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Discovering the ecosystem of an electronic
financial market with a dynamic
machine-learning method∗

Shawn Mankad†‡, George Michailidis‡, and Andrei Kirilenko‡‡

Abstract. Not long ago securities were traded by human traders in face-to-face markets. The ecosystem of an open outcry market
was well-known, visible to a human eye, and rigidly prescribed. Now trading is increasingly done in anonymous electronic
markets where traders do not have designated functions or mandatory roles. In fact, the traders themselves have been replaced
by algorithms (machines) operating with little or no human oversight. While the process of electronic trading is not visible to a
human eye, machine-learning methods have been developed to recognize persistent patterns in the data. In this study, we develop
a dynamic machine-learning method that designates traders in an anonymous electronic market into five persistent categories:
high frequency traders, market makers, opportunistic traders, fundamental traders, and small traders. Our method extends a plaid
clustering technique with a smoothing framework that filters out transient patterns. The method is fast, robust, and suitable for a
discovering trading ecosystems in a large number of electronic markets.

Keywords: trading strategies, high frequency trading, machine learning, clustering

1. Introduction

The words “stock market”, “futures market” or
“trading pit” used to elicit a mental picture of a
chaotic crowd of agitated people wearing brightly-
colored jackets, gesticulating wildly and shouting at
each other. Yet, a trained human eye would see a great
deal of structure behind this frenzy. Some of the people
were market makers who stood at certain posts and
“made markets” in securities or derivatives that were
designated only to them. Some were floor brokers who
formed circles around the market makers to get the
best prices for a broad range of their customers – from
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pension funds investing their assets, to banks hedging
exposures on their balance sheets. Others were different
types of floor traders from scalpers to spreaders to
opportunistic position takers, who wandered around
the floor looking for opportunities to exploit. The
ecosystem of an open outcry market was well-known,
visible to a human eye, and rigidly prescribed: traders
had designated functions, used common gestures to
trade, wore jackets of certain colors, and could be found
in specific locations on a trading floor.

The transition to anonymous electronic trading
has obfuscated the prescribed ecosystem of roles,
relationships, and designations previously clearly
visible on a trading floor. Trading floors have been
replaced by server farms, prescribed gestures have
been replaced by message protocols, and the traders
themselves have been replaced by algorithms often
operating with little or no human oversight.

While the process of electronic trading is not visible
to a human eye, machine-learning methods have been
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developed to recognize persistent patterns in the data.
Even without a formal, regulatory designation, a trader
who follows a particular strategy would leave a distinct
footprint in the data.

In this study, we present a novel machine-learning
method to parse through the footprints of all traders
in a highly liquid, anonymous electronic market and
find certain common “paths” that they follow, thus,
describing the roles and functions of participants who
inhabit the new ecosystem of an electronic financial
market.

Our method combines a static plaid clustering
technique with a dynamic smoothing framework that
filters out transient patterns. The plaid clustering
technique - a regression-based method to describe
empirical regularities in cross-sectional data - was
previously used only for a single, static data matrix.
Our method extends the plaid model by making use of
a time series of data matrices. Our extension, which
we refer to as the smooth plaid model, is able to
consistently identify categories of traders and trading
outcomes that persist through time.

We utilize synthetic data generated from an agent
based model (Paddrik et al., 2011; Hayes et al., 2012)
that is calibrated on actual E-mini 500 stock index
futures contract (E-mini) data made available to us
by the CFTC. We originally employed our method
on regulatory, transaction-level data for the E-mini -
the price discovery vehicle for the broad U.S.
stock market. However, due to a Chicago Mercantile
Exchange (CME) complaint, there has been a hold by
the CFTC on the use and reporting of any regulatory
data by the academic community. Using synthetic
data allows us to make public our machine-learning
methodology and results without concerns associated
with the extreme confidentiality of regulatory data. The
more methods that are available in the literature for
analysis of electronic trading data, the more rigorous
the discussion on the role and consequences of elec-
tronic markets. We note that results of applying our
method on actual regulatory data are broadly similar.
Moreover, we were able to designate traders into
the same categories that were recovered manually by
Kirilenko et al. (2010) in their analysis of the Flash
Crash using similar data.

Our results are as follows. Using the smooth plaid
model, we assign 6387 traders in the simulated data
into five distinct categories: high frequency traders
(7 traders), market makers (73), opportunistic traders
(2405), fundamental buyers and sellers (1281), and
small traders (2849). These traders occupy quite

distinct, albeit sometimes overlapping, positions in
the ecosystem of the market. High frequency traders,
whose data footprint sometimes resembles scalpers
on steroids, occupy a very special position in the
market. They trade through an enormous number of
contracts each day, but carry very little inventory at
any point in time. Market makers are in the market
all the time; they quickly buy and sell on demand
and manage their inventory very tightly. Fundamental
traders accumulate directional inventory over long
periods of time, often days, presumably to take a
longer-term investment view or to hedge their other
exposures. Opportunistic traders take on and manage
directional bets for minutes or hours at a time, in
search of opportunities to profit from the perceived
imbalances. Small traders do not exhibit any persistent
pattern; they enter the market very infrequently at
seemingly random times and trade in trivial quantities.

We believe that the smooth plaid model in partic-
ular, and machine-learning methods, more generally,
can be effectively used for the analysis of traders
and their strategies in electronic financial markets.
In an environment where traders do not have
formal designations, the smooth plaid model forms
a useful first step to separate tens of thousands of
trading accounts into manageable trader categories for
subsequent analysis - be it a market event like a Flash
Crash1, co-movement of asset prices2, or the impact of
trading strategies on market quality3.

The paper proceeds as follows. In the next section,
we briefly summarize the plaid model (2.1), and
discuss our modifications to create the smooth plaid
algorithm (2.2). In Section 3, we illustrate the
proposed model using a simple set of simulated data.
In Section 4, we apply our method to simulated
data generated by an agent-based simulation model
of an electronic market calibrated to the E-mini. We
conclude with a discussion and review of this study
(Section 5).

1See, Kirilenko et al. (2010). The authors separate their traders
into categories manually. They arrive at similar categories as the
ones presented in this study.

2See, Huang (2011) for an investigation of co-movement of
exchange rates. The authors develop a variant of a machine-learning
technique with a parametric way to deal with the time-series
dimension.

3See, Chaboud et al. (2011) and Hendershott et al. (2010). The
authors rely on designations given to them by a trading venue.
They do not use a machine-learning method to cluster traders into
categories.
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2. Methods

2.1. Biclustering and the plaid model

Suppose we observe a data matrix X ∈ Rn×p,
where Xij represents the ith sample (i = 1, . . . , n)
and jth variable (j = 1, . . . , p). The plaid model, first
introduced by Lazzeroni and Owen (2000), aims to
decompose the data to reveal the underlying structure.
In our setting, the model is trained to discover groups
of traders that have similar trading behaviors.

The term biclustering was first used by Cheng
and Church (2000) to refer to grouping procedures
appropriate when both the samples and variables are
of scientific interest. In contrast, clustering methods
belong to a closely related topic in machine learning
and are concerned with discovering the structure of
samples only. Hence, biclustering methods extract
groups of samples (rows) and variables (columns) to
find homogeneous submatrices in a static data matrix.
These methods typically allow samples to be in more
than one cluster, or in none at all. This flexibility is
also given to variable groups, that is, variables can be
defined with respect to only a subset of samples, not
necessarily with respect to all of them. Moreover, these
flexible models allow for overlapping biclusters.

In our application setting, samples are individual
traders and the variables are measures of trading
activity for each trader: trading volume, net position,
change in inventory, trades per second, and median
intertrade duration. A bicluster is then a group of
traders and measurements of their trading activity that
are similar. With respect to the biclustered variables,
a trader is more similar to other traders in the same
bicluster than traders outside of the bicluster.

Next, we introduce an important concept to the plaid
model, namely that of an additive “layer”. A layer
is a canonical matrix matching the dimensions of the
given data matrix, with zeros everywhere except the
biclustered elements. In the plaid model, the data is
decomposed into a series of additive layers that capture
the underlying structure of the data. As a consequence,
layers combine to provide a reconstruction that high-
lights the main features of the given data matrix.

The plaid model first includes a background layer
that consists of all traders and variables to account for
global effects in the data. In our application setting, the
background layer accounts for market trends that affect
trading behavior of all traders, such as for example,
a major liquidity event. There are in principle many
ways to construct the background layer. The simplest

approach is to set each element of the background layer
to be equal to the global average of the given data
matrix. One could also estimate a parametric model
that incorporates a priori information about the traders
and variables. In our analysis, we set each column of
the background layer to the corresponding variable’s
mean. This is equivalent to standardizing the data,
which is necessary since a variable like volume is
strictly non-negative, while others like net position
can be negative. Subsequent layers represent additional
effects corresponding to specific traders and variables
that exhibit a strong pattern not explained by the
background layer.

Formally the data matrix X ∈ Rn×p can be
represented as

Xij = µ0 +
K∑
k=1

θijkrikcjk, (1)

where i = 1, . . . , n indexes samples and j = 1, . . . , p
indexes variables, µ0 captures the background layer
and θijk describes the bicluster effect; k is a layer
index running to the number of biclusters K. The
parameters rik and cjk are indicator variables that
combine to identify the bicluster, that is, they denote
bicluster membership for, respectively, the traders and
variables.

There are several modeling choices for the form of
θijk, the most common being

θijk = µk + αik + βjk, (2)

where i = 1, . . . , n, j = 1, . . . , p and k = 1, . . . ,K.
Each bicluster has a mean, trader, and variable effect.
Hence, each bicluster is expressed as a two-way
analysis of variance (ANOVA) model. In other words,
each trader in a bicluster can be interpreted as following
similar strategies (µk). Yet, traders in the bicluster
may differ slightly due to differences in preference,
amount of available capital, and so on. This trader-
specific effect is captured by the effect {αik}. Similarly,
biclustered measures of trading activity can differ by
trading strategies {βjk}.

The biclusters are discovered in a sequential
fashion. Suppose K − 1 layers have been estimated
in addition to the background layer. The residual data
matrix is given by

Ẑij = Xij − µ̂0 −
K−1∑
k=1

θ̂ijkr̂ik ĉjk. (3)
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The Kth bicluster is found by minimizing the usual
residual sum of squares over all parameters of interest

min
{θijK ,riK ,cjK}

n∑
i=1

p∑
j=1

(Ẑij − θijKriKcjK)2. (4)

Estimates of the bicluster memberships (r̂iK ,ĉjK) are
obtained with a numerical search. A simple search
procedure based on k-means clustering (see Hastie
et al., 2001) is presented throughout this paper. More
complex strategies and comprehensive discussion can
be found in Lazzeroni and Owen (2000) and Turner
et al. (2005). When given bicluster memberships,
estimates of the bicluster-specific effects (θ̂ijK) are
easy to compute, as one can use the usual two-way
ANOVA estimators (Turner et al., 2005).

The plaid model estimates the behavior of each
trader and then seeks groups of traders that have
similar behavior over the biclustered variables. The
estimation procedure is an iterative one based on
minimizing sum of squares of the data minus estimated
layers (pseudocode is given in Algorithm 1). First
the background layer is estimated, then bicluster-
specific layers are added one at a time. The statistical
significance of layers are determined by a permutation
test. The algorithm terminates when a significant layer
cannot be found.

Next, we provide a brief review of the permutation
test discussed starting on page 8 of Lazzeroni and
Owen (2000). A comprehensive review can also be
found in Turner et al. (2005). The permutation test
is intuitively similar to bootstrapping, and relies on
resampling of the data to approximate significance of

the bicluster. The basic idea is that the data values
are independent of biclusters after permuting the rows
and columns. Thus, comparing the candidate bicluster
against (noise) biclusters obtained after randomizing
the data matrix allows one to accept a bicluster only
if it is significantly larger than what one would find in
noise.

The importance of each bicluster is measured with

σ2
k =

n∑
i=1

p∑
j=1

r̂ik ĉjkθ̂
2
ijk, (5)

where k = 1, . . . ,K. Let πr be the permutation of
the index set {1, . . . , n}, and πc be the permutation
of the index set {1, . . . , p}. Then Z̃l = Ẑ(πr, πc) is
the matrix after permuting every row of the residual
data matrix Ẑ and then permuting every column of the
result. The importance of a bicluster obtained from Z̃l
is measured with

σ̂2
nl

=
n∑
i=1

p∑
j=1

r̃ilc̃jlθ̃
2
ijl, (6)

where r̃il, c̃jl are bicluster memberships estimated
from Z̃l. The candidate bicluster is rejected if any of
the noise biclusters are more important. The selection
of the total number of noise biclusters L is discussed
further in Section 2.3. The permutation test is given in
Algorithm 3.

Next, we will discuss an extension of plaid models
to detect persistent patterns when given a sequence of
data matrices.

Algorithm 1 The plaid model estimation procedure for static data.
Input: Matrix X ∈ Rn×p
Output: Sequentially discovered biclusters {r̂ik, ĉjk, θ̂ijk}Kk=1

1: µ̂0 = 1
n1n×nX

2: Ẑ = X − µ̂0

3: K = 1 (bicluster counter)
4: repeat
5: {r̂iK ,ĉjK , θ̂ijK} = estimateBicluster(Ẑ) (see Algorithm 2)
6: b = permuteTest({r̂iK , ĉjK , θ̂ijK}) (see Algorithm 3)
7: if b = 0 then
8: Ẑij = Xij − µ̂0 −

∑K
k=1 θ̂ijkr̂ik ĉjk

9: K = K + 1
10: end if
11: until b = 1
12: return {r̂ik, ĉjk, θ̂ijk}, i = 1, . . . , n, j = 1, . . . , p, k = 1, . . . ,K
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Algorithm 2 estimateBicluster

Input: Matrix Ẑ ∈ Rn×p
Output: Bicluster {r̂iK , ĉjK , θ̂ijK}

1: Apply k-means (k=2) to rows of Ẑ. Set r̂iK to the smaller cluster.
2: Apply k-means (k=2) to columns of Ẑ. Set ĉjK to the smaller cluster.
3: repeat
4: θ̂ijK = argmin{θijK}

∑n
i=1

∑p
j=1(Ẑij − θijK r̂iK ĉjK)2

5: for i=1,. . . ,n do
6: if

∑p
j=1(Ẑij − θ̂ijK ĉjK)2 <

∑p
j=1 Ẑ

2
ij then

7: r̂iK = 1
8: else
9: r̂iK = 0

10: end if
11: end for
12: for j=1,. . . ,p do
13: if

∑n
i=1(Ẑij − θ̂ijK r̂iK)2 <

∑n
i=1 Ẑ

2
ij then

14: ĉjK = 1
15: else
16: ĉjK = 0
17: end if
18: end for
19: until r̂iK , ĉjK converge or maximum iteration number attained
20: return {r̂iK , ĉjK , θ̂ijK}, i = 1, . . . , n, j = 1, . . . , p

Algorithm 3 permuteTest

Input: Bicluster {r̂iK , ĉjK , θ̂ijK}
Output: {0, 1}

1: σ2
K =

∑n
i=1

∑p
j=1 r̂iK ĉjK θ̂

2
ijK

2: Ẑij = Xij − µ̂0 −
∑K
k=1 θ̂ijkr̂ik ĉjk

3: for l=1,. . . ,L do
4: πr = permutation({1, . . . , n})
5: πc = permutation({1, . . . , p})
6: Z̃l = Ẑ(πr, πc)
7: r̃il, c̃jl, θ̃ijl = estimateBicluster(Z̃l)
8: σ̂2

nl
=

∑n
i=1

∑p
j=1 r̃ilc̃jlθ̃

2
ijl

9: end for
10: if σ̂2

K > max{σ̂2
n1
, ..., σ̂2

nL
} then

11: return 0
12: else
13: return 1
14: end if

2.2. Smooth plaid models for multidimensional
time-series

Suppose we observe a time series of matrices with
the rows consisting of individual traders and the

columns representing various measures of their trading
activity at different points in time. Formally, we have
{X(t)

ij }Tt=1, where t is a time index and i = 1, . . . ,
n, j = 1, . . . , p. Since each row corresponds to a trader,
we have a total of n traders that transact at least once
in the data. For each trader, at each point in time, we
observe the same p variables that measure different
aspects of trader behavior. Then we can represent the
data matrix X(t) at time t as

X
(t)
ij = µ

(t)
0 +

K∑
k=1

θ
(t)
ijkr

(t)
ik c

(t)
jk , (7)

where t = 1, . . . , T . The expression and indicator pa-
rameters ({r̂(t)ik ,ĉ(t)jk , θ̂

(t)
ijk}) reflect whether a bicluster

is active in a given time period t. The total number
of biclusters K is fixed for all time periods, since
additionally allowing K to vary with time creates
identifiability and implementation challenges.

Visually, the data can be organized as a three dimen-
sional array, shown in Figure 1, with traders arranged
in the rows, trading features in the columns, and time
as the 3rd ‘depth’ dimension.

Note that a direct analysis may proceed by
collapsing the temporal dimension and working with a
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Fig. 1. For our study, we construct a series of matrices, one for each period of time, consisting of approximately six thousand rows (one for each
trader) and several columns of trading measures. Once the data is organized, we are working with a three dimensional array with traders arranged
in the rows, trading measures in the columns, and time as the 3rd dimension.

single two dimensional matrix with traders arranged in
the rows and variables that have been combined over
time in the columns. However, collapsing the time
dimension would aggregate away a significant amount
of valuable time-series information present in the data.
To illustrate, Figure 2 shows the general structure
that remains after integrating over time. As shown in
the stylized plot4 of net position vs. volume/number
of trades, a distinct group of high frequency traders
emerges holding a very small open position at the end
of the trading day, together with fundamental traders
holding large positive or negative positions. However,
there is a very large number of significant traders that
are not allocated to an interpretable group.

A potential remedy for this is to analyze each data
set at each point in time separately. However, this
would ignore the potentially important time component
of trading strategies, while becoming dominated by
transient patterns. Moreover, if we repeatedly and
directly apply a method like the plaid model, the
estimated groupings can change for each data set when
a temporally stable structure is more appropriate.

In this study, we design and employ a dynamic
method that is in between these two direct approaches.
A penalized optimization framework accounts for
auto-correlation by effectively averaging the groups
over a rolling window of time. Such an approach
helps mitigate the effects of transient patterns, while
enhancing structural regularities in the data.

4Plots of aggregate data are used throughout this work to protect
confidentiality.
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Fig. 2. The general structure that remains after collapsing the
temporal dimension. High frequency traders, buyers, and sellers are
prominent and easily detectable. However, there are a large number
of residual traders that cannot be easily interpreted.

Formally, we consider the search for the Kth layer
over the interval t = T − W, . . . , T . The search is
initialized with starting values for {r̂(t)iK}Tt=T−W and
{ĉ(t)jK}Tt=T−W , which denote whether the candidate
bicluster was detected in the previous W time periods.
The objective function is given next.

min
{θ(T−W ),...,θ(T )}

T∑
t=T−W

n∑
i=1

p∑
j=1

(Ẑ
(t)
ij − θ

(t)
ijK r̂

(t)
iK ĉ

(t)
jK)2

+ λ
T∑

t=T−W+1

n∑
i=1

p∑
j=1

(θ
(t)
ijK r̂

(t)
iK ĉ

(t)
jK

− θ
(t−1)
ijK r̂

(t−1)
iK ĉ

(t−1)
jK )2, (8)
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where λ is a tuning parameter and W is a parameter
determining the number of previous time periods to
consider. Following the notation in Equation 3, Ẑ(t) is
the residual data matrix at time t

Ẑ
(t)
ij = X

(t)
ij − µ̂

(t)
0 −

K−1∑
k=1

θ̂
(t)
ijkr̂

(t)
ik ĉ

(t)
jk , (9)

where i = 1, . . . , n, j = 1, . . . , p and t = 1, . . . , T .
For given λ and W , we solve the optimization

problem through coordinate descent, which has
been developed and implemented for such objective
functions by Friedman et al. (2010). This optimization
approach achieves large improvements in computa-
tional efficiency over other minimization approaches,
and allows our framework to be feasible for large-size
data problems.

The basic steps of the algorithm are given below
in Algorithm 4 and illustrated on a toy example in
Figure 3. The main idea behind the algorithm is to:

1. Use results from previous time steps to form
candidate biclusters for the current time period,
then apply the penalization framework and
permutation test to discover significant and
stable biclusters (see Algorithm 5).

2. After candidate biclusters from previous times
have been exhausted, a final search is performed
with the penalization framework and permuta-
tion test for new biclusters that were not captured
in the previous results (see Algorithm 6).

3. Return all significant biclusters discovered in
previous steps 1 and 2.

We note that when t = T, {θ(t)ijk}Tt=T−W are
simultaneously estimated. After that, t = T + 1,
and {θ(t)ijk}

T+1
t=T−W+1 are estimated independently. As

easily seen, these two sets are highly overlapping. We
use the most recent estimate as the final estimator
due mainly to its simplicity. This strategy is similar
to using a rolling window smoother. In principle,
other methods that combine the overlapping esti-
mates could be employed. Though in practice, more
complex strategies can sometimes complicate imple-
mentation without fundamentally changing the final
estimator.

2.3. Implementation issues

Our implementation is performed in R (version
2.15), with all auxiliary functions supported in
the basic distribution (R Core Team, 2012). R
code is available at www.stat.lsa.umich.edu/
~smankad/. Numerical results presented in the
following sections are obtained using the code
specification above on a Linux platform. Next, we
discuss the permutation test used in the stopping
criterion for the smooth plaid algorithm, and selection
of the parameters λ and W .

Permutation Test. The permutation test utilized
in Algorithm 3 is modified to accommodate the
additional structure between data matrices. Specifi-
cally, matrix observations at different times should
be permuted separately, so that global time effects
are maintained. Also, the importance of bicluster k
is measured over the time interval, instead of at a
single time: σ2

k =
∑T
t=T−W

∑n
i=1

∑p
j=1 r̂

(t)
ik ĉ

(t)
jk θ̂

(t)2
ijk .

Algorithm 8 shows the smooth plaid permutation test.

Algorithm 4 Smooth plaid models estimation procedure.

Input: Matrices {X(t) ∈ Rn×p}Tt=T−W , M biclusters from previous times {r̂(t)im, ĉ
(t)
jm}Mm=1

Output: Biclusters {r̂(t)ik , ĉ
(t)
jk , θ̂

(t)
ijk}

K,T
k=1, t=T−W

1: µ̂
(t)
0 = 1

n1n×nX(t), t = T −W, . . . , T
2: Ẑ(t) = X(t) − µ̂(t)

0 , t = T −W, . . . , T
3: {r̂(t)ik , ĉ

(t)
jk , θ̂

(t)
ijk}

K′,T
k=1,t=T−W = searchPrevBCResults({Ẑ(t)}Tt=T−W , {r̂

(t)
im, ĉ

(t)
jm}Mm=1)

(see Algorithm 5)

4: Ẑ
(t)
ij = Ẑ

(t)
ij −

∑K′

k=1 r̂
(t)
ik ĉ

(t)
jk θ̂

(t)
ijk for t = T −W, . . . , T, i = 1, . . . , n, j = 1, . . . , p.

5: {r̂(t)ik , ĉ
(t)
jk , θ̂

(t)
ijk}

K,T
k=K′+1,t=T−W = searchNewBC({Ẑ(t)}Tt=T−W ) (see Algorithm 6)

6: return {r̂(t)ik , ĉ
(t)
jk , θ̂

(t)
ijk}

K,T
k=1,t=T−W
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Fig. 3. The smooth plaid algorithm on a toy example. The first row contains raw data and the second row shows the fitted values. We are
interested in estimating t = 3. We combine the imperfectly detected bicluster from time steps t = 1 and t = 2 to form the initial condition or
candidate bicluster for t = 3. The double arrows denote the penalty.

Algorithm 5 searchPrevBCResults

Input: Matrices {Ẑ(t) ∈ Rn×p}Tt=T−W , M biclusters from previous times {r̂(t)im, ĉ
(t)
jm}Mm=1

Output: Biclusters {r̂(t)ik , ĉ
(t)
jk , θ̂

(t)
ijk}

K,T
k=1,t=T−W

1: K = 1 (bicluster counter)
2: for m = 1, . . . ,M do
3: r̂

(T )
im = min(1,

∑T−1
t=T−W r̂

(t)
im), i = 1, . . . , n

4: ĉ
(T )
jm = min(1,

∑T−1
t=T−W ĉ

(t)
jm), j = 1, . . . , p

5: {θ(t)ijm}Tt=T−W = argmin of Equation 8

6: b = permuteTest2({r̂(t)iK , ĉ
(t)
jK , θ̂

(t)
ijK}Tt=T−W , {Ẑ(t)}Tt=T−W ) (see Algorithm 7)

7: if b = 0 then
8: Ẑ

(t)
ij = Ẑ

(t)
ij − r̂

(t)
imĉ

(t)
jmθ̂

(t)
ijm for t = T −W, ..., T .

9: K = K + 1
10: end if
11: end for
12: return {r̂(t)ik , ĉ

(t)
jk , θ̂

(t)
ijk}

K,T
k=1,t=T−W

It is argued in Lazzeroni and Owen (2000) that,
since after permuting rows and columns the data
values are independent of row and column labels, the
approximate probability of accepting k or more false
biclusters is (L + 1)−k, where L is the total number

of noise biclusters. The authors suggest four or fewer
noise biclusters for each permutation test. Though,
this is highly dependent on the size of the data and
available computing power (costs are proportional to
the number of noise biclusters). With the large sized
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Algorithm 6 searchNewBC

Input: Matrices {Z(t) ∈ Rn×p}Tt=T−W
Output: Biclusters {r̂(t)ik , ĉ

(t)
jk , θ̂

(t)
ijk}

K,T
k=1,t=T−W

1: K = 1 (bicluster counter)
2: repeat
3: {r̂(t)iK , ĉ

(t)
jK , θ̂

(t)
ijK}Tt=T−W = estimateSmoothBicluster({Ẑ(t)}Tt=T−W ) (see Algorithm 7)

4: b = permuteTest2({r̂(t)iK , ĉ
(t)
jK , θ̂

(t)
ijK}Tt=T−W , {Ẑ(t)}Tt=T−W ) (see Algorithm 8)

5: if b = 0 then
6: Ẑ

(t)
ij = X

(t)
ij − θ̂

(t)
ijkr̂

(t)
ik ĉ

(t)
jk , t = T −W, . . . , T

7: Set K = K + 1
8: end if
9: until b = 1

10: return {r̂(t)ik , ĉ
(t)
jk , θ̂

(t)
ijk}

K,T
k=1,t=T−W

Algorithm 7 estimateSmoothBicluster

Input: Matrices {Ẑ(t) ∈ Rn×p}Tt=T−W
Output: Biclusters {r̂(t)iK , ĉ

(t)
jK , θ̂

(t)
ijK}Tt=T−W

1: Apply k-means (k=2) to rows of Ẑ(T ). Set {r̂(t)iK}Tt=T−W to the smaller cluster.
2: Apply k-means (k=2) to columns of Ẑ(T ). Set {ĉ(t)jK}Tt=T−W to the smaller cluster.
3: repeat
4: {θ(t)ijK}Tt=T−W = argmin of Equation 8
5: for t=T-W,. . . ,T do
6: for i=1,. . . ,n do
7: if

∑T
t=T−W

∑p
j=1(Ẑ

(t)
ij − θ̂

(t)
ijK ĉ

(t)
jK)2 <

∑T
t=T−W

∑p
j=1 Ẑ

(t)2
ij then

8: r̂
(t)
iK = 1

9: else
10: r̂

(t)
iK = 0

11: end if
12: end for
13: for j=1,. . . ,p do
14: if

∑T
t=T−W

∑n
i=1(Ẑ

(t)
ij − θ̂

(t)
ijK r̂

(t)
iK)2 <

∑T
t=T−W

∑n
i=1 Ẑ

(t)2
ij then

15: ĉ
(t)
jK = 1

16: else
17: ĉ

(t)
jK = 0

18: end if
19: end for
20: end for
21: until {r̂(t)iK , ĉ

(t)
jK} converge or maximum iteration number attained

22: return {r̂(t)iK , ĉ
(t)
jK , θ̂

(t)
ijK}Tt=T−W

data encountered in our application, we set L= 3.
This parameter can be adjusted by the user to balance
accuracy and computational ease.

Choosing λ. The effect of λ is to create smoother
paths over time for each bicluster. Specifically, larger

penalization levels force biclusters to have similar
estimated values as in neighboring time steps.

A systematic way to choose λ is through cross-
validation. The idea behind cross validation is to use a
random subset of the data to fit the model, and the rest
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Algorithm 8 permuteTest2

Input: Biclusters {r̂(t)iK , ĉ
(t)
jK , θ̂

(t)
ijK}Tt=T−W , Matrices {Z(t) ∈ Rn×p}Tt=T−W

Output: {0, 1}
1: σ2

K =
∑T
t=T−W

∑n
i=1

∑p
j=1 r̂

(t)
iK ĉ

(t)
jK θ̂

(t)2
ijK .

2: for l=1,...,L (number of noise layers) do
3: for t=1,...,T do
4: π

(t)
r = permutation({1, . . . , n})

5: π
(t)
c = permutation({1, . . . , p})

6: Z̃
(t)
l = Ẑ(t)(π(t)

r , π
(t)
c )

7: end for
8: r̃

(t)
il , c̃

(t)
jl , θ̃

(t)
ijl = estimateSmoothBicluster({Z̃(t)

l }) (see Algorithm 7)

9: σ̂nl
=

∑T
t=T−W

∑n
i=1

∑p
j=1 r̃

(t)
il c̃

(t)
jl θ̃

(t)2
ijl .

10: end for
11: if σ̂2

K > max{σ̂2
n1
, ..., σ̂2

nL
} then

12: return 0
13: else
14: return 1
15: end if

of the data to assess model accuracy. Different values
of λ are cycled over and the one that corresponds to
the lowest test error is chosen.

In particular, suppose one is given a sequence of
potential λs. Cross-validation divides the samples into
G groups. Then for each potential λ, Equation 8
is minimized G times, once with each of the groups
omitted. The coefficients from each estimation are
used to predict the omitted group. The error is ac-
cumulated, and average error and standard deviation
over the G groups is computed. Finally, the λ corre-
sponding to the lowest mean squared error is chosen.
A full algorithmic description, including selecting
the initial λ sequence, with code can be found in
Friedman et al. (2010).

Under this framework, the ‘optimal’ value of λ
(denoted by λ∗) can change each time we minimize
the penalized objective function. Thus, for the same
bicluster, λ∗ over time periods T −W, . . . , T may be
different than the λ∗ chosen for T −W +1, . . . , T +1.
Further, λ∗ can change for different biclusters over the
same time window. This flexibility is ideal given that
different trader groups may follow different dynamics,
and those dynamics may be time-varying.

Choosing W . The parameter, W , controls the
window width for smoothing, e.g., the number of
previous time steps to include in the smoothing. Larger
values of W mean that the model has more memory
so it incorporates more observations for estimation.
This risks missing sharper changes in the data and

only detecting the most persistent patterns. On the
other hand, small values of W make the fitting more
sensitive to sharp changes, but increase variance due to
smaller number of observations. We find setting W =
1 (penalizing over adjacent matrices) is sufficient for
filtering out most noisy expressions. Other values
could be used if external information is known, or if
additional smoothing is needed.

3. An illustrative example

Before applying our model to the E-mini S&P
500 Futures Contract, we illustrate and validate our
methodology with simulated data.

We generate a time-series of data matrices, where
each matrix has 100 rows and columns, with embed-
ded biclusters that evolve through time. In particular,
we have X(t) ∈ R100×100, where X(t)

ij ∼ N(µ(t)
k , 1).

The background layer has mean µ0 = 0, and there
are two biclusters with means shown in Figure 4. One
bicluster has constant mean, while the other oscillates
with time. The size of each bicluster is 16% of the size
of X , and is constant throughout time.

We use only a mean effect for the bicluster
effect for simplicity, that is, θijk =µk. Figure 5
shows the estimated values for different levels of
penalization. We see that if λ is too large, only the
most persistent pattern is detected. On the other hand,
the λ from cross-validation yields a nearly complete



S. Mankad et al / Discovering the ecosystem of an electronic financial market with a dynamic machine-learning method 161

2 4 6 8 10

1.
0

1.
5

2.
0

2.
5

3.
0

3.
5

Time

Bicluster Mean Estimate
Confidence Interval Bounds
True Bicluster Mean

2 4 6 8 10

0
1

2
3

Time
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perfect detection of the biclusters, while smoothing the
expression patterns over time.

We compare the proposed smooth plaid model with
the more direct approach of applying the static plaid
model to each time step separately. The percentage
of biclusters detected and false positive results are
presented in Table 1. We see that the smooth
plaid procedures perform favorably, since it does
a significantly better job at detecting the dynamic
bicluster, while maintaining a negligible number of
false positives and the detection of the stable bicluster.

Panel B of Table 1 shows that the recovered
bicluster contributions to explained variance are
relatively small. This highlights that the proposed
approach can be advantageous when finding ‘needles
in a haystack’, and is closely related to anomaly
detection.

Table 1
Simulation Results from the Illustrative Example. % Variance
Explains is defined as 1−

∑
t ||X̂(t) −X(t)||2F /

∑
t ||X(t)||2F .

Panel A: Detection Accuracy

Algorithm
% Stable
Bicluster
Detected

% Dynamic
Bicluster
Detected

% False
Positive

Smooth Plaid 93.7 87.9 1.6
Static Plaid 89.1 40.6 1.7

Panel B: Estimated Smooth Plaid Bicluster Statistics

Bicluster
Number
Rows

Number
Columns

% Variance
Explained

Bicluster 1 16 16 16.6
Bicluster 2 16 16 2.9

Overall 19.5
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In summary, the smooth plaid procedures perform
favorably in this synthetic setting by discovering the
true, underlying biclustering structure and evolution.

4. Applying smooth plaid models to
transaction-level data

We now apply the smooth plaid model to
transaction-level data generated by an agent-based
simulation model calibrated to the E-mini S&P 500
futures contract. The E-mini trades electronically on
the CME Globex trading platform, a fully electronic
limit order market. Limit orders are submitted by
traders wishing to buy and sell a certain number of
contracts up to a certain price (or at the market price
for market orders). Submitted orders are matched by
a matching algorithm. The number of outstanding
E-mini contracts is created directly by buying and
selling interests. There is no limit on how many
contracts can be outstanding at any given time. The
CME Globex matching algorithm for the E-mini offers
strict price and time priority. Specifically, orders to buy
at higher prices or sell at lower prices are placed in
queues ahead orders to buy at lower prices or sell at
higher prices. Orders that offer to buy or sell at the
same price arranged in the order that they have arrived
into the Globex matching engine.

We use simulated, transaction-level data generated
by an agent-based model (Paddrik et al., 2011; Hayes
et al., 2012) that retains key attributes of actual
E-mini 500 stock index futures data observed by the
exchanges and regulators. The model of Paddrik et al.
(2011) and Hayes et al. (2012) simulates traders who
submit orders to a limit order book according to
different combinations of trading styles. Orders are
matched according to strict price and time priority like
with the CME Globex matching algorithm. The six
different trading styles are based on the findings of
Kirilenko et al. (2010) and consistent of fundamental
buyers and sellers, market makers, opportunistic and
high frequency traders. The different trader types are
calibrated to match key aspects of behavior found in
real E-mini 500 stock index futures market data, such
as trading speed, market volume share, and position
limits. For each simulated transaction, we know the
buyer and the seller, the price and quantity at which
they traded, and the time of execution.

We use the following variables to cluster traders
into groups: trades per second, trading volume (total
number of contracts traded), cumulative inventory/net

position (reset to zero for each trading account at the
end of each trading day), change in inventory, and
median duration for each trader. Each of the variables
is calculated for a preset time period. We define the
time period as 600 transactions (trades). Our results
are robust with respect to different sampling schemes.
Though, if too small of a time period is used, then most
traders will not have participated in any transactions
and the data matrices will contain many zeros. Such
sparsity can mask the slower groups of traders. A brief
description of each variable follows.

Trades per second are computed by dividing the total
number of transactions that a trader makes in a given
time period by the total number of seconds in that time
period. Trades per second is indicative of the decision
horizons and execution strategies for different traders.

Trading volume is computed for each trader by
summing up the total number of contracts transacted in
each time period. Trading volume is indicative of the
overall trading activity of a particular trader.

Change in inventory is computed by subtracting the
number of contracts sold during a particular period
from the number of contracts bought during the period.
Change in inventory is indicative of a risk exposure
of a particular trader accumulated during a period of
time.

Cumulative net inventory is calculated by accumu-
lating a trader’s inventory from the beginning of the
day to the end of the current time period. Cumulative
net inventory indicates the direction (long or short) and
size of the risk exposure of a trader accumulated from
the beginning of the day.

Lastly, intertrade duration is defined as the time (in
seconds) until the next trade. Specifically, for each
transaction involving a given trader, we compute the
time, in seconds, until the next transaction between any
two traders. We then compute the median intertrade
duration for a trader during a sample period.

Each trading variable measures different aspects of
how much, in which direction, and how quickly each
trader transacts. Once organized, the data contains
6387 rows (traders), 5 columns, and 792 time periods.
Each day contains between approximately 30 to 50
time periods, depending on the number of transactions
per day.

After we apply our algorithm to the data, we use
additional filtering on the fitted values to separate
traders into five broad groups. The additional grouping
consists of variable thresholds that separate traders
into groups and is based on characteristics that
measure a trader’s strategic profile, such as, among
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others, the rate of a trader’s mean reversion of fitted
accumulated inventory. Thus, we employ the smooth
plaid method as a temporal filter to facilitate trader
classifications. Our method improves on the direct
approaches by cleaning the temporal noise, allowing
the additional classification of thousands of traders
into interpretable categories.

The main benefit of employing the smooth plaid
method is in separating market makers, opportunistic,
and small traders. The more direct approaches struggle
with these traders since they have strategies that
can appear very similar statistically when the time
dimension is aggregated.

Altogether, we find 7 high frequency traders
(HFT’s), 73 market makers, 2405 opportunistic
traders, 1281 fundamental position traders, and 2849
small/residual traders.

HFTs occupy a distinctive niche in the ecosystem
of modern electronic markets. They trade through an
enormous number of contracts each day, but carry
very little inventory at any point in time. Market
makers have a footprint qualitatively similar to HFTs,
but significantly smaller volume-wise. Fundamental
traders are primarily characterized by large positive or
negative cumulative net positions at the end of a trading
day. The use of temporal information is quite important
in identifying this group, since some of its members
accumulate directional positions by executing many
small-size orders, while others execute a few larger-size
orders, thus trying to disguise their behavior so as not
to be taken advantage by the market. This feature is to
a large extent lost to an analysis ignoring the temporal
dimension. The same holds true for the group of small
traders that trade infrequently at random points in time,
hence lacking any persistent pattern. The final group
consists of opportunistic traders that have a persistent
presence in the market, but their trading behavior
bifurcates between fundamental positioning and mar-
ket making.

Figures 6, 7, and 8 illustrate that the five groups
exhibit different trading signatures. Fundamental
traders accumulate either a large positive or negative
net imbalance. On the other hand, all other groups
have on average zero net position. Opportunistic
traders net positions vary more than market makers,
which vary more than high frequency traders. These
trader groups are conceptually similar to the bicluster
in the illustrative example with oscillating mean
structure, and as we saw, the smooth plaid model has
superior performance for such dynamic behavior by
conditioning on previous time points.
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Fig. 6. Stylized representation of the net position (x-axis)
versus volume/number of trades. After applying the smooth plaid
procedure, we can additionally classify market makers, opportunists
and small traders.

5. Conclusion

In this study, we present a dynamic machine-
learning method that designates traders in a liquid
financial market into five persistent categories based
on their footprint in the data. Our method is based
on a plaid clustering technique enhanced by a
smoothing framework that filters out transient patterns.
The method performs extremely well on regulatory,
transaction-level data for the E-mini S&P 500 stock
index futures contract, the price discovery vehicle
for the broad U.S. stock market. However, in order
to preserve confidentiality of the regulatory data, the
results we present employ simulated data generated
by an agent-based simulation model of an electronic
market calibrated to the E-mini.

For comparison, Table 2 shows that our clas-
sification of traders is consistent with the study
by Kirilenko et al. (2010), which classified trader
behavior using similar E-mini futures data three days
before and during the Flash Crash of May 6, 2010.
While investigating the triggering event of the Flash
Crash, Kirilenko et al. (2010) manually designated
trading accounts that traded in the E-mini on May
6, 2010 into the same six distinct categories. The
categorization was essentially based on the dynamics
of two characteristics: end of day holdings and
intraday trading volume for each trading account.

The similarity in our groupings validates and demon-
strates the usefulness of our method, since these previ-
ous reports manually classified each trader through an
exhaustive and labor intensive procedure. Our biclus-
tering algorithm was able to detect similar groups and
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Table 2
Grouping traders in the E-mini S&P 500 futures contract. Our
analysis is performed on simulated E-mini data, while Kirilenko
et al. (2010) analyze regulatory data for the May 2010 E-mini S&P
500 futures contract.

Trader Type Smooth Plaid Kirilenko et al. (2010)

HFT 7 16
Market maker 73 179
Opportunistic 2405 5808

Fundamental Buyers/Sellers 1281 2539
Small 2849 6880

the relevant variables that consistently separate them
over time using a novel machine-learning methodology.

We argue that the smooth plaid model can be
effectively used for the analysis of traders and
their strategies in electronic financial markets. In
an environment where traders do not have formal
designations, the smooth plaid model forms a useful
first step to separate tens of thousands of trading
accounts into manageable trader categories for subse-
quent academic, policy and regulatory analysis.

We also expect our method to be useful in other
applications where one is given a time-series of
matrices, such as examining traders across different
markets or analyzing macroeconomic variables for
different entities over time.
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