute is zero , 0.t np   Consider all of 

the nodes in the Limit Order Zone that border the Done Zone (i.e., have one following connection 

in the Done Zone and one following connection not in the Done Zone). Since all nodes are a 

weighted average of the following two connected nodes by equation (16), these nodes must have 
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a probability of execution that is strictly greater than zero and substituting into (23) must have an 

optimal limit order aggressiveness strictly greater than .d  

The final step is to consider all nodes in the Limit Order Zone. Since all nodes are a 

weighted average of the following two connected nodes by equation (16), then one of the following 

connected nodes will have a higher probability of execution and the other will have a lower 

probability of execution. Since the nodes in the Limit Order Zone that border the Market Order / 

Maximum Aggressiveness Zone must connect to the higher probability of execution of the Market 

Order / Maximum Aggressiveness Zone and since the nodes in the Limit Order Zone that border 

the Done Zone must connect to the lower (zero) probability of execution of the Done Zone, then 

up-nodes must have a higher probability of execution and down-nodes must have a lower 

probability of execution. This proof that up-nodes have higher probabilities and down-nodes have 

lower probabilities when combined with (16) yield that the probabilities exhibit dynamic 

aggressiveness in the Limit Order Zone, and by substituting into (23), their optimal limit order 

aggressiveness must also exhibit dynamic aggressiveness in the Limit Order Zone. Q.E.D. 
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Figure 1. Binomial Trees for a and p when the Failure Penalty is High. 
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Figure 2. Binomial Trees for a and p when the Failure Penalty is Low. 
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Figure 3. Binomial Trees for a and p when 1N   and the Failure Penalty is High. 
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Table I

Panel A:  Probability of order types
Order Type Probability
    Market buy 30.75%
    Market sell 30.75%
    Limit buy 19.25%
    Limit sell 19.25%
    No order 0.00%
Total 100.00%

Panel B:  Probability of Order Size by Order Type

Order Size
Probability of 
Market Order

Probability of 
Limit Order

     10 3.0% 0.5%
     20 3.0% 1.0%
     30 3.0% 1.0%
     40 4.0% 1.0%
     50 4.0% 1.5%
   100 19.0% 20.0%
   200 20.0% 20.0%
   300 20.0% 20.0%
   400 14.0% 20.0%
   500 10.0% 15.0%
Total 100.0% 100.0%
Average Size 230.4 276.7

Panel C:  Probability of Price Changes

Price Changes

Probability of 
Public Value 
Innovations

Probability of 
Limit Price 
Deviations

   -$0.05 13.0% 0.0%
   -$0.04 12.0% 0.0%
   -$0.03 10.0% 4.6%
   -$0.02 8.0% 8.0%
   -$0.01 6.0% 87.4%
    $0.00 2.0% 0.0%
    $0.01 6.0% 0.0%
    $0.02 8.0% 0.0%
    $0.03 10.0% 0.0%
    $0.04 12.0% 0.0%
    $0.05 13.0% 0.0%
Total 100.0% 100.0%
Mean Absolute 
Deviation 0.033

Calibration of Simulation Input Parameters

The simulation input parameters are calibrated to SEC Rule 605 
mandated disclosure of summary statistics by exchange by stock. 
Summary statistics for Dec 2011 are divided by 21 trading days and by 
20 intervals to scale to 20 minute intervals. NYSE TAQ data is sampled 
every 20 minutes to determine price volatility at 20 minute intervals.
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Table II

Risk 
Aversion

Performance     
Metric

Optimal 
Strategy 
Disutility

Market Order 
Only Benchmark 

Disutility

Limit, Then 
Market Bchmrk. 

Disutility

Gain Over 
First 

Benchmark

Gain Over 
Second 

Benchmark

Dynamic 
Aggressive   

-ness

Panel A  Failure Penalty is Zero

0 Effective Spread -10.6 5.6 -1.7 16.2 8.9 Yes

0 Imple. Shortfall -8.1 7.3 2.2 15.4 10.3 Yes

0 VWAP -4.7 6.1 0.9 10.8 5.6 No

0 Closing Price -2.5 0.5 -0.5 3.0 2.0 Yes

100 Effective Spread -8.8 6.3 -1.6 15.1 7.2 Yes

100 Imple. Shortfall -11.4 8.8 4.3 20.1 15.7 Yes

100 VWAP -10.3 6.5 1.7 16.9 12.0 No

100 Closing Price -6.4 1.0 2.2 7.4 8.7 Yes

1000 Effective Spread -9.1 7.3 -1.8 16.4 7.3 Yes

1000 Imple. Shortfall -7.1 9.1 2.4 16.2 9.5 Yes

1000 VWAP -9.8 7.3 0.6 17.1 10.5 Yes

1000 Closing Price -6.9 1.2 -0.3 8.1 6.6 Yes

Panel B  Failure Penalty is High (0.50)

0 Effective Spread -0.9 22.1 -0.9 23.0 0.0 Yes

0 Imple. Shortfall 3.0 23.8 3.0 20.8 0.0 Yes

0 VWAP 1.7 22.6 1.7 21.0 0.0 Yes

0 Closing Price -7.0 17.0 0.3 24.0 7.3 Yes

100 Effective Spread -4.2 22.2 -0.6 26.4 3.6 No

100 Imple. Shortfall 0.9 24.7 5.3 23.9 4.5 No

100 VWAP -4.4 22.5 2.7 26.9 7.1 No

100 Closing Price -0.5 17.3 3.5 17.8 4.0 No

1000 Effective Spread -7.3 22.4 -0.4 29.7 6.9 Yes

1000 Imple. Shortfall 1.9 24.3 3.8 22.4 1.8 Yes

1000 VWAP -1.3 22.4 2.0 23.7 3.2 Yes

1000 Closing Price -2.8 16.4 1.1 19.1 3.8 No

The optimal trading algorithm is shown by failure penalty, risk aversion, and performance metric. In all cases below, the 
requested buy is 10% of daily volume, the deadline is 20, and the fund manager's information is zero.

Optimal Trading Algorithm By Failure Penalty, Risk Aversion, and Performance Metric
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Table III

Deadline Performance Metric

Optimal 
Strategy 
Disutility

Only 
Benchmark 
Disutility

Market 
Bchmrk. 
Disutility

Gain Over 
First 

Benchmark

Gain Over 
Second 

Benchmark

Dynamic 
Aggressive  

-ness

Panel A  Fund Manager's Information is Zero

2 Effective Spread 4.3 5.0 5.2 0.7 0.9 Yes

2 Imple. Shortfall 4.7 5.8 7.1 1.1 2.4 Yes

2 VWAP 3.7 4.6 5.4 0.9 1.7 Yes

2 Closing Price 6.0 6.5 7.6 0.6 1.6 Yes

10 Effective Spread -0.4 13.6 -0.4 14.0 0.0 Yes

10 Imple. Shortfall 3.5 15.1 3.5 11.7 0.0 Yes

10 VWAP 2.0 13.8 2.0 11.8 0.0 Yes

10 Closing Price 3.3 15.1 3.3 11.8 0.0 Yes

20 Effective Spread -0.9 22.1 -0.9 23.0 0.0 Yes

20 Imple. Shortfall 3.0 23.8 3.0 20.8 0.0 Yes

20 VWAP 1.7 22.6 1.7 21.0 0.0 Yes

20 Closing Price -7.0 17.0 0.3 24.0 7.3 Yes

Panel B  Fund Manager's Information is High (0.50)

2 Effective Spread 4.2 5.0 5.2 0.8 1.0 Yes

2 Imple. Shortfall 5.2 6.8 8.7 1.6 3.6 Yes

2 VWAP -4.3 -3.3 -3.1 1.0 1.2 Yes

2 Closing Price -25.5 -24.2 -25.4 1.3 0.1 Yes

10 Effective Spread -0.3 16.1 -0.3 16.4 0.0 Yes

10 Imple. Shortfall 5.2 23.1 5.7 18.0 0.5 Yes

10 VWAP -4.3 10.7 -3.8 15.0 0.5 Yes

10 Closing Price -25.5 -9.3 -23.0 16.2 2.4 Yes

20 Effective Spread -1.7 23.6 -1.3 25.3 0.4 Yes

20 Imple. Shortfall 4.0 40.4 5.5 36.4 1.5 Yes

20 VWAP -5.3 25.6 -4.1 30.9 1.2 Yes

20 Closing Price -28.1 -4.6 -28.1 23.5 0.0 Yes

The optimal trading algorithm is shown by fund manager's information, deadline, and performance metric. In 
all cases, the requested buy is 10% of daily volume, the failure penalty is 0.50, and the fund manager's risk 
aversion is zero.

Optimal Trading Algorithm By Fund Manager's Information, Deadline, and Performance Metric
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Figure 4. Average Cumulative Round Lots Bought Over Time by the Optimal Trading Strategy for Different Failure Penalties. 
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Figure 5. Average Cumulative Round Lots Bought Over Time by the Optimal Trading Strategy for Different Portfolio 

Manager’s Degrees of Information. 
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Figure 6. Average Cumulative Round Lots Bought Over Time by the Optimal Trading Strategy for Different Risk Aversions. 
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Figure 7. Average Cumulative Round Lots Bought Over Time by the Optimal Trading Strategy for Different Performance 

Metrics. 
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