
CCFEA

University of Essex

MSc Financial Software Engineering

Dissertation

An extensible Open Source framework for
backtesting algorithmic trading strategies

within the Marketcetera platform

abstract

Numerous proprietary software applications provide backtesting functionality, but they
often have expensive license fees. I developed a basic framework for Marketcetera, an
open source automated trading platform, to historically backtest algorithmic trading
strategies. The framework offers an exchange, that simulates the market, and a module
for Marketcetera, which receives market data from the exchange and parses it to internal
events. Strategies running within Marketcetera can place orders on the exchange, where
they are matched against the current order book based on historical data. Market data
from any data source can be utilised, through custom data loaders. Simple backtest
reports are provided, but the generic reporting functionality allows the user to add custom
reports. The framework can potentially integrate with any FIX enabled application,
and is released as open source thus is free for everyone to use and modify. This paper
exemplifies the use of the framework by analysing a simple trading strategy, and suggests
future work for the framework including new features and validation methods.

Author:
Daniel Schiermer

Supervisor:
Dr. Steve Phelps

Sourceforge project page:
http://sourceforge.net/projects/catsbf/

SVN check-out:
http://svn.code.sf.net/p/catsbf/code/trunk

30-08-2011



Contents

1 Introduction 1

2 Related Work 4
2.1 Backtesting Tips and Pitfalls . . . . . . . . . . . . . . . . . . . . . . . . 5
2.2 Penn-Lehman Automated Trading Project . . . . . . . . . . . . . . . . . 6
2.3 Evaluation of Automated-Trading Strategies using an Artificial Market . 7
2.4 Relations to CATSBF . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

3 Marketcetera 9
3.1 Photon . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
3.2 Strategy Studio . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
3.3 Strategy Execution Engine . . . . . . . . . . . . . . . . . . . . . . . . . . 11
3.4 Data Nexus . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
3.5 Order Routing Server (ORS) . . . . . . . . . . . . . . . . . . . . . . . . . 12
3.6 Signal Analytics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
3.7 Evaluation of Marketcetera as an Automated Trading Platform . . . . . 12

4 Framework 13
4.1 CCFEA Marketcetera Market Data Adapter . . . . . . . . . . . . . . . . 14
4.2 CCFEA exchange . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
4.3 Software Design . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

4.3.1 Order Execution Strategy . . . . . . . . . . . . . . . . . . . . . . 16
4.3.2 Market Data Loader . . . . . . . . . . . . . . . . . . . . . . . . . 16
4.3.3 Database Adapter . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
4.3.4 Reporting . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
4.3.5 Order Book . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
4.3.6 Client Portfolio . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
4.3.7 Simulation Time . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
4.3.8 Order Book Simulator . . . . . . . . . . . . . . . . . . . . . . . . 20
4.3.9 Integration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
4.3.10 Multithreading . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
4.3.11 CCFEA Order Execution Strategy . . . . . . . . . . . . . . . . . 21

4.4 Running a Backtest . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
4.5 Simplifications and Limitations . . . . . . . . . . . . . . . . . . . . . . . 25

4.5.1 One Client . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
4.5.2 Securities . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
4.5.3 Time-In-Force Options . . . . . . . . . . . . . . . . . . . . . . . . 26
4.5.4 Order Book Updates . . . . . . . . . . . . . . . . . . . . . . . . . 27
4.5.5 Accepted Orders . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
4.5.6 Order Status Updates . . . . . . . . . . . . . . . . . . . . . . . . 27
4.5.7 Historical Market Orders . . . . . . . . . . . . . . . . . . . . . . . 27
4.5.8 Short Selling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
4.5.9 Optimisation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

4.6 Market Impact . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

5 Future Work 29
5.1 Feature Improvements . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29



5.2 Framework Validation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
5.2.1 Replicate Another Study . . . . . . . . . . . . . . . . . . . . . . . 31
5.2.2 Compare Order Books . . . . . . . . . . . . . . . . . . . . . . . . 31
5.2.3 Stylised Facts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

6 An Application of CATSBF 32

7 Conclusion 34

8 Acknowledgements 35

9 References 35



1 Introduction

Backtesting of algorithmic trading strategies provides a way of evaluating how a strategy

performs under a variety of market circumstances and trading situations before it is

deployed [Bat07]. Based on the backtest results, one might be able to tweak the strategy

parameters, to make it perform better, or completely discard the strategy. But, there are

common backtesting pitfalls that can produce erroneous results. Some of these pitfalls

are briefly discussed in section 2.1.

A number of proprietary software applications provide backtesting functionality (e.g.

[KO03], [Mat09] and [PV08]), but they require a license. This license is often very

expensive, and still only leaves the user with the right to use the software; it does not

give access to the source code, or permission to modify the software to user-specific

needs. In order to use the application it is generally necessary to write strategies using

application specific APIs1, or even a custom scripting language. Unless the same software

is used for both backtesting and trading, one is forced to rewrite the strategies using the

trading application’s specific API. This is a big overhead, and introduces extra cost in

terms of working hours, and maybe multiple license fees.

Most firms are always looking to cut cost, especially following the financial crisis starting

in 2007 and continued in the years following [Org09].

Using open source software instead of buying expensive licenses, or developing appli-

cations from scratch in-house, provides companies with a way of cutting cost, and can

reduce the time to go-live.

The objective of this dissertation is to develop an open source backtesting framework

for algorithmic trading strategies within the open source automated trading platform

Marketcetera. The full name of the framework is CATSBF CCFEA Algorithmic Trading

Strategy Backtesting Framework, but will from this point be referred to as CATSBF. The

source code is released under the GNU General Public License [GNU11], and is available

1An API - Application Programming Interface is a code “vocabulary” specifying how to communicate
with and run methods within the application [Wik11a].

1



from Sourceforge at https://sourceforge.net/p/catsbf/code/.

Open source is a methodology where the source code is published and made available to

the public. Anyone is allowed to copy, modify and redistribute the source code, without

restrictions. This freedom allows the software to evolve through community cooperation.

It is the author’s hope that releasing CATSBF as open source results in users improv-

ing upon the product causing it to continuously evolve, and in time become a rigorous

backtesting framework for algorithmic trading strategies. Hopefully it will reach a large

enough maintenance community, so it can be submitted to the Marketcetera Open Labs,

a collection of user maintained contributions to the Marketcetera platform2.

CATSBF performs backtesting against historical high-frequency data, and it comes with

an adapter to load market data from the London Stock Exchange (SETS)3. It is im-

plemented with extensibility in mind, to ensure that users easily can implement custom

market data loaders, to load data from their own sources. Users can also implement

custom order execution strategies, if they are not satisfied with the one provided.

Reporting is another extensible feature. Custom backtesting reports can easily be added,

to provide any information needed about the backtest. CATSBF contains two common

reports, one that logs all actions made by the client (bids, offers and trades), and one that

reports summarised data, such as total number of bought/sold shares, average buy/sell

price and total profit/loss.

Marketcetera is already an advanced trading platform which offers a lot of trading func-

tionality, but it lacks integrated backtesting, and such an extension is on their list of

suggested user contributions [Mar11g]. This dissertation aims to fill this gap in Mar-

ketcetera’s features.

A csv data adapter, to replay historical data, already exists for Marketcetera [Mar11h],

2Marketcetera Open Labs is an open experimental area, where users can submit extensions, modules
and new components to Marketcetera. The code has to be reviewed and approved by Marketcetera
before it is added to the Open Labs homepage [Mar11i]

3SETS - Stock-exchange Electronic Trading Service [Exc11] is the London Stock Exchange’s fully
electronic trading platform. SETS deliveres raw transaction data in CSV files. See [RP11] for an
overview of how the exchange is implemented.

2



but it has strict rules about the data format, and does not provide backtesting func-

tionality. Any such functionality would have to be implemented in the trading strategy,

whereas nothing “test” specific is needed in the strategy with CATSBF. Additionally

does CATSBF not have any data format, or data source, requirements; custom market

data adapters can be implemented and applied. One could e.g. implement an adapter

that fetches data from a database.

CATSBF is implemented as an exchange, to which Marketcetera connects and trade in

exactly the same way it would connect and trade on any other exchange. The idea behind

this solution is to completely separate the backtesting logic from the strategy, so nothing

backtesting-specific has to be declared in the strategy. This results in a more realistic

test bed, and allows successful trading strategies to be deployed very easily; it is only a

matter of a few configuration changes.

Marketcetera is implemented in Java [Jav11] and uses the FIX Protocol4 to integrate with

other applications. CATSBF is implemented using the same technologies as Marketcetera

to get the best integration.

The open source property of Marketcetera and CATSBF, and the use of open standards,

FIX, does not only contribute to firms saving money on license fees and development. It

also allows researchers to develop advanced trading strategies in an existing IDE [Wik11d]

and backtest them in a realistic trading environment, where they can easily deploy the

successful strategies.

Due to the use of the FIX Protocol, and the fact that CATSBF is a stand alone applica-

tion, it is possible for other applications to utilise the framework as well. Any application

that supports the FIX Protocol can potentially integrate with CATSBF. This means that

trading strategies implemented in any FIX enabled application could be backtested with

this framework.

CATSBF provides a basic backtesting framework, and it is left up to the user to modify

4The FIX protocol, Financial Information eXchange Protocol, is an open standard financial message
specification, that is widely used in financial applications, such as broker and trading applications [Org11].

3



it to meet his needs.

The scope of this dissertation is to implement CATSBF and give a description of the

implementation, along with a brief description on how to backtest, and discuss related

work. Furthermore it includes an overview and evaluation of Marketcetera.

The remainder of this paper is organised as following. The next section gives a brief

discussion on backtesting tips and pitfalls and reviews two related projects; The Penn-

Lehman Automated Trading Project [KO03] and a paper on Evaluation of automated-

trading strategies using an artificial market [Mat09]. Section 3 gives an overview of

Marketcetera and an evaluation of Marketcetera as an automated trading platform. Sec-

tion 4 describes the implementation of the framework and explains any simplifications

and assumptions made. Section 5 suggests future work. Section 6 analyses a trading

strategy based on a CATSBF backtest and section 7 concludes.

2 Related Work

Many proprietary trading applications provide functionality to backtest algorithmic strate-

gies, [Sys11], [MSC11], [Mul11] and [Alp11], but to the author’s knowledge, a historical,

open source, backtesting framework, that can integrate with multiple automated trading

applications does not exist.

This is not to say that similar projects do no not exist. Studies on testing trading

strategies have been conducted on several occasions, [KO03], [Mat09] and [PV08]. These

studies often take the approach of trying to find the best algorithmic trading strategy

and, for that purpose, provide a test bed to evaluate the strategies’ performance and

compare the results.

This section describes one such project, the Penn-Lehman Automated Trading Project

[KO03], and a comparison study of backtesting methods, by K. Izumi, F. Toriumi, H. Mat-

sui [Mat09], which compares historically backtested trading strategies from the Kaburobo

contest (more on Kaburobo in section 2.3), and the results from a backtest on their sim-

4



ulated exchange. First a brief discussion of how to backtest, and what pitfalls to avoid.

2.1 Backtesting Tips and Pitfalls

Markets are continuously changing, thus making it important to backtest trading strate-

gies under various market circumstances. Thorough testing involves testing the strategy

in both bull and bear [Gen01, pp. 77] markets, and under normal and extreme trading

conditions [PV08].

When a strategy is backtested, it sometimes happen that it performs well in the test, but

ceases to perform when deployed. This “over-performance” during the backtest, might

be due to the backtest having different market conditions than the actual market, but

often it is due to the following biases being present in the evaluation process [KK95].

• Pre-test bias: If the trading strategy is tested against the same data from which

it was derived, it is likely to perform well.

• Trading cost bias: The failure of not taking implicit and explicit trading costs

into account. Explicit costs being; commission and bid/ask spread. Implicit costs

being the trading strategy’s impact on the price, large orders will often in real

markets result in unfavourable price movements.

• Look-ahead bias: Allowing the strategy to trade based on “future” information,

such as comparing the current price with the daily closing price. This gives unreal-

istic results, because it would not be possible in real markets.

• Survivor-ship bias: Restricting the backtest of a portfolio strategy to only include

stocks that survived until the end of the test period, thus leaving out delisted stocks

and stocks that went bankrupt, tends to yield above average returns because the

strategy is tested in an unrealistic scenario.

Kan and Kirikos [KK95] describes theses biases in more detail and discuss their impact

on the test results.

5



K. Izumi, F. Toriumi, H. Matsui [Mat09] are able test the market impact of trading

strategies, thus if the strategy under test is suspected to have high market impact, trading

cost bias, it might be better to test it using an artificial market.

2.2 Penn-Lehman Automated Trading Project

Penn-Lehman Automated Trading Project (PLAT) [KO03] is a study of finding the best

automated trading strategies, through contests. PLAT was conducted as a partnership

between the University of Pennsylvania and Lehman Brothers’ Proprietary Trading Group

in New York City.

For the PLAT project the authors investigated a broad range of automated trading strate-

gies in financial markets by carrying out a number of competitions between automated

clients. To compare the strategies they used a realistic test bed for algorithmic trading

strategies. The strategies were developed by a number of students from the University

of Pennsylvania, and other universities, and all types of strategies were welcome, such as

agent-based and statistical models.

The centrepiece of the project, the Penn Exchange Simulator (PXS), was used to evaluate

the trading strategies. PXS relates very much to CATSBF, as it is a market simulator

that merges automated client orders with real-world data. PXS backtest strategies based

on market data for the Microsoft (MSFT) stock, as traded on Nasdaq. It automatically

calculates profits, losses and other quantities of interest. CATSBF is similar in the way

that it only handles trades on one stock, but this can be any stock, from any data source

(more on this in section 4).

PXS runs in one of two modes, Live or Historical mode. In Live mode market data is

pushed in real time from Nasdaq to the clients, in Historical mode archived market data

is replayed.

PXS has its own client API that contains a set of functions and data structures that

permit placement and withdrawal of orders, and the computation of market information,

6



including both information that is generally interesting for all clients, and more client

specific information such as the clients cash and share holdings.

The PLAT project is no longer active, and the Lehman Brothers went bankrupt in 2008.

2.3 Evaluation of Automated-Trading Strategies using an Arti-

ficial Market

K. Izumi, F. Toriumi, H. Matsui [Mat09] studied evaluation of automated trading strate-

gies using different backtesting methods. In their study they evaluated automated trading

strategies using an artificial market and compared the test results against results from a

conventional historical backtest.

Based on a standardised electronic trading protocol, the FIX protocol, they constructed a

new platform for artificial market simulation, and used it to evaluate automated trading

strategies.

They reused automated trading strategies that earlier participated in an automated trad-

ing competition called Kaburobo, held by the Trade Science Corporation [Kab11c].

Kaburobo is a contest that bears a lot of resemblance to the PLAT project [KO03]. Users

submit an automated trading strategy, developed using the Java based KaburoboSDK

[Kab11b] or developed using a graphical user interface (GUI) that is provided by the

organisers. When submitted the strategy is evaluated against historical data from the

Tokyo Stock Exchange. Initially each agent is given 50m Yen to invest among all

stocks in the Nikkei-225 index and 300 other stocks with larger trading volumes. The

agents can react to the market events during the backtest, and autonomously change

their strategy, but no manual intervention is allowed.5

At the end of the contest total profits and losses are calculated subtracting expenses,

such as commissions.

5For more info on Kaburobo see [Kab11a] or the explanation in [Mat09].

7



The main focus of the study is the development of the artificial market to evaluate

automated trading strategies, and to compare the two backtesting methods.

The system was developed using the FIX protocol for the communication between the

server and the agents. Furthermore they implemented a wrapper that translates Kaburo-

boSDK messages to and from FIX messages, which enables Kaburobo agents to trade on

the artificial market.

They compared the test results obtained from the Kaburobo contest with the results from

the artificial market. These results turned out to be very different, and they concluded

that the artificial market provided better information than the conventional historical

backtest, because, among other things, the artificial market could test the market impact

of the trading strategies.

2.4 Relations to CATSBF

PLAT provides functionality to backtest automated trading strategies against historical

data, like CATSBF. PXS is an extensive test bed for automated trading strategies, but is

built with the purpose of comparing trading strategies in a competition. The competition

aspect makes PXS unusable for hedge funds and investment banks to evaluate their

strategies. First, it is a competition only held at specific dates, hence participation in

the competition is required and strategies can only be tested at specific dates. Second,

the internal workings of the participating strategies are revealed for academic purposes,

hence the competitive advantage is lost. Third, a specific API is used for the PXS, thus if

a strategy is successful it has to be rewritten using the API of a trading application. With

CATSBF strategies can be tested at any time and kept secret to maintain the competitive

advantage. It is, furthermore, possible to integrate CATSBF with the company’s trading

application, thus allowing the strategy to be written in a familiar API.

The [Mat09] study bears a lot of resemblance to CATSBF. They developed their back-

testing engine using an open protocol, FIX, thus allowing easy integration via FIX for

8



FIX enabled applications, and via a wrapper for other applications. The separation of

the client and server, allows for easy deployment of strategies tested with the artificial

market. But, there are some key differences as well. CATSBF backtests against his-

torical data, and is released as open source, for everyone to use. Whereas the artificial

market of [Mat09] is not released to the public, at least not to the author’s knowledge,

and it can only backtest against an artificial agent-based market rather than empirical

high-frequency data, as CATSBF allows.

3 Marketcetera

Marketcetera is an Automated Open Source Trading Platform, with focus on, but not

limited to, automated strategy driven trading [Mar11j].

According to Marketcetera’s internal estimations [Mar11k], there is currently approxi-

mately 550 production installations of Marketcetera, as opposed to 450 in 2010. There

has been approximately 13,000 downloads of the product, which suggests that a lot of

people are experimenting with the product, or using it for research. From these numbers

it seems that Marketcetera is widely used in production, and increasing each year.

The fact that Marketcetera has taken the open source approach means that the user is

provided with a free trading platform that he can either use as is or customise to meet

his business requirements.

It is broker and data provider independent. The standard FIX protocol is used for order

routing, which means that it easily integrates with brokers, or exchanges, that are FIX

enabled. Custom market data adapters and broker connections can be implemented to

integrate with user specific providers. Multi-destination order routing is supported, hence

it is possible for a strategy to trade with multiple brokers/exchanges simultaneously.

The platform consists of a number of integrated components, each with different respon-

sibilities. Figure 1 gives a brief overview of the modules and how they interrelate. The

9



modules are described in more detail in the following [Mar11a].6

Figure 1: Overview of the Marketcetera modules and how they integrate. From the
Marketcetera product page (used with permission):
http://www.marketcetera.com/site/products/marketcetera-platform

3.1 Photon

Photon [Mar11d] is the platform’s Graphical User Interface (GUI) based on the Eclipse

Rich Client Platform [Ecl11], which makes it highly extensible.

Photon is a GUI application that supports manual order entry and order manipulation

(cancel/replace), and comprehensive monitoring of; real-time market data quotes, FIX

messages, output written to console and positions. Furthermore, it has an embedded web

browser that can display additional security information.

6See [Mar11f] for a list of supported features.

10



3.2 Strategy Studio

Tools to manage the entire trading strategy life-cycle are featured in the Strategy Studio

[Mar11e]. It is implemented as a view in Photon, and can be used to author, test and

deploy strategies, and to monitor execution of both manual and automatic trades, in

run-time.

A comprehensive set of APIs for authoring automated trading strategies is provided.

Supported interfaces include support for event stream queries, hereunder complex event

processing [Wik11b], e.g. for easy calculation of moving averages, and trading server

connectivity to automatically place orders, monitor trades, positions and profit/loss.

Trading strategies can be developed in the popular programming languages Java [Jav11]

or Ruby [Rub11] and for that Photon features an embedded Ruby scripting environment.

3.3 Strategy Execution Engine

The Strategy Execution Engine [Mar11e] is a complete standalone run-time environment

responsible for efficient and secure automated execution of strategies. It supports multiple

strategies running simultaneously, and allows the strategies to have interconnected data

flows and to utilise other Marketcetera modules like the Data Nexus (see 3.4) and Signal

Analytics (see 3.6). It runs as a service, and does not provide a GUI, thus consuming

less resources than Photon.

3.4 Data Nexus

Enables connectivity to multiple market data streams, via market data adapters. The

market data is transformed and disseminated to other platform modules with very low

latency. Default data adapters are provided, but a consistent architecture allows users to

easily integrate additional market data adapters.

11



3.5 Order Routing Server (ORS)

ORS [Mar11c] is responsible for routing orders, received from other modules, e.g. Photon

or the Strategy Execution Engine, to the appropriate broker, or exchange, using the FIX

protocol. When a reply is received it is forwarded to the module placing the order. It

is furthermore the platforms gateway to the database, thus Photon obtains information

about existing positions through the ORS.

3.6 Signal Analytics

Signal Analytics [Mar11b] provide tools for data analysis, such as Complex Event Pro-

cessing (CEP) [Wik11b] of market data streams. CEP is implemented using the open

source CEP library Esper [Esp11]. Esper processes events using a SQL query like lan-

guage, and accepts any type of data. A strategy could, for example, implement an Esper

query to calculate a moving average and react to it.

3.7 Evaluation of Marketcetera as an Automated Trading Plat-

form

Marketcetera has no license fees, because it is open source. Companies often need to

modify or extend their trading application to meet specific requirements. Sometimes

they even develop entire systems in-house, to keep trading knowledge as secret as possible.

Using Marketcetera as the foundation for a trading platform not only results in saving

money on license fees, as opposed to buying a proprietary solution and extending it,

but it also saves a lot of time on development, because Marketcetera provides a robust

and thoroughly tested foundation that can be customised to meet specific user needs.

Furthermore, it is implemented in Java, a well known open source programming language,

suggesting that many firms already have the required skills to extend the platform, or at

least would not have problems hiring people with such skills.

12



Marketcetera trading strategies are authored in existing well known programming lan-

guages, Java and Ruby, while other proprietary vendors use their own scripting languages.

This means that one can risk spending a lot of time learning the vendor specific languages

and APIs, and when a lot of time and money is invested in learning these APIs, one will

loose this investment if the vendor is changed, thus people tend to stick with the same

vendor.

Another crucial aspect to Marketcetera as an automated trading platform is it’s scala-

bility. The Strategy Execution Engine code module is called the Strategy Agent, and

is a standalone environment for running automated strategies. Multiple instances of the

Strategy Agent can run simultaneously and each agent can run multiple strategies at

once [Mar11e]. This architecture causes it to scale well, hence it can easily handle a

strategy (or a number of strategies) that control an entire portfolio (or several portfolios)

of securities; simply add more agents as needed.

Even though the module scales well for multiple strategies and large portfolios, there is,

at least, one drawback. Java uses automated garbage collection7, causing the application

not to guarantee real-time execution. Not being real-time will probably not affect the

average user, but for high-frequency trading a real-time application is required, otherwise

firms can potentially loose a lot of money.

In order to be a complete automated trading platform, Marketcetera needs a way for

users to test their trading strategies thoroughly before deploying them, which is hopefully

resolved, in time, with CATSBF.

4 Framework

CATSBF is implemented as part of this dissertation as a software project. It is intended

as a basic framework for automated trading strategy historical backtesting. It is open

7Garbage collection is a form of automated memory management, that once in a while tries to free
occupied memory that is no longer in use. It is impossible to tell when this is done and takes up the
computer resources, which is a problem [Wik11c].

13



source and thus allows users to use it as is, or extend it to their specific needs. Because it

is only a basic framework, a number of simplifications are made during the development

(see section 4.3.10).

In order to make the backtest resemble a realistic scenario, CATSBF must simulate an

exchange and provide a market data adapter for Marketcetera. Therefore, two separate

modules are implemented to constitute CATSBF; the CCFEA Market Data Adapter, a

Marketcetera market data adapter, and a simulated exchange, CCFEA Exchange. These

two module are not directly connected, rather they communicate as client and server. The

communication happens via FIX messages, just like the Marketcetera platform would do

in a real trading scenario.

4.1 CCFEA Marketcetera Market Data Adapter

Marketcetera integrates with market data providers via vendor specific adapters. The

CCFEA Marketcetera Market Data Adapter is implemented as such an adapter to send

FIX market data requests to the CCFEA Exchange, and parse market data messages

received from the exchange. Currently the only supported market data format is FIX

MarketDataIncrementalRefresh8.

4.2 CCFEA exchange

To manage the market simulation and the backtest itself the CCFEA Exchange was

developed. The exchange is responsible for everything that has to do with simulating the

market, including loading market data from external sources and replaying it in sequential

order to reconstruct the order book, accepting market data requests and orders via FIX,

sending market data updates, sending order execution reports and performing the actual

backtest. This module is basically the heart of CATSBF.

It is split into several sub components. The first component is the CCFEA Market Data

8Words in teletypefont refers to code classes.

14



Loader which has the job of loading market data from external sources, such as CSV files

or external databases, and insert it into the exchange’s database using the database

adapter. An SQLite [SQL11] database adapter is provided with CATSBF, CCFEA

SQLite Adapter, which handles all integration with the integrated SQLite database, here-

under insertions and fetches of market data.

Two subcomponents are responsible for the communication with Marketcetera. These

are two FIX servers, one that accepts market data requests and pushes market data to

Marketcetera, CCFEA Market Data Server, and one that accepts orders from the strategy

running in Marketcetera, CCFEA Order Server, and checks them for execution. The two

modules communicate with Marketcetera via FIX messages. The servers are implemented

as two separate components because they are logically separate entities due to their differ-

ent responsibilities. They each communicate with different Marketcetera modules. The

CCFEA Order Server communicates with the Marketcetera Order Routing Server and

the CCFEA Market Data Server communicates with the CCFEA Marketcetera Market

Data Adapter. Figure 2 gives an overview of the modules and how they relate to each

other.

4.3 Software Design

Several software design patterns [Eri, pp. 12-14] are used to make CATSBF extensible

and, some parts, easily exchangeable with custom implementations. Furthermore, I used

the Spring [Spr11] framework to configure all dependencies, thus enforcing Inversion of

Control and Dependency Injection [Fow04].

Parts of CATSBF are meant to be customised to specific user needs, and the use of

Spring and design patterns allows custom implementations to be injected as a matter of

changing the configuration.

This section describes how design patterns are utilised along with important implemen-

tation aspects. Please consult figure 3 for a UML class diagram of the CCFEA Exchange.

15



Figure 2: Overview of the CCFEA Exchange and how the different modules interrelate
and communicate with Marketcetera.

4.3.1 Order Execution Strategy

How orders are executed, and what impact they have on the order book, depends on the

Order Execution Strategy. Custom execution strategies can be implemented, due to the

use of the Strategy [Eri, pp. 315-324] design pattern. They simply have to comply with

the IOrderExecutionStrategy interface, which has two methods, one to check a Bid

for execution and one to check an Offer for execution. CATSBF comes with a default

strategy implementation, CcfeaOrderExecutionStrategy (explained in detail in section

4.3.11).

4.3.2 Market Data Loader

Most users will probably need custom Market Data Loaders. The Adapter [Eri, pp.

139-150] pattern provides a way of creating a common interface for market data loaders,

IMarketDataLoader, and thus making it possible to implement custom data loaders. A

16



Figure 3: Simplified class diagram of the CCFEA Exchange including the most important
classes and their relations.

custom market data loader must implement the interface, or extend the AbstractMarket-

DataLoader. The AbstractMarketDataLoader pre-implements the database integration

used to create the necessary database tables and functionality to insert data, hence the

17



custom data loader can focus on reading the actual data. If more control is needed, the

IMarketDataLoader interface should be implemented. CATSBF comes with a market

data loader implementation that loads CSV market data from the London Stock Exchange

(SETS), SETSMarketDataLoader.

4.3.3 Database Adapter

CATSBF currently uses SQLite [SQL11] as the database engine to hold market data

due to its simplicity. SQLite is a self-contained, serverless, zero-configuration transac-

tional SQL database engine, and it integrates well with Java (using JDBC [Ora11]). The

Adapter pattern is employed for the database integration. Hence, if one prefers to use

another database engine, this is achievable by implementing a custom database adapter

that conforms to the IDatabaseAdapter interface. In most cases the existing database

adapter will be sufficient.

4.3.4 Reporting

For reporting the Observer [Eri, pp. 293-303] pattern is used in conjunction with Poly-

morphism [Eri, pp. 14]. An abstract Report class defines the basic reporting functionality,

such as which methods to call on specific events, and methods to get the file path and

file extension.

An arbitrary number of reports can be added to the simulation. Custom reports must

extend the abstract Report class. The reports are set to observe the client portfolio, but

can, manually, be added as observers of the OrderBook as well. Two default reports are

implemented in CATSBF9:

• CcfeaTradeLogReport: Logs all actions performed by the client. Logs new orders,

partially filled orders and filled orders and saves it to a text file.

9CATSBF actually comes with 3 reports, but the third is implemented specifically for the sample
trading strategy, see more in section 6.

18



• CcfeaSumCalcReport: Calculates summarised data such as, total price and amount

of sold and bought assets, average buy and sell price and total profit/losses.

More advanced reports, or trading strategy specific reports are easily added to the back-

test.

4.3.5 Order Book

A cached order book, OrderBook, is kept up to date at all times during the simulation. For

each market event in the historical data, and each order placed or deleted by the client,

a change is made to the order book. It is implemented as an Observable Singleton

[Eri, pp. 127-134] because numerous objects needs to interact with it. Making it a

Singleton allows easy access to the same object, plus we can easily make it thread safe

(see section 4.3.10). All changes to the order book needs to be reported to Marketcetera.

A MarketDataReporter is implemented as observer of the order book and notifies the

client of all changes via FIX messages.

Separate sorted lists for offers and bids are kept in the order book. The lists are sorted

with the most competitive limit orders at the top, to less competitive limit orders at the

bottom. That is, high buy prices and low sell prices are on top. This makes it possible

for the Order Execution Strategy to easily find matches without searching the entire list.

4.3.6 Client Portfolio

All orders placed by the client, Marketcetera, are recorded in a ClientPortfolio. It

keeps track of all currently open orders, partial fills and complete fills belonging to the

client. When a partial, or complete fill, is added to the portfolio, it automatically updates,

or deletes, the existing open order, if any match exist.

It is implemented as an Observable, and notifies observers on any changes made to it.

An OrderReporter is implemented to observe the portfolio and send execution reports

(FIX Execution Reports) to Marketcetera on all updates.

19



4.3.7 Simulation Time

During a backtest the market events are replayed in sequential order. The replayed events

has timestamps that correspond to the actual time they were executed, according to the

historical data. The orders placed by the client in the market gets a timestamp as well.

In CATSBF a Simulation Time is introduced, which is continuously updated according

to the time in the replayed market events. The user can choose to give the client orders

timestamps that matches the simulation time or the actual time. This is configurable in

the Spring configuration.

4.3.8 Order Book Simulator

An OrderBookSimulator is used to replay the historical market events. When the sim-

ulation begins it fetches all market events from the database, within the configured time

interval, and replays them in order. It updates the cached order book according to each

event.

The implemented order book simulator, CcfeaOrderBookSimulator, is meant as a gen-

eral order book simulator that can be used for any external data source, but it is ex-

changeable with custom simulators. Custom simulators have to extend the abstract class

OrderBookSimulator, which implements Runnable (see 4.3.10) and extends Observable.

Simulators should notify observers when the simulation starts and stops.

4.3.9 Integration

All integration between the CCFEA Exchange and Marketcetera is managed via FIX

messages. All FIX messaging is implemented using the open source QuickFIX/J [Qui11]

FIX engine. The use of FIX potentially allows any FIX enabled application to integrate

with, and use, CATSBF for backtesting. If an application does not use FIX, it would be

possible to implement a wrapper that converts the application specific messages to FIX

messages, and the other way around.

20



4.3.10 Multithreading

When the CCFEA Exchange is started it runs a single thread that loads the market

data, and initiates the FIX servers. Each FIX server has its own thread to manage de-

queueing of received messages. The QuickFIX/J engine manages all FIX connections

and the actual sending and receiving of messages. The FIX server threads are running

and managed within this engine as well. Received FIX messages are handled in the main

thread one by one, forcing the order book simulation to be run in a separate thread,

hence simulators has to implement Runnable, because it otherwise would block the main

thread.

4.3.11 CCFEA Order Execution Strategy

The default order execution strategy is called CcfeaOrderExecutionStrategy, and this

section explains it in detail.

When an order is received from the client, this can be a buy (bid) or sell (offer) order, it

is matched against orders in the cached order book.10

On a bid order, a complete match (fill) is when the order book contains one or more

opposing offers that can fill the bid. This happens when a number of offers have a

cumulative size larger than the size of the bid, and the offer prices all are less than or

equal to the bid price.

It is a partial match (partial fill) if there exist one or more opposing offers where the price

is less than or equal to the bid price and the cumulative size is less than the bid size.

The same goes for a received offer except that the matching bid price has to be greater

than or equal to the offer price.

Orders that are not matched are placed as open orders. Every time a new order is replayed

from the historical data, the open (including partially filled) orders are tested as a match

against the historical order, and executed if possible.

10See [Gen01, pp. 75-78] for definitions of market order, limit order, fill, bid and offer.

21



4.3.11.1 Limit Orders

A limit order is when a maximum price is given for a bid, or a minimum price for an

offer. The strategy executes the bid at the best price possible, hence the execution price

will always be less than or equal to the bid price.

GOOG

BUY Orders SELL Orders
Qty Price ($) Price ($) Qty
100 605 606 250
250 604 607 50
150 603 608 550

Figure 4: Example of a possible order book for the Google stock (GOOG). The data is
fictional.

The strategy for a client offer is much alike, except that the offer is matched at a price

equal to the offer price, even though the matching bid has a larger limit price.

The execution price is calculated as the average price matched at the opposing orders.

Figure 5 provides examples that explain the limit order execution strategy in more detail.

4.3.11.2 Market Orders

Market orders are orders to be executed at the best possible price in the market. They

are matched with the most competitive limit orders on the opposing order book. Market

orders are always executed, assuming that there exist opposing orders with a cumulative

size larger than, or equal, to the market order.

If an order cannot be filled, this goes for both market and limit orders, it is either partially

filled or placed as a new order in the order book, and will be filled or partially filled as

soon as new matching orders arrive.

4.3.11.3 Client Orders Impact on the Order Book

When a client order is matched against one, or more, historical orders, only the client

order is updated. This means that the historical orders are not removed from the order

book, even though the are partially or completely filled, nor are their order size values

22



Complete Fill Limit Orders

BID OFFER
The client places a bid (Qty: 300, Price:
607.5). The bid is matched against the first
offer (Qty: 250, Price: 606), and the sec-
ond offer (Qty: 50, Price: 607) in the order
book. Hence the bid is fully matched with a
price of (250 ∗ 606 + 50 ∗ 607)/(250 + 50) =
606.167, and size 300.

The client places an offer (Qty: 200, Price:
604). The offer is matched against the first
bid (Qty: 100, Price: 605), and the sec-
ond bid (Qty: 250, Price: 604) in the order
book. Hence the offer is fully matched with
a price of (100∗604+100∗604)/(100+100) =
604, and size 200.

(a) Complete Fill Limit Orders Examples

Partial Fill Limit Orders

BID OFFER
The client places a bid (Qty: 350, Price:
606). The bid is only matched against the
first offer (Qty: 250, Price: 606), because
the price of the second offer is too big. The
bid is partially filled with a price of 250 ∗
606/250 = 606 and size 250. This leaves an
open bid (Qty: 100, Price: 606).

The client places an offer (Qty: 150, Price:
605). The offer is only matched against
the first bid (Qty: 100, Price: 605), be-
cause the price of the second bid is too low.
The offer is partially filled with a price of
(100 ∗ 605)/100 = 605 and size 100. This
leaves an open offer (Qty: 50, Price: 605).

(b) Partial Fill Limit Orders Examples

Figure 5: Examples explaining the CCFEA Order Exection Strategy for limit orders.
The examples are based on the Google order book in figure 4.

updated. This is due to the potential later match against another historical event, and at

this point will the historical order be removed, or updated, because that is what happened

in the real market. This might not be the best approach, but the best execution strategy

depends on the strategy under test. Thus, custom order execution strategies can be

implemented, that corresponds to the users requirements.

There is one obvious problem with this approach. Consider the following scenario: The

order book is as in figure 4. The client places a bid (Qty: 300, Price: 607), which is

filled at price = 606.17. Immediately after an identical bid is placed by the client, which

is also filled against the same orders in the order book. This would not have happened

in the real market, because the two top offers would have been removed from the order

book, an the second bid would not be filled.

It is guaranteed that a client order is not checked as a match against the same historical

order more than once. Meaning that a client order, CO, that is partially matched against

the historical order HO, is never tested as a match against HO again. Neither is it

23



possible for a client order to be matched against his own orders. E.g. if the client places

the bid(Qty: 300, Price 610 and the offer(Qty: 100, Price 609), they will not be matched

against each other, thus making it possible for the client to have outstanding orders on

both sides simultaneously.

4.4 Running a Backtest

In the following the flow of a backtest is described along with some implementation

details. Figure 6 visualises the flow.

1. When starting the CCFEA Exchange the data loader is executed to populate the

database. Whether or not to run the data loader is configurable, so if multiple tests

are run against the same data, maybe in different time intervals, one can disable

the data loader.

2. Then the CCFEA Order Server and CCFEA Market Data Server are started, and

awaiting requests.

3. The actual market data simulation does not start until a market data request is

received. When a request is received, the symbol is checked to match the symbol

specified in the configuration.

4. When a correct request is received, the market events, from the configured time

interval, is fetched from the database and replayed in order and the order book is

continuously updated.

5. Each update to the order book is reported to Marketcetera.

6. Orders received from the client are matched against the orders in the order book,

and the ClientPortfolio is updated accordingly.

7. On changes to the ClientPortfolio execution reports are send to Marketcetera,

and the backtesting reports are notified.

8. When all historical market events are executed the server stops and backtesting

24



reports are closed.

Figure 6: Flow chart visualising the execution flow of the exchange.

4.5 Simplifications and Limitations

Due to the fact that CATSBF is meant as a basic, extensible, backtesting framework

a number of assumptions, simplifications and limitations have been made. These are

25



explained in the following.

4.5.1 One Client

The goal of this framework is to provide backtesting functionality to evaluate how well

trading strategies would have performed in the past, so the server can only connect to one

client at a time. One cannot have multiple clients trading against the same simulation

simultaneously.

4.5.2 Securities

Only one stock (one symbol) can be traded at a time. The symbol traded needs to be

specified in the configuration file. Only market events belonging to this security should be

added to the database, as the framework assumes that all events in the database belongs

to the same security. All requests from the client with a different symbol, than the one

configured, are rejected.

Ordinary stocks is the only supported security type in CATSBF, even though Mar-

ketcetera supports trading in options as well. All orders are assumed to be on stocks,

there is no verification as to whether this is actually true.

4.5.3 Time-In-Force Options

Time-in-force [Inv11] options are limited to Good Till Cancel (GTC). All orders are

matched against the order book at arrival. If they are not filled immediately they are

kept in the client portfolio (and the order book) as open orders, and tested against all

new orders, until they are cancelled by the client, or the simulation terminates. Orders

that specify another Time-in-force option are rejected.

26



4.5.4 Order Book Updates

Usually the current state of the order book is send to the client when a market data

request is received, whereafter only updates to this state are sent. CATSBF is limited to

only sending updates, hence no initial state is calculated and reported to the client.

4.5.5 Accepted Orders

Marketcetera only support single order entry entries, and therefore CATSBF is limited

to only support single orders as well.

4.5.6 Order Status Updates

Execution reports are send to the client when an order is created (new - unfilled order),

filled, partially filled, cancelled or rejected. FIX also supports sending Done for day

reports indicating that no more trading on the stock takes place that day, which might

be useful for the client, but this is not supported in CATSBF.

4.5.7 Historical Market Orders

It is assumed that there is no open market orders in the historical data. Thus, market

orders recorded in the historical data is expected to be filled immediately, and therefore

having a price attached. The CcfeaOrderExecutionStrategy cannot handle orders with

a price = 0 correctly. If an unfilled market order is placed in the offer order book with

(price = 0) it will be matched against any bid order placed by the client at price = 0,

where it actually should be the current market price.

4.5.8 Short Selling

Short selling is allowed, CATSBF does not distinguish between a sell and short sell

order. CATSBF has no knowledge about the clients funds, or positions (except those

27



made during the running simulation) therefore it is possible for the client to sell (short

sell) an asset that is not owned, and buy an asset even though he does not have the

funds. These matters are assumed to be handled on the client, as they would in a real

trading scenario. Note that Marketcetera keeps a client portfolio that can be queried in

the trading strategy.

4.5.9 Optimisation

Optimisation has not been a priority, because it is a backtesting framework, so there

are no requirements for Real-time execution, or other execution time aspects. Especially

the SETS Market Data Loader is not implemented in the most efficient way because

it extends the AbstractMarketDataLoader and has to do a lot of data preprocessing

before inserting the market data, using the default insertion methods, instead of directly

updating the database.

The lack of optimisation will only become a problem for extremely large datasets. Inves-

tigation and improvement of performance issues are left to the user.

4.6 Market Impact

How the trading strategy impacts the market and the market price during a simulation

is not taken into account in any way. In a highly liquid market the market impact of the

trading strategy would be very little and it is therefore ignored, and perfect liquidity is

assumed.

Due to the perfect liquidity assumption does CATSBF not remove matched orders from

the order book, when an order is matched, using the CCFEA Order Execution Strategy,

nor does it consider the market price changes that the trading strategy might cause.11

Due to the extensibility of CATSBF it is possible to implement a custom Order Execution

Strategy that simulates market impact.

11See 4.3.11 for a detailed description of the CCFEA Order Execution Strategy

28



One way to achieve this could be to remove matched orders from the order book, and keep

a price delta, in memory, that describe cumulative price changes, and apply the delta to

the price henceforth [PV08]. Another approach could be to completely ignore historical

information about matches, and do the matching in the simulation. This way historical

data would be mixed with the strategy’s orders and whether or not to fill historical orders

is dependant on the orders placed by the strategy, thus letting it impact the market. In

any case it has to be validated that the simulated market still resembles a real market,

hence exhibits stylised facts [Con01].

5 Future Work

By releasing CATSBF as open source it is the author’s hope that the framework will

continuously be evolved and improved upon. In this section suggestions for future work

is described.

5.1 Feature Improvements

In this section a number of feature extensions to CATSBF are suggested, along with brief

discussions on how to implemented them.

Market Data Loaders for other market data providers, this could be other exchanges or

Bloomberg [Blo11], would make CATSBF attractive to a larger group of users. Enabling

CATSBF to use a live market data feed could also be interesting, and would probably be

doable by implementing a custom Order Book Simulator.

To make the simulation resemble a real-life situation even more CATSBF should be

extended to calculate the initial state of the order book and push it to Marketcetera

before sending updates. This will require changes to both the CCFEA Exchange and

the CCFEA Marketcetera Market Data Adapter. The adapter should be extended to

support FIX MarketDataFullSnapshotRefresh messages, but this should be a simple

29



improvement as it is parsed in a similar way to the currently accepted MarketData-

IncrementalRefresh messages. The update to the exchange on the other hand imposes a

new problem. It is not possible to check whether or not all the information to calculate the

initial order book state is available. It could either be assumed that the database contains

all market events needed, or a strategy to handle missing data could be implemented.

Adding support for more Time-in-force options, would definitely make the backtest more

realistic. Strategies will, in most cases, be backtested against data that spans several

days, maybe even several years, therefore it would be more realistic if the strategy could

specify other time-in-force options, such as DAY, hence specifying that the order expires

at the end of the day. CATSBF’s internal clock, Simulation Time, could be observed

by the client portfolio and check open orders for expiry at specific times. Using this

internal clock it would be possible to implement ”Done-for-day” execution reports as

well. These would notify the client that a day has passed and that no further executions

are forthcoming that trading day.

Any market should be able to handle market orders, thus the CCFEA Order Execution

Strategy should be updated to handle market orders correctly. It would probably be

a good idea to update MarketEvents to include a field specifying whether they are a

market or limit order. That would generally give more information about the orders

within CATSBF, and could potentially provide more information to the client. This

would include adding this information in the database on market data load.

Implementing new backtesting reports that calculate more advanced statistics would

contribute greatly to the analysis capabilities of CATSBF. It might be possible to create

a report that automatically looks for stylised facts in the trading data, and thus validate

(or invalidate) the results.

30



5.2 Framework Validation

If the framework is to be used in production, one should somehow validate that it resem-

bles an actual market. A few validation methods are discussed in this section.

5.2.1 Replicate Another Study

One way to verify the framework would be to find another backtesting study and replicate

it. That would include implementing a similar strategy, to the one used in the existing

study, in Marketcetera and then backtest it using CATSBF. If the results from the two

studies are equal, with some margin, one could be assured that the framework works

correct. Assuming that the replicated study is correct.

5.2.2 Compare Order Books

CATSBF rebuilds the order book from the historical data. If one used another tool to

rebuild the same order book, and compared the two order books, at a given time, the

order books should be identical. Some assumptions has to be made for this approach.

First, the used tool should be guaranteed to generate the correct order book. Second,

CATSBF starts populating the order book from the given start time, it does not take

into account orders that might be in the order book already, hence the comparison has to

be at a point so far from the start date that the actual state of the order book is expected

to be in cache.

Another downside to this approach is that only the order book reconstruction is verified,

it does not guarantee that the simulation will exhibit real market characteristics when a

strategy is trading during the simulation.

5.2.3 Stylised Facts

Stylised facts are empirical statistical properties common to asset returns which are ob-

servable in real markets [Con01]. If stylized facts can be found in the high frequency data

31



from the simulation, CATSBF is likely to resemble a real market.

Assuming that the simulation of historical market events is correct, stylized facts should

always be exhibited when only the data is replayed, because this should be exactly as the

orders were placed in the real market. So, to be sure that the simulation is correct when

running trading strategy during the simulation, one should look for stylised facts in data

collected from a simulation where a strategy is trading. Such simulation generates high

frequency data that is a combination of the historical events and the events generated by

the strategy. The result of such a study will greatly depend on the order execution strat-

egy, as that defines how the strategy impacts the market. The strategy can potentially

corrupt the simulation, thus keeping the simulation from exhibiting stylized facts.

6 An Application of CATSBF

I implemented a simple trading strategy in Marketcetera, along with a specific report,

to demonstrate an application of CATSBF. The strategy, MACrossingStrategy [Sch11a],

places buy and sell orders in turn based on crossings of a long term moving average, lma,

and a short term moving average, sma. A buy order is placed when sma crosses lma from

below (indicating a positive trend) followed by a sell order when sma crosses lma from

above (indicating a negative trend). All orders are market orders of exactly one stock,

thus execution is, almost, guaranteed immediately. MACrossingStrategy only trades one

asset at a time, and thus every buy/sell pair can be seen as a trade making a profit (or

loss), hence the strategy makes a series of individual returns.

The report [Sch11b] implemented to evaluate the MACrossingStrategy calculates de-

scriptive statistics on the returns for the series of buy/sell trades, including maximum,

minimum, mean and standard deviation. Additionally it calculates the maximum draw-

down [Cha09, pp. 21-22] and its duration. Figure 7 provides an overview of the results.

A backtest of the MACrossingStrategy, with sma = 25 and lma = 30, was performed

against SETS March 2007 market data for the GlaxoSmithKline stock. It earned a total

32



Test results

Indicator Result
Maximum return 16.70%
Minimum return −3.169%
Standard deviation 1.222%
Total profit/loss £3841.0
Maximum drawdown 67.33%
Maximum drawdown duration 2050
Total number of buy/sell trades 4557

Figure 7: Test results for the MACrossingStrategy with sma = 25 and lma = 30 against
SETS March 2007 GlaxoSmithKline data.

profit of £4651.0, implying that it is a profitable strategy, but when analysing the test

results, it becomes clear that it does not provide a consistent return. The mean return

was as little as 0.08743%, with values spanning from −3.169% to 16.70%, indicating that

there are some outliars.

The standard deviation is fairly low, 1.222%, suggesting that the returns tend to be close

to the mean, thus indicating that the strategy generally produces low returns, in the area

of 0.08743% ± 1.222%.

The maximum drawdown is 67.33%, and has a duration of 2050 buy/sell trades of the

total 4557 trades. This is a very long drawdown period, suggesting that big profits are

made in other periods. When analysing the graph of cumulative returns, see figure 8, it

is clear that the strategy makes its profit in spikes, followed by longer drawdown periods,

thus it appears that only a fraction of the profits are positive.

Backtests with other values for sma and lma yielded similar results, hence the strategy

seems to consistently provide positive returns, for that specific month, but the mean

returns are very low, and the total positive profits are generated from only a fraction of

the trades, hence making it a risky strategy. Based on the results from the backtest, it is

clear that the strategy relies on making a few big profits, thus making it a poor strategy.

33



0 500 1000 1500 2000 2500 3000 3500 4000 4500

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

Buy/sell trade

C
um

ul
at

iv
e 

re
tu

rn
s 

(%
)

Cumulative returns (%) − with max drawdown

Max drawdown duration = 2050

Max drawdown = 67.33%

Figure 8: Cumulative returns for MACrossingStrategy, with the maximum drawdown
indicated. Based on data generated by the backtest report.

7 Conclusion

The objective of this dissertation was to implement a basic, extensible, backtesting frame-

work for the Marketcetera platform, and release it as open source. I constructed a

backtesting framework, CATSBF, that uses the standard FIX communication protocol,

which, potentially, allows any FIX enabled application to integrate with CATSBF. For

Marketcetera I constructed a market data adapter, that parses FIX market data received

from CATSBF. CATSBF is constructed in such a way that it resembles a realistic trading

scenario, meaning that nothing “test” specific needs to be defined in the trading strategy,

thus successful strategies can be deployed as is.

This work is a first step towards a rigorous backtesting framework, that can be utilised

by any FIX enabled platform. CATSBF will, ultimately, be continuously evolved by a

number of developers in the future. Already within the first few days after releasing

CATSBF as open source, and posting it on the Marketcetera forum, a lot of interest was

shown from both Marketcetera and users. A user has also requested to join the project

as a contributor.

For the practical application of this framework some validation must be performed by the

user. I have suggested different methods that could be applied to achieve this, hereunder

34



analysing the trading data and look for stylised facts.

8 Acknowledgements

I would like to show my gratitude to my supervisor, Dr. Steve Phelps, for his invaluable

support and guidance throughout the dissertation process.

Thanks also goes to the users from the Marketcetera community who has shown interest

in the project. It has been very encouraging and motivational. Special thanks goes to

the user Colin for his help on various Marketcetera related programming issues.

9 References

[Alp11] Alphacet. Alphacet discovery. http://www.alphacet.com, 23-08-2011.

[Bat07] Dr John Bates. Algorithm backtesting. The Technical Analys, pages 34–36,

July/August 2007.

[Blo11] Bloomberg. Bloomberg - business & financial news. http://www.bloomberg.

com/, 24-08-2011.

[Cha09] Ernest P. Chan. Quantitative Trading: How to Build Your Own Algorithmic

Trading Business. Wiley, 2009.

[Con01] Rama Cont. Empirical properties of asset returns: stylized facts and statistical

issues. Quantitative Finance Volume 1, (223-236), 2001.

[Ecl11] Eclipse. Eclipse rich client platform. http://www.eclipse.org/home/

categories/rcp.php, 15-08-2011.

[Eri] year = 1995 isbn = 0201633612 publisher = Addison-Wesley Erich Gamma,

Richard Helm, Ralph E. Johnson and John Vlissides, title = Design Patterns:

Elements of Reusable Object-Oriented Software.

35



[Esp11] EsperTech. Espertech - Event Stream Intelligence. http://esper.codehaus.

org/, 16-08-2011.

[Exc11] London Stock Exchange. Sets, London Stock Exchange. http://www.

londonstockexchange.com/products-and-services/trading-services/

sets/sets.htm, 24-08-2011.

[Fow04] Martin Fowler. Inversion of control containers and the dependency injection

pattern. 2004.

[Gen01] George A. Fontanills, Tom Gentile. The Stock Market Course. Wiley, 2001.

1st Edition.

[GNU11] GNU. The gnu general public license 3.0. http://www.gnu.org/copyleft/

gpl.html, 20-08-2011.

[Inv11] Investopedia. Time in force definition. http://www.investopedia.com/

terms/t/timeinforce.asp, 24-08-2011.

[Jav11] Java. Java technology. http://www.java.com/en/about/, 23-08-2011.

[Kab11a] Kaburobo. Advanced robot trading platform. http://www.kaburobo.jp/ (in

Japanese), 10-08-2011.

[Kab11b] Kaburobo. Kaburobo development. http://www.kaburobo.jp/about/

develop/ (in Japanese), 10-08-2011.

[Kab11c] Kaburobo. Trade science corporation. http://www.trade-sc.jp/english.

html, 10-08-2011.

[KK95] Raymond Kan and George Kirikos. Biases in evaluating trading strategies.

November 1995. University of Toronto and Leap of Faith Research Inc.

[KO03] Michael Kearns and Luis Ortiz. The Penn-Lehman Automated Trading

Project. IEEE Computer Society, 2003. University of Pennsylvania.

36



[Mar11a] Marketcetera. Marketcetera Automated Trading Platform, Overview. http:

//www.marketcetera.com/site/products/marketcetera-platform, 08-08-

2011.

[Mar11b] Marketcetera. Marketcetera automated trading platform, Complex Event

Processing. http://www.marketcetera.org/confluence/display/CEP210/

Complex+Event+Processing, 12-08-2011.

[Mar11c] Marketcetera. Marketcetera automated trading platform, order routing

server. http://www.marketcetera.org/confluence/display/ORS210/ORS+

Guide, 12-08-2011.

[Mar11d] Marketcetera. Marketcetera automated trading platform, photon. http://

www.marketcetera.org/confluence/display/PN210/Photon+Guide, 12-08-

2011.

[Mar11e] Marketcetera. Marketcetera automated trading platform, strategy agent. http:

//www.marketcetera.org/confluence/display/SA210/Strategy+Agent,

12-08-2011.

[Mar11f] Marketcetera. Marketcetera automated trading platform, supported

features. http://www.marketcetera.com/site/products/what%E2%80%

99s-supported, 12-08-2011.

[Mar11g] Marketcetera. Marketcetera automated trading platform, contribute. http:

//www.marketcetera.org/confluence/display/MPIO/Contribute, 20-08-

2011.

[Mar11h] Marketcetera. Marketcetera automated trading platform, csv market data

adapter. http://www.marketcetera.org/confluence/display/MOL/CSV+

Market+Data+Adapter, 20-08-2011.

[Mar11i] Marketcetera. Marketcetera automated trading platform, open labs.

http://www.marketcetera.org/confluence/display/MOL/Marketcetera+

Open+Labs, 22-08-2011.

37



[Mar11j] Marketcetera. Marketcetera automated trading platform. http://www.

marketcetera.com/, 24-08-2011.

[Mar11k] Marketcetera. Marketcetera community, number of users. http://www.

marketcetera.org/community/posts/list/359.page#2162, 24-08-2011.

[Mat09] K. Izumi, F. Toriumi, H. Matsui. Evaluation of automated-trading strategies

using an artificial market. Neurocomputing 72, (34693476), 2009.

[MSC11] MSCI. Barra aegis. http://www.factset.com/products/im/

portfoliosimulation, 23-08-2011.

[Mul11] MultiCharts. Multicharts raising the trading standard. http://www.

multicharts.com/, 23-08-2011.

[Ora11] Oracle. Jdbc overview. http://www.oracle.com/technetwork/java/

overview-141217.html, 24-08-2011.

[Org09] Internation Labour Organization. Impact of the financial crisis on finance

sector workers. International Labour Office Geneva, 2009. Sectorial Activities

Programme.

[Org11] The FIX Protocol Organization. Fix protocol industry-driven messaging stan-

dard. http://fixprotocol.org/, 23-08-2011.

[PV08] Srinivas Raghavendra, Daniel Paraschiv and Laurentiu Vasili. A framework

for testing algorithmic trading strategies. Department of Economics National

University of Ireland, Galway, (0139), December 2008. Working Paper.

[Qui11] Quickfixj.org. Quickfix/j - free, open source java fix engine. http://www.

quickfixj.org/, 12-08-2011.

[RP11] Minh Khoa Nguyen, Neil Rayner and Steve Phelps. Inferring the state

of a double-auction market from empirical high-frequency transaction data.

CCFEA, Computer Science Department, University of Essex, 2011. CCFEA

WP045-10.

38



[Rub11] Ruby. Ruby programming language. http://www.ruby-lang.org/en/, 24-08-

2011.

[Sch11a] Daniel Schiermer. Moving average crossing strategy. http://sourceforge.

net/p/catsbf/code/9/tree/trunk/ccfea-marketdata/Ccfea%20Sample%

20Strategies/ma_crossing_strategy.rb, 26-08-2011.

[Sch11b] Daniel Schiermer. Moving average crossing strategy report. http:

//sourceforge.net/p/catsbf/code/9/tree/trunk/ccfea-exchange/src/

ccfea/exchange/report/CcfeaSampleMAStrategyReport.java, 26-08-2011.

[Spr11] SpringSource. Springsource. http://www.springsource.org/, 24-08-2011.

[SQL11] SQLite. Sqlite. http://www.sqlite.org/, 28-08-2011.

[Sys11] Factset Research Systems. Alpha testing. http://www.factset.com/

products/im/alphatesting, 23-08-2011.

[Wik11a] Wikipedia. Wikipedia, Application Programming Interface. http://en.

wikipedia.org/wiki/Application_programming_interface, 11-08-2011.

[Wik11b] Wikipedia. Wikipedia, Complex Event Processing. http://en.wikipedia.

org/wiki/Complex_event_processing, 16-08-2011.

[Wik11c] Wikipedia. Wikipedia, Garbage collection. http://en.wikipedia.org/wiki/

Garbage_collection_(computer_science), 27-08-2011.

[Wik11d] Wikipedia. Wikipedia, Integrated Development Environment. http://en.

wikipedia.org/wiki/Integrated_development_environment, 27-08-2011.

39


