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Abstract—The rapid progress in Deep Learning (DL) and
Large Language Models (LLMs) has exponentially increased de-
mands of computational power and bandwidth. This, combined
with the high costs of faster computing chips and interconnects,
has significantly inflated High Performance Computing (HPC)
construction costs. To address these challenges, we introduce the
Fire-Flyer AI-HPC architecture, a synergistic hardware-software
co-design framework and its best practices. For DL training, we
deployed the Fire-Flyer 2 with 10,000 PCIe A100 GPUs, achieved
performance approximating the DGX-A100 while reducing costs
by half and energy consumption by 40%. We specifically engi-
neered HFReduce to accelerate allreduce communication and im-
plemented numerous measures to keep our Computation-Storage
Integrated Network congestion-free. Through our software stack,
including HaiScale, 3FS, and HAI-Platform, we achieved substan-
tial scalability by overlapping computation and communication.
Our system-oriented experience from DL training provides valu-
able insights to drive future advancements in AI-HPC.

Index Terms—High Performance Computing, Cost-Effective,
All-Reduce, Best Practices, Deep Learning, Machine Learning,
Large Language Models, Artificial Intelligence Infrastructure

I. INTRODUCTION

In recent years, Deep Learning (DL) [1] has developed
rapidly and is widely used in image recognition, speech recog-
nition, content generation, autonomous driving, and other ar-
eas. The rapid development of DL is fundamentally tied to
the support rendered by data. Training with copious amounts
of data demands massive computational resources. Relying on
Moore’s Law [2], computer speeds double every two years on
average, but the pace of DL far exceeds this speed. In particu-
lar, Large Language Models (LLMs) [3]–[7] that have become
popular in recent years have exploded the demand for com-
putational resources and memory. The parameters of LLMs
can reach tens to thousands of billions, requiring hundreds
or thousands of GPUs for training. Although LLM training
is challenging, the emerging capabilities resulting from more
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parameters have shown the benefits of continued model ex-
pansion. Since then, researchers have gone down the path of
making models bigger and never looked back. To acquire more
computational resources, people have to expand more nodes.
This leads to a surge in the cost of building AI infrastruc-
ture. How to reduce the cost of new data centers and how
to build cost-effective clusters are also hot and challenging
problems. Moreover, more nodes lead to higher energy con-
sumption, which contradicts this era’s goal of reducing carbon
emissions and achieving carbon neutrality. Reducing energy
consumption is also a challenging problem.

In this paper, leverage our practical experience accumulated
over the years to propose cost-effective strategies cost-effective
strategies for constructing AI-HPC systems suitable for deep
learning and LLMs.

Fire-Flyer AI-HPC Architecture: We have deployed a
cluster composed of 10,000 PCIe A100 GPUs for Deep Learn-
ing training purposes. Details about the GPU nodes and net-
work topology are provided in Section III-A, where we com-
pare our architecture to the NVIDIA DGX-A100 [8] in terms
of cost-effectiveness and lower CO2 emissions. In contrast, we
must invest more in software optimizations to address the per-
formance challenges of the PCIe architecture. The following
sections will discuss about software-hardware co-design.

Key Technical Topics in our Architecture

• Network Co-Design: The Two-Layer Fat-Tree Network
[9] integrates storage and computation network, as shown
in Section III-B. The entire network is divided into two
zones, and the platform supports cross-zone tasks. To pre-
vent congestion, we employed various network tunings
detailed in Section VI-A.

• HFReduce: Achieves computation-communication over-
lap via asynchronous allreduce on the CPU, outper-
forming NVIDIA Collective Communications Library
(NCCL) [10] on our PCIe architecture, as discussed in
Section IV.
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• HaiScale: As described in Section V, optimizes paral-
lelism methods for our PCIe architecture, such as Data
Parallelism (DP), Pipeline Parallelism (PP) [11] [12],
Tensor Parallelism (TP) [13] [14], Experts Parallelism
(EP) [15]–[17], Fully Sharded Data Parallel(FSDP) [18]
and Zero Redundancy Optimizer(ZeRO) [19].

• 3FS Distributed File System: Addresses I/O bottlenecks
in big data AI tasks, configures with our communication
and network tuning, reduces congestion in storage and
computation integrated network topology, as detailed in
Section VI-B.

• HAI Platform [20]: Offers task scheduling, fault han-
dling, and disaster recovery, enhancing utilization and
reducing costs. It provides an open-box solution for
deep-learning researchers. It is already open-sourced:
https://github.com/HFAiLab/hai-platform

Stability and Robustness: These are crucial topics in HPC.
Our systems are equipped with robust mechanisms to handle
hardware failures, minimizing downtime and impact on oper-
ations. These mechanisms, discussed in Section VII, include:

• Disaster recovery through our checkpoint manager
• A validator utility for detecting hardware failures
• An overview of real hardware failure data from our clus-

ter over the past year.
We hope these insights will be beneficial to industry peers and
researchers alike.

Discussion and Future Work: In Section VIII, we address
some common questions regarding PCIe architecture, such as
congestion control, maintenance cost, and stability compared
with other architectures. In Section IX, we propose the next
generation of PCIe architecture, which is aimed at Mixture-of-
Experts Large Language Models training and primarily utilizes
multi-NICs and a Multi-Plane network.

II. BACKGROUND

A. Evolution of Deep Learning
The revolution in Machine Learning and Deep Learning be-

gan in 2012 with AlexNet [21], which outperformed traditional
methods in image classification, marking the onset of big data
utilization and increased computational demands. The emer-
gence of ResNet [22], with its deeper layers, further broad-
ened the horizons of image processing, truly bringing about
the “deep” in “Deep Learning”. At the same time, big data-
driven model training nudged the evolution of data storage
technology, leading to the advent of all-flash SSD distributed
file systems.

Fast forward to 2017, Google’s Transformer [23] made its
grand entry, introducing the concept of ”Attention is all you
need”, shaking up the field of Natural Language Processing
(NLP). With the advent of more complex models like Al-
phaFold [24] and AlphaZero [25] highlighting the need for
more computational power and memory, revealing the limita-
tions of traditional FP64 / FP32 computing devices.

Entering the 2020s saw the rise of LLMs as a game-changer
in the AI sector. Research indicates that an upscale in the num-
ber of language model parameters and computational budget
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Figure 1: The Exponential Growth of Computational Power
for Deep Learning.

can significantly enhance model performance, given adequate
training data. Consequently, despite requiring colossal compu-
tational resources, efforts are being made to train large models
on tens or hundreds of billions or even trillions of parame-
ters. Pioneering examples include GPT-3 [26] and PaLM [27],
which occupy close to 1TB of GPU Memory. Recognizing
the potential, industry giants have set up large AI clusters to
train LLMs while constantly investing in computational power
chips.

The shift towards the Mixture-of-Experts (MoE) Models
[28]–[30] architecture starting from GPT-4 [7], and the re-
cent AI Generated Content (AIGC) multi-modal (Sora [31])
has amplified the demand for memory and computational re-
sources. However, as AI development outpaces hardware de-
velopment, leading to skyrocketing training costs, adopting
cost-saving solutions has become imperative.

Figure 1 illustrates the exponential growth of computational
power for DL. And as summarized in Figure 2 [32], while AI’s
demand for computational power is growing at 10x per year,
Moore’s Law lags behind with hardware FLOPs increase at
only 3.0x every two years, DRAM bandwidth at 1.6x, and in-
terconnect bandwidth at 1.4x. This disparity necessitates more
machines, raising DL training costs, particularly for LLM
training, where the computational power required surpasses
that of traditional HPC applications.

B. Challenges and Solutions in Models Training

In Deep Learning training, a single task demands hun-
dreds of GPUs and consumes substantial storage and network
resources. This massive scale introduces system-level chal-
lenges:

1) Efficiency: Firstly, achieving efficient training at this
magnitude is crucial. Model FLOPs Utilization (MFU), which
assesses the ratio of observed throughput to theoretical max-
imum throughput (assuming 100% peak FLOPS), serves as
the standard metric for evaluating training efficiency. Training
LLMs involves dividing models among GPUs that commu-
nicate extensively for progress. Besides communication, fac-
tors like operation optimization, data pre-processing, and GPU
memory consumption significantly influence MFU. Multiple
parallel strategies are employed to enhance efficiency:

https://github.com/HFAiLab/hai-platform
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Figure 2: Scaling of Peak Hardware FLOPS, and Mem-
ory/Interconnect Bandwidth.

• Data Parallelism (DP): Models and optimizer states are
replicated across multiple devices with data evenly dis-
tributed to all. For LLMs training, the Zero Redundancy
Optimizer (ZeRO) [19] further enhances this method by
sharding these states on each data parallel process and
using allgather and reduce-scatter for parameter fetching
and gradient calculation.

• Pipeline Parallelism (PP): Each device holds a portion
of the model layers with each training batch divided into
micro-batches for pipeline execution. Efficient schedul-
ing strategies like GPipe [11], PipeDream 1F1B [12],
and Zero Bubble Pipeline Parallelism (ZBPP) [33], are
required to minimize “pipeline bubbles”.

• Tensor Parallelism (TP): This involves placing a model
layer on multiple GPUs that perform computations in
parallel [13] [14]. It includes row-wise and column-wise
parallelism, necessitating allgather and all2all for input
splitting and output merging.

• Expert Parallelism (EP): MoE Models’ different expert
models are distributed on different GPUs during MoE
training [15]–[17]. The gate model selects tokens for al-
location during input, with corresponding tokens sent to
experts model via all2all communication.

• Fully Sharded Data Parallel (FSDP) is an implemen-
tation based on the ZeRO Stage 3 algorithm [19]. FSDP
partitions the model’s parameters, optimizer states, and
gradients, distributing them across different GPUs, with
each GPU retaining only 1/n of the total. During for-
ward propagation, FSDP performs an allgather operation
to assemble the complete parameters, which are then re-
leased after the forward pass is completed. Similarly, dur-
ing backward propagation, FSDP conducts an allgather
operation to obtain the complete parameters, followed
by backward computation to calculate gradients. It then
performs a reduce-scatter operation to synchronize gra-
dients across all GPUs, resulting in each GPU holding
1/n of the reduced gradients. Finally, FSDP updates the
1/n parameters using each GPU’s 1/n gradients and opti-
mizer states. FSDP reduces GPU memory usage by main-

taining only 1/n of the parameters, gradients, and opti-
mizer states on each GPU, enabling training of larger-
scale models.

There are additional strategies and algorithms to accelerate
training or reduce memory usage, such as Activation Recom-
putation [34], [35], as well as enhanced communication and
computation overlap during parallelism [36], among others.

2) Stability: The second challenge is achieving high-
stability training at scale, i.e., maintaining efficient training
throughout the process. Stability is vital from a production
standpoint as training a big model with a trillion tokens may
span several weeks. In DL training, stragglers and hardware
failures are common occurrences rather than outliers. Strag-
glers can decelerate tasks involving hundreds of GPUs, em-
phasizing the importance of stability and task recovery time.

C. HPC and AI Clusters of This Era

1) HPC Inadequacies for AI Training: Traditional super-
computers such as TianHe-2A [37], Stampede 2 [38], and
Sunway TaihuLight [39] primarily focus on double precision
calculations and do not support the FP16 precision, rendering
them unsuitable for DL training. Fugaku [40], despite its high
performance, does not support tensor GEMM acceleration, a
key component for DL workloads. Although these supercom-
puters may not be well-suited for DL training, their robust
high-performance networks and extensive experience in large-
scale cluster construction offer valuable insights and lessons
for subsequent researchers.

2) GPU based HPC: Supercomputers like Frontier [41],
Aurora [42], Summit [43] and Perlmutter [44] utilize high-
performance GPUs to tackle large-scale computations. It’s
worth mentioning that Perlmutter utilizes an all-flash storage
system, achieving a peak bandwidth of 5TB/s. Indeed, con-
ducting DL training on these GPU-based HPCs yields signif-
icant performance.

3) GPU Clusters of Large Companies: Meta, formerly
Facebook, has developed its AI-HPC using a software-
hardware co-design approach, with one system utilizing IB
and another employing RoCE [45], [46]. ByteDance initially
implemented a DL cluster with a mix of CPU and PCIe GPU
[47]. However, with the advent of the LLMs era, they adopted
an architecture similar to DGX, building a cluster with over
10,000 GPUs [48]. Alibaba has developed its own HPN net-
work [49] for LLMs training using NVIDIA H800 GPUs.
NVIDIA also has its own AI-HPC Eos [50], which will feature
576 DGX H100 systems totaling 4,608 H100 GPUs. While
this will provide a considerable boost in computational power
for AI tasks, the high cost of DGX systems raises questions
about economic viability.

4) AI DSA Clusters: Custom-designed AI DSA (Domain
Specific Architecture) accelerators like Google’s TPU [51]
, utilize highly advanced optical switch reconfigurable net-
works. Alternatives to traditional GPU setups, like Intel Ha-
bana Gaudi [52], are also available. Teslahas introduced
the Dojo [53], [54] supercomputer , which uses System on
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Figure 3: Size of Model Parameter and Accelerator Memory

Wafer technology to build an entire silicon wafer as a sin-
gle chip. Huawei has designed the Ascend AI DSA chip [55],
[56], which remains competitive with NVIDIA, as noted by
NVIDIA CEO Jensen Huang. These accelerators are tailored
for efficient execution of AI workloads, offering specialized
features to optimize model training and inference. However,
their software ecosystems, while progressing, still require fur-
ther development to match the maturity of NVIDIA’s offerings.

5) Cloud Service Providers: Cloud service providers, such
as Azure, offer flexible and scalable resources for AI train-
ing. Despite their convenience and easy accessibility, the costs
can accumulate significantly over time. For long-term projects
spanning around two years, these costs could amount to pur-
chasing an entire dedicated cluster. Therefore, this option may
not be the most economical choice for extensive AI computa-
tions.

D. Challenges in AI Infrastructure

As models continue to grow larger, DL training requires
thousands of GPUs. Additionally, researchers often need to
train multiple models simultaneously. Therefore, a cluster with
at least tens of thousands of GPUs can meet the needs of
AI practitioners. In addition to increasing the scale of the
cluster nodes and adding more GPUs, there’s also a need to
find ways to save on the overall system construction costs.
These costs include but are not limited to power support, cool-
ing, networking, storage, fault handling, disaster recovery, etc.
Building a cost-effective AI-HPC system is a significant chal-
lenge. The question of how to construct a high-performance,
efficient, economical, and environmentally friendly HPC to
meet AI training requirements has become a hot topic. Some
works, such as [57] analyzes the construction of HPC, dis-
cussed the interconnection of heterogeneous clusters, cooling
systems. AI applications such as Peng Cheng Cloud Brain II
[58] discussed their strategies for building and improving AI
computing power and cluster communication efficiency, which
helped them achieve first place in IO500 and AIPerf rankings.

Drawing from our extensive experience in Deep Learning
spanning over the past decade, we have conducted consider-
able exploration in terms of cost-effectiveness. This work pri-
marily discusses our practices for achieving cost-effectiveness
and high-performance across different models and stages.
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Table I: Our Arch and DGX-A100 Server Hardware Details

Our PCIe Arch DGX-A100

CPU 2 * AMD 32 Cores
EPYC Rome/Milan CPU

2 * AMD 64 Cores
EPYC 7742 CPU

Memory 512GB 16-Channels
DDR4-3200Mhz

2048GB 16-Channels
DDR4-3200Mhz

GPU 8 * PCIe-A100-40GB 8 * SXM-A100-40GB

NICs 1 * Mellanox InfiniBand
cx6 200Gbps NIC

9 * Mellanox InfiniBand
cx6 200Gbps NIC

NVLINK 600 GB/s between each
pair of GPUs

600 GB/s interconnect
among all 8 GPUs

III. FIRE-FLYER 2: OUR APPROACH FOR DEEP LEARNING
AND EARLY LLM TRAINING

As mentioned in the Background Section, LLMs generally
require significant memory resources. In contrast, many other
models necessitate considerably less memory, as illustrated in
Figure 3. Popular models like ResNet [22], Mask-RCNN [59],
BERT [60], MAE [61], among others, all have a parameter
volume less than 1B, signifying relatively low memory re-
quirements. Therefore, when designing a cluster primarily for
deep learning model training, and with insights gleaned from
our Fire-Flyer 1 experiments, we deemed it prudent to incor-
porate PCIe A100 GPUs, which proved to be sufficient during
its construction in 2021.

A. Fire-Flyer 2: PCIe A100 GPU Architecture

In our training workloads, the bandwidth requirements for
both storage IOs and computation communication across 8
NVIDIA PCIe A100 GPUs can be met by a single 200Gbps
NVIDIA Mellanox ConnectX-6 (CX6) InfiniBand (IB) NIC.
We employed the following computation node architecture ,
as shown in Figure 4:

• 8 NVIDIA A100 PCIe GPUs and 1 Mellanox CX6
200Gbps IB NIC: directly connect to the CPU, without
using a PCIe switch

• IB NIC occupies a separate PCIe root complex, thus
avoiding performance interference with the GPU.

• Reserved the possibility of NVLink Bridge addition in
design: As expected, when the LLM era arrived, we in-
deed added an NVLink Bridge between PCIe cards.



Table I shows our arch details and compared with NVIDIA
standard DGX-A100 server.

B. Network Topology: Two-Layer Fat-Tree with Storage and
Computation Integrated

We selected the Fat-Tree [9] topology as our primary net-
work architecture due to its exceptionally high bisection band-
width, making it the preferred choice for AI-HPC and high-
throughput storage environments. Although the Dragonfly
topology [62], [63] also offers comparable cost-effectiveness
and performance, its lack of sufficient bisection bandwidth
makes it unsuitable for our integrated storage and compu-
tation network design. At the time of implementation, var-
ious RoCE (RDMA over Converged Ethernet) [64] technolo-
gies were not as mature as they are today, so we opted for
InfiniBand (IB) as our network solution. Mellanox QM8700
InfiniBand Switch, offering 40 ports at 200 Gbps, was uti-
lized. Our cluster, consisting of 10,000 A100 GPUs, includes
approximately 1,250 GPU compute nodes and nearly 200 stor-
age servers, although a Two-Layer Fat-Tree can accommodate
up to 800 nodes (configured with 20 spine switches and 40
leaf switches).

To reduce costs, , we opted for a two-zone network con-
figuration instead of a three-layer Fat-Tree solution, as shown
in Figure 5. Each zone consists of an 800-port Fat-Tree con-
nected to approximately 600 GPU compute nodes. Each stor-
age server equipped with two IB NICs, respectively connected
to different zones, hence all GPU compute nodes could share
a set of storage services. Additionally, the two zones are inter-
connected with a limited number of links. Our HAI Platform
scheduling strategy ensured that cross-zone computing tasks
were limited to one at most. Whether using NCCL [10] or
our in-house developed communication library HFReduce, it
can be run across zones by using a double binary tree algo-
rithm [65]. Our scheduler ensures that in this topology, only
one pair of nodes communicates across zones. Consequently,
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��-port sw��-port sw ��-port sw ��-port sw��-port sw ��-port sw
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Figure 5: Network Topology: Two complete Two-Layer Fat-
Tree connected together.

Table II: A100 PCIe Compared to DGX-A100.

Our Arch DGX Arch
TF32 GEMM (TFLOPS/GPU) 107 131
FP16 GEMM (TFLOPS/GPU) 220 263

Relative Performance 83% 100%
Node Relative Price 60% 100%

Cost–Performance Ratio 1.38 1
Power Consumption (Watts) 2500 4200

Table III: Relative Cost Comparison.

Our
Arch

PCIe Arch with
Three Layer Fat-Tree

DGX
Arch

Number of Switches 122 200 1320
Network Price 350 600 4000
Server Price 11250 11250 19000
Total Price 11600 11850 23000

even tasks requiring all nodes can efficiently run on the entire
Fire-Flyer 2 AI-HPC.

C. Cost Performance of Our Architecture

Compared to the NVIDIA DGX-A100 [8] architecture, our
approach using PCIe A100 achieves approximately 83% of
the performance in TF32 and FP16 General Matrix Multiply
(GEMM) benchmarks. However, it offers substantial reduc-
tions in both costs and energy usage, achieving 60% of the
GPU cost and energy consumption, as detailed in Table II.

Contrasting with the DGX-A100 cluster, which necessitates
a Three-Layer Fat-Tree encompassing 10,000 access points
and involving 320 core switches, 500 spine switches and 500
leaf switches, amounting to 1,320 switches in total (as shown
in Table III), our architecture only requires 122 switches. This
arrangement is significantly more cost-efficient. Even when
compared to a similarly sized three-layer Fat-Tree network
with 1,600 access points, which includes 40 core switches
and 160 spine and leaf switches (totaling 200 switches), our
design facilitates a saving of 40% in networking costs.

Furthermore, by utilizing an 800-Ports Frame Switch, we
have further reduced the cost of optical modules and cables.
While there is a performance gap due to the inherent differ-
ences between PCIe card specifications and SXM, we gener-
ally achieved 80% of the DGX-A100 performance at merely
60% of the cost. Additionally, we managed to trim energy con-
sumption by 40%, thereby reducing CO2 emissions. In terms
of cost-performance, we regard this approach as both effective
and successful.

IV. HFREDUCE: HARDWARE SOFTWARE CO-DESIGN IN
NETWORK

In large-scale deep learning training, allreduce is essential
for aggregating gradients across GPUs. To optimize commu-
nication among PCIe GPUs in our architecture, we developed
HFReduce, a library specifically designed for efficient allre-
duce operations. The core strategy of HFReduce, illustrated in
Figure 6, involves performing intra-node reduction first, fol-
lowed by inter-node allreduce of the reduced data from the 8
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GPUs within each node. This inter-node allreduce leverages
a Double Binary Tree Algorithm [65], akin to NCCL, and is
pipelined by dividing data into chunks for transfer via Remote
Direct Memory Access (RDMA), ensuring high performance.
HFReduce is versatile and can be applied to any scenario re-
quiring allreduce, as well as general reduce and broadcast op-
erations.

A. HFReduce Algorithm Steps

Intra-node reduction, as shown in the Algorithm 1:
1) When the gradients data on the GPUs require allre-

duce, HFReduce asynchronously transfers these data to
the CPU memory. This Device-To-Host (D2H) Trans-
fer can utilize GDRCopy [66] for small data and Mem-
CpyAsync for larger data.

2) Upon the arrival of the gradients in memory, perform
reduction add operation using CPU vector instructions.

Inter-node reduction, as shown in the Algorithm 2:
1) Use the Double Binary Tree Algorithm [65] for inter-

node allreduce, facilitating transfers between nodes us-
ing RDMA verbs implementation.

2) Finally, the CPU returns reduced gradients to the GPU
via PCIe (Host-To-Device Phase).

The final Host-To-Device (H2D) Transfer can be optimized by
utilizing GDRCopy to write data to four GPUs within the same
NUMA node, effectively reducing reads from host memory
by threefold compared to MemCpyAsync. This efficiency is
achieved because GDRCopy can read data from host memory
and temporarily cache it in the CPU caches, allowing data to
be written to the four GPUs without additional reads from host
memory.

B. Advantages of HFReduce over NCCL

1) Reduced PCIe Bandwidth Consumption: Let n be the
total number of GPUs involved in the communication. In
NCCL’s ring topology, each unit of data needs to go through
2n − 1 transmissions, each consuming one unit of inbound

Algorithm 1: Intra Node Reduce.
Data: Dg: data need to allreduce
Result: Dc: data reduced in this node

1 Split Dg by Chunk Size
2 for Dg-i in Splited-Dg do
3 // Transfer GPU Memory Data to CPU

memory
4 Dc i = MemCopyAsync Dg i to CPU Mmeory
5 end
6 for i in Splited Count do
7 while every GPU’s Dg i → Dc i finished do
8 // Wait for chunk-i transfer

finished in this node
9 for j in GPU Count do

10 // do intra-node reduce
11 Dc i += GPU-j’s Dc i
12 end
13 // do inter-node reduce
14 Do Internode reduce(Dc i)
15 end
16 end

bandwidth of one GPU and one unit of outbound bandwidth
of another GPU. This means for a single unit of data, it con-
sumes 2n−1

n unit of PCIe bidirectional bandwidth. In con-
trast, for each unit of data, HFReduce only requires one D2H
and one H2D data transfer, only one unit of PCIe bidirec-
tional bandwidth is consumed. In our machine architecture,
the performance of NCCL is mainly limited by PCIe band-
width. Therefore, HFReduce can achieve better performance
than NCCL.

2) No GPU Kernel Overhead: HFReduce utilizes the
GPU’s Copy Engine (CE) for PCIe asynchronous transfers.
In contrast, NCCL’s allreduce operation requires GPU kernel
execution, which can affect other computational kernels on
the GPU. HFReduce achieves complete asynchrony with no
overhead.

As demonstrated in Figure 7a, HFReduce can reach a inter-
node bandwidths of 6.3-8.1GB/s when performing allreduce
with a data size of 186 MiB on the Fire-Flyer 2 AI-HPC,
while NCCL’s inter-node bandwidth is only 1.6-4.8GB/s.

C. Performance Improvements: HFReduce with NVLink

By installing the NVLink Bridge for PCIe A100 GPUs, effi-
cient communication is enabled between paired GPUs via the
600 GB/s NVLink. To alleviate the memory bound issue of the
original HFReduce, we implemented another allreduce pattern,
termed HFReduce with NVLink. The core concept involves
initially performing a reduction operation among GPUs in-
terconnected by NVLink before passing the gradient to the
CPU. Subsequently, when the CPU returns the result, it splits
the result data and returns them to the paired GPUs connected
by NVLink respectively, then performs allgather via NVLink.
As illustrated in Figure 7b, HFReduce with NVLink achieves
inter-node bandwidths exceeding 10 GB/s.
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Figure 7: Strong Scalability: (a) Network Bandwidth when HFReduce and NCCL do allreduce test with 186MiB data, scale
from 16 to 1440 GPUs. (b) HFReduce with NVLink, and Cross Fat-Tree Zone. Note that tasks utilizing fewer than 128 GPUs
do not require cross-zone nodes and are restricted by platform defaults.

Algorithm 2: Inter Node Reduce.
Data: DL:local node reduced data by Algorithm 1
Data: DR: received other node reduced data
Result: Dg: reduced data transfer to GPU

1 // Pass 1: reduce data,individual
thread

2 for i in Chunk Size do
3 receive data DR i from prev node
4 if DL i ready then
5 DL i +=DR i // reduce data
6 end
7 if Thread is root of Tree then
8 send DL i to prev node // Dg_i

finished, go parse 2
9 else

10 send DL i to next node
11 end
12 end
13 //
14 // Pass 2: gather reduced

data,individual thread
15 receive data DR i from next node
16 for j in GPU Count do
17 Dg i = MemCopyAsync DR i to GPU-j // Dg_i

is allreduced
18 end
19 send DL i to prev node

D. Deep Analysis of HFReduce

1) Key Technical Strategies in Implementation:

• Using GDRCopy accelerate small data transfer in D2H,
and educing reads from host memory by three times com-
pared to MemCpyAsyn.

• Intra-Node Reduction: CPU utilizes SIMD instructions
and supports FP32 / FP16 / BF16 / FP8 datatypes.

• NUMA Awareness: D2H destination memory is inter-
leaved across two NUMA nodes for maximum band-
width. Memory for CPU-added results and network-

received data is bound to the IB-Nic’s NUMA node to
minimize latency.

• Inter-Node Reduce:Implements a Double Binary Tree
allreduce algorithm [65] via ibverbs RDMA Write, avoid-
ing additional overhead.

2) HFReduce Overcomes Limitations of EPYC Rome CPU:
We consulted AMD and NVIDIA engineers to identify the
root cause of NCCL’s suboptimal performance on PCIe ar-
chitecture, particularly with EPYC Rome CPU servers. It was
determined that the Rome CPUs do not support the chained
write feature, which can significantly accelerate PCIe peer-to-
peer (P2P) transfers between GPUs and IB NICs. Our tests
indicate that the maximum bandwidth between the GPU and
IB NIC on Rome CPUs is approximately 9 GiB/s, making the
observed 4GB/s all-reduce bandwidth for NCCL understand-
able. HFReduce circumvents this limitation by utilizing the
CPU for reduction and transferring data through IB and host
memory.

3) Bottlenecks of HFReduce: When considering the total
memory operations on a single node during HFReduce, several
factors contribute to its performance limitations:

1) D2H Phase requires 8 write operations.
2) Intra-node Reduce Add Phase involves 8 read operations

and 1 write operation.
3) Inter-node Allreduce Phase: IB send demands 2 read

operations, while IB receive requires 2 write operations,
along with 1 read operation for reduce add.

4) H2D Phase Utilizing GDRCopy can reduce this to only
2 read operations, whereas MemCopy necessitates 8 read
operations.

In total, the memory operations amount to 24 times the orig-
inal data size in the GPU. A host equipped with 16 channels
of DDR4-3200MHz memory can achieve a practical mem-
ory access speed of 320GB/s. Consequently, the theoretical
maximum speed of HFReduce is approximately 13.3GB/s, but
when considering the allreduce algorithm bandwidth and net-
work bandwidth, this value realistically approximates 12GB/s.
However, our tests only achieved slightly over 8GB/s.

The root cause of this discrepancy is another limitation of
the EPYC CPUs. As previously mentioned, our GPU5 and
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Figure 8: Weak Scalability: (a) Training VGG16, HFReduce
compared to PyTorch DDP’s NCCL backend (b) Training
GPT2-Medium HaiScale compared to Torch, both using FSDP.

GPU6 are directly connected to the CPU via the same PCIe
Root Complex Port (also known as the PCIe Host Bridge).
In AMD EPYC Rome and Milan CPUs, the maximum band-
width from the Root Complex Port to the CPU’s internal bus
is about 37.5GB/s. Although a PCIe 4.0 x16 port can achieve
over 27GB/s from GPU to CPU, when two GPUs transfer data
concurrently, the bandwidth is limited to around 37GB/s. Fur-
thermore, if bidirectional data transfer occurs simultaneously,
this bandwidth decreases even further. As a result, HFReduce
does not reach its theoretical speed.

Employing NVLink with HFReduce offers a functional
method to alleviate these bottlenecks. However, it is worth not-
ing that the next-generation CPUs, such as the EPYC Genoa,
still face issues with PCIe Host Bridge bandwidth, which can-
not support two full-speed PCIe ports simultaneously. We hope
AMD will address this issue in future iterations.

V. HAISCALE: SPECIAL OPTIMIZATION FOR DEEP
LEANING MODELS TRAINING

A. HaiScale DDP Overlap AllReduce in Training

HaiScale Distributed Data Parallel (DDP) is a training tool
that utilizes HFReduce as its communication backend, in con-
trast to PyTorch’s DDP [67] which employs NCCL as its back-
end. During the backpropagation phase, HaiScale DDP per-
forms an asynchronous allreduce operation on the computed
gradients, allowing this communication to overlap with the
computation involved in backpropagation.

As previously mentioned, HFReduce does not depend on
GPU Streaming Multiprocessors (SM) for reduction computa-
tion, enabling completely asynchronous allreduce without im-
pacting performance. As shown in Figure 8a, training VGG16
model [68] with HFReduce takes only half the time compared
to using Torch DDP’s NCCL backend, achieving nearly 88%
parallel scalability when scale from 32 GPUs to 512.

B. LLMs Training Optimization

Our HaiScale framework various parallelism strategies for
training large language models (LLMs), similar to Megagron
[69] and DeepSpeed [70]. We have made specific engineering
optimizations for our PCIe architecture across Data Parallelism
(DP), Pipeline Parallelism (PP) [11] [12], Tensor Parallelism
(TP) [14], Expert Parallelism (EP) [15]–[17].
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Figure 9: Strong Scalability: (a) Train LLaMa-13B with a con-
fig of sequence length 4096, batch size 4096, pipeline paral-
lel 4. (b)Train DeepSeekMoE-16B with a config of sequence
length 4096, batch size 4608, pipeline parallel 10.

1) NVLink Bridge Enables Tensor Parallel between PCIe
GPUs: With the advent of LLMs, we integrated the NVLink
Bridge into our system. This addition established a bandwidth
of 600GB/s between each pair of GPUs, enabling more effi-
cient when performing Tensor Parallelism.

2) Pipeline Parallelism Optimization in PCIe Architecture:
In our architecture, there is only one IB NIC for 8 GPUs on a
single node, which can lead to network bandwidth contention
during Pipeline Parallelism (PP). We solve this by configuring
Data Parallelism (DP) rank, making the 8 GPUs on the same
node belong to different DP ranks which staggers the timing
of PP for each DP rank. As Figure 9a shown, when scaling
from 64 GPUs to 512 GPUs, the step time of training LLaMa-
13B [71] decreases from 64.118 seconds to 9.717 seconds,
achieving a parallel efficiency of 91%.

We also benchmarked the training performance of our own
DeepSeekMoE-16B [72] model on Fire-Flyer 2 AI-HPC. As
shown in Figure 9b, when scaling from 40 GPUs to 640 GPUs,
the step time of training Moe model decreases from 79.615
seconds to 6.535 seconds, achieving a parallel efficiency of
76.14%. Notably, when using 320 GPUs, the parallel efficiency
reaches 92.92%, demonstrating excellent scalability.

3) Fully Sharded Data Parallel (FSDP): Both HaiScale’s
FSDP and PyTorch’s FSDP [18] are implementations based
on the ZeRO Stage-3 algorithm [19]. The details of this im-
plementation are already discussed in Section II-B1.

HaiScale’s FSDP offers better engineering implementation,
optimizing memory management to reduce fragmentation spe-
cific to model adjustments. And we overlap allgather and
reduce-scatter communication with forward and backward
computation, split the optimization step during backward prop-
agation for enhanced overlap. As shown in Figure 8b, training
GPT2-medium [73], we achieve 95% parallel scalability when
scaling from 16 to 128 GPUs. ompared to PyTorch’s FSDP,
HaiScale’s FSDP reduces training time by nearly half.



C. Summary

Our AI-HPC design meets DL requirements, and with the
addition of the NVLink Bridge, it meets the training needs of
early-stage LLMs, reaching the utilization upper limit of PCIe
GPUs. However, due to the inherent gap between PCIe card
specifications and SXM, there is a certain performance dis-
crepancy. Considering overall performance, basic setup cost,
and energy consumption, we achieved 80% performance at
half the cost. We believe Fire-Flyer 2 AI-HPC is a successful
practice in terms of cost-effectiveness.

VI. ADVANCED COST-EFFECTIVE AND CO-DESIGN
OPTIMIZATIONS

A. Ensuring Minimal Congestion in Our Computation-Storage
Integrated Network

As previously stated, our cost-effective network integrated
computation communication and storage traffics together. To
achieve maximum bandwidth, it is essential to isolate inter-
ference between different types of traffic and control network
congestion. In practice, we implemented the following mea-
sures:

1) Divergence of Different Traffics: In typical training
tasks, there are four different types of traffic: HFReduce com-
munication, NCCL communication, 3FS storage traffic, and
other traffic. By using InfiniBand’s Service Level (SL) tech-
nology [74] [75], we assign different value of SL when estab-
lishing connections between nodes and map SL to IB physical
queues Virtual Lanes (VLs) [74] [75]. The use of Virtual Lanes
ensures that flows in distinct lanes do not interfere with each
other. Ultimately, we configured their proportions to imple-
ment traffic isolation, thereby preventing network congestion
caused by Head-of-line (HOL) blocking [76] and different traf-
fic collisions.

2) Topology Adjustment and Route Optimization: In high-
throughput storage scenarios, there naturally exist many incast
communication patterns, leading to certain congestion in the
network. Under such circumstances, we observed that enabling
adaptive routing would lead to more severe congestion spread
in the network. Therefore, we opted for a static routing strat-
egy. Based on the static routing scheme, to evenly disperse
storage traffic into leaf → spine links, we distribute various
nodes (storage, computation, management nodes) evenly dis-
perse storage traffic into leaf → spine links.

3) NCCL Optimization: We adjusted the NCCL topology to
route through the IB NIC and GPUs within the same NUMA
node. This adjustment reduced PCIe congestion caused by
CPU chiplet interconnects. Additionally, by using PCIe Re-
laxed Ordering [77], we further reduced congestion and in-
creased bandwidth.

4) Network Tuning in 3FS: 3FS implements a request-to-
send control mechanism to mitigate the congestion. Details
are discussed in the next subsection, Key Techinical Points of
3FS.

B. High-Throughput Distributed File System: 3FS
1) Overview: 3FS is our in-house developed high perfor-

mance distributed file system, akin to WekaFS [78], DAOS
[79], [80], and BeeGFS [81]. However, the design and im-
plementation of 3FS specifically focus on fully utilizing the
high IOPS and throughput of NVMe SSDs and the RDMA
network.

Table IV: Storage Node Hardware Details

CPU 1 * AMD 64 Cores EPYC 7742 CPU

Memory 512GB 8-Channels DDR4-3200Mhz

NICs 2 * Mellanox InfiniBand CX6 200Gbps NIC

Data SSDs 16 * 15.36TB PCIe 4.0x4

2) 3FS Storage Node Hardware: In Fire-Flyer 2 AI-HPC,
we deployed 180 storage nodes, as shown in Table IV, each
node contains 16 PCIe 4.0 NVMe SSDs and 2 Mellanox CX6
200Gbps InfiniBand HCAs. With totally 360 * 200Gbps out-
bound InfiniBand HCAs, the system can total provide 9TB/s
outbound bandwidh, and we actually achieved total read
throughput of 8TB/s. The total 2880 NVMe SSDs provide
over 20PiB storage space with an mirror data redundancy.

3) Key Techinical Points of 3FS: The 3FS system comprises
four roles: cluster manager, meta service, storage service and
client. Meta and storage services send heartbeats to cluster
manager. All services and clients poll cluster configuration and
service status from the manager. Multiple cluster managers are
present, with one elected as the primary.

File system meta data are stored in tables of a dis-
tributed key-value storage system. Each file or directory
has a unique inode ID. The File inode/directory ID and
meta data, such as file size and location information of
the file content data, are stored as key-value pairs in
the inode table. A separate directory entry table stores
key-value pairs of (parent dir inode id, entry name) :
(entry inode id, ...) to support iterating entries in a directory
and resolving file/directory paths. All states of meta services
are persisted on the distributed key-value storage system. Sev-
eral meta services run concurrently to handle meta requests
from clients.

The storage service has an implementation of Chain Repli-
cation with Apportioned Queries (CRAQ) [82] to provide
strong consistency. CRAQ’s write-all-read-any approach helps
to unleash the throughput and IOPS of all SSDs. File con-
tent are split into chunks, which are replicated over a chain
of storage targets. A chain table contains an ordered set of
chains. The meta service selects an offset in the chain table
and a stripe size k for each file. The file chunks are assigned to
the next k chains starting at the offset. To distribute read/write
traffic evenly to all SSDs, each SSD serves multiple storage
targets from different chains. The storage service runs on every
storage node and manages a few storage targets.

The storage network has a Fat-Tree topology that provides
full bisection bandwidth. By design, each 3FS client can ac-
cess every storage service. At peak load, incast congestion is



observed on the client side. To mitigate this congestion, a
request-to-send control mechanism is implemented in stor-
age service and client [83]. After receiving a read request from
a client, the service reads data from SSD and asks the client’s
permission to transfer the data. The client limits the num-
ber of concurrent senders. When a storage service is granted
the permission to transfer, it sends the data with a RDMA
WRITE followed by a RDMA SEND to notify the client. The
request-to-send control increases end-to-end IO latency but it’s
required to achieve sustainable high throughput.

4) 3FS-KV: 3FS-KV is a shared-storage distributed data
processing system built on top of 3FS, currently supporting
three models: key-value, message queue, and object storage.
It supports read-write separation and on-demand startup, al-
lowing it to fully leverage the extremely high I/O throughput
provided by 3FS. 3FS-KV supports DeepSeek’s KV Context
Caching on Disk technology [84], which reduces the cost of
LLM serving by an order of magnitude.

C. HAI Platform: a Time-Sharing Scheduling Platform

The principle of time-sharing scheduling is applied to clus-
ter resource management. Users submit tasks, such as running
Python / bash code, starting development containers, etc., and
the platform interrupts and loads tasks according to current
resource requirements, cluster busyness, etc. Task code needs
to follow the platform coding rules to ensure that it can be
continued from breakpoints, with the specific process as fol-
lows:

• Accepting the interruption signal from the cluster;
• Saving checkpoints (model parameters, optimizer param-

eters, etc.);
• Notifying the cluster of interruptions;
• Recovering from the checkpoint and continuing to run.
The cluster deploying HAI Platform does not pool GPU re-

sources, but classifies and marks them based on computing
nodes as basic units, according to resource types, network ar-
eas, etc. The HAI Platform encourages users to fully utilize
multiple GPUs simultaneously for parallel training, facilitating
99% utilization.

VII. STABILITY AND ROBUSTNESS

A. Checkpoint Manager

Training LLMs can span several months, during which un-
avoidable hardware failures may cause training interruptions.
To minimize recovery time and support the HAI Platform’s
interrupt and recovery operations, we developed a checkpoint
manager. Additionally, the substantial size of LLM check-
points necessitated an efficient method for saving and loading
them, leveraging the high throughput of 3FS. The checkpoint
manager includes the following components:

• Parameters and optimization states are divided into
chunks and written to 3FS using the 3FS batch write API,
which is significantly faster than normal writes, achiev-
ing over 10 GiB/s per node. This enables saving to be
completed in just a few seconds.

• Parameters and optimization states are asynchronously
transferred from GPU to CPU host memory, with check-
point saving performed periodically (typically every 5
minutes).

• During the saving process, each tensor is recorded with its
index and the offset within the checkpoint., which makes
the location of tensors more convenient during the loading
process. With the 3FS batch read API, a loading process
can be completed in just a few seconds.

Thanks to the high write throughput of 3FS, periodic saving
operations can be completed asynchronously in a matter of
seconds, without impacting the training process. In the event
of hardware failures that interrupt training, only the last 5
minutes of progress are lost. For a cluster with thousands of
nodes, this overhead from disaster recovery is minimal.

B. Validator

The best way to enhance device stability is to identify is-
sues before they occur. Therefore, we have developed a set of
validator tools to verify whether the hardware is functioning
correctly. The platform’s automatic operation and maintenance
system runs the validator program weekly on nodes to verify
their proper functionality. It removes the faulty nodes from the
scheduling platform, ensuring that all scheduled nodes are op-
erational. Diagnosing tools like hostping [85] also integrated
in our platform, but to find root cause of Hardware Failures
is still hard work for operation teams. The validator mainly
consists of the following parts:

• Checking hardware frequency, link speed, and link status.
• Testing CPU stress and memory bandwidth.
• GPU Memory test: This involves checking each byte of

GPU memory to ensure no data corruption has occurred.
• Running GEMM with full GPU memory occupancy,

which can simultaneously check whether there are any
operational logic faults in the GPU chip.

• Intra-node allreduce test: checking NVLink bandwidth
through upper-level applications.

• Storage bandwidth stress test to make sure storage is
functioning normally.

C. Hardware Failures Characterization in Fire-Flyer 2 AI-
HPC

In supercomputers and data centers, hardware failures
and chip errors can lead to floating-point overflow, non-
convergence, or slow convergence during model training [86].
This paper [87] even directly points out that there is a sub-
stantial amount of Silent Data Corruption in data center pro-
cessors, ultimately leading to a variety of complex issues that
are difficult to replicate and locate. Indeed, in our practice, we
have encountered computational errors and GPU memory er-
rors not detected by Error Correction Code (ECC), which led
to models’ gradnorm spikes, loss explosions and even non-
convergence. How to tackle these hardware failures, promptly
identify and categorize them, is a key issue to improve the
online rate and overall utilization of cluster nodes.



Table V: Type of GPU Xid Errors and Its Causes

Xid Errors Analysis

Software
Causes:
Xid 13/31
Xid 43/45

Triggered by application programs, software-related
Xid messages may indicate anomalies in GPU
memory affecting code and data segments. However,
it’s crucial to consider other information for a
comprehensive hardware functionality assessment.

NVLink Error:
Xid 74

Xid74 indicates errors in NVLink. For PCIe A100, it’s
mainly occurred on the NVLink Bridge between two
GPUs. Its occurrence rate is several orders of
magnitude higher than other hardware faults. Apart
from stress testing to exclude those that are constantly
repeating errors, there isn’t a good way to avoid the
occurrence of Xid74 issues.

Memory
ECC Error:
Xid 63/64
Xid 94/95

Triggered when the GPU handles memory ECC errors
on the GPU. With the introduction of row remapping
technology in A100, most instances can be resolved
by simply resetting the GPU to retain optimal
performance.

Uncorrectable
GPU Failures:
Xid 44/48
Xid 61/62/69/79

Thease failures mean an uncorrectable error occurs on
the GPU, which is also reported back to the user
application. A GPU reset or node reboot is needed to
clear this error.

Other Failures:
Xid 119

Xid119 means GPU GSP module failed. These failures
need to do fieldiag test, and most need to RMA.

1) GPU Xid Error: An Xid error [88] is a general GPU
fault message that originates from the NVIDIA driver, logged
into the kernel or event log of the operating system. We have
categorized various types of Xid errors and analyzed the po-
tential causes that may lead to such errors, as shown in the
Table V.

Table VI in Appendix: Supplementary Characterization
shows the Xid errors that have occurred in our Fire-Flyer 2
AI-HPC over the past year. In our PCIe-based system, Xid74,
also known as NVLink errors, account for a significant pro-
portion, comprising 42.57% of the total. This high frequency
is due to the inherent fault rate of NVLink Bridge connectors,
amplified by our extensive use of thousands of GPUs.

Software-related errors such as Xid13, Xid31, Xid43, and
Xid45 suggest possible illegal memory access or instructions
in user code. Notably, illegal memory access (Xid 43) accounts
for 33.48%, highlighting the need for improved memory man-
agement. However, these errors may also result from memory
data corruption, so hardware faults should be considered if
software bugs are ruled out.

Additionally, GPU Memory ECC Errors, such as Xid63,
Xid64, Xid94, and Xid95, require special attention as they rep-
resent about 2% of the total. Figure 10 illustrates the statistics
related to ECC errors in our production cluster over the past
six months. It is evident that the number of GPU ECC faults
considerably surpasses those from the CPU. Therefore, it is
crucial to promptly address GPU ECC faults to ensure that
application performance and accuracy remain unaffected.

2) Network Flash Cut: In addition to CPU and GPU faults,
network device malfunctions represent a significant portion of
hardware issues. As shown in Figure10, IB link failures ac-
count for 30% of hardware faults excluding Xid74. Network
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Figure 10: Trends of Memory and Network Failures from 2023
to 2024: “Main Memory” indicates CPU Memory ECC errors,
“Network” indicates Network Flash Cuts, and “xids” are re-
lated to GPU memory ECC errors. Raw data is available in
Appendix: Supplementary Characterization, Table VII
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Figure 11: Trends of IB Network Failures: Link Flash Cuts

flash cuts can lead to application communication disruption,
even task failures. Since most tasks run on multiple nodes,
an issue on a single node can impact many others, further
reducing cluster utilization. Figure 11 illustrates the IB link
failures data over the past year, with raw data attached in
Appendix: Supplementary Characterization, Table VIII, indi-
cating that these issues can occur randomly throughout the
cluster’s operational period.

VIII. DISCUSSION

A. Discussion on Congestion Control in RDMA Networks

Lossless RDMA networks offer several flow-control mech-
anisms, such as Priority Flow Control (PFC) [89] for RoCE
networks and credit-based flow control [90] for IB networks.
In network routing, static routing algorithms in IB or ECMP
(Equal-Cost Multi-Path) [91] and AR (Adaptive Routing) [92]
effectively handle routing issues. However, congestion can still
occur when multiple servers send data to a single receiver, po-
tentially blocking the entire network. To mitigate this, IB NICs
use DCQCN (Data Center Quantized Congestion Notification)
[93] as their congestion control algorithm. While Data Pro-
cessing Units (DPUs), such as the NVIDIA BF series, allow
users to customize congestion control algorithms (like HPCC
[94] and TIMELY RTT-based CC [95]), they increase the cost
and operational complexity of the cluster.

In practice, we chose to disable DCQCN to avoid its
shortcomings, as it could not find parameters that simul-



taneously support HFReduce traffic and 3FS storage traffic
in our Computation-Storage Integrated Network. Instead, we
employed the network tuning methods mentioned in Section
VI-A, ensuring our network operates without congestion con-
trol and remains congestion-free.

B. Discussion about NVLink Technology Choices

Initially, we did not use NVLink to avoid extra costs and
maintain stability, as HFReduce was sufficient for training re-
quirements at that time. However, as the demand for LLMs
increased, we added NVLink specifically for LLM training
purposes. The decision to install NVLink should be based on
actual needs due to its potential drawbacks.

C. Maintaince Cost Overview

1) Construction Cost: Relative hardware costs are provided
in Table II and III. Software costs, contributed by several dozen
in-house developers, are just a fraction of the cost for thou-
sands of GPU servers.

2) Power Consumption: The average power consumption
comparision during ResNet training is provided in Table II.
Including the overhead from IB switches and other nodes, the
total energy consumption of the Fire-Flyer 2 AI-HPC does not
exceed 4 MW, approximately just over 3 MW.

3) Operation Cost: Operating costs can be estimated by
considering power consumption and rack rental costs. By mul-
tiplying this figure by the number of nodes and the PUE
(Power Usage Effectiveness), the total operating costs can be
calculated.

D. Stability Compared with Other Architectures

A recent paper [96] reportsthat NVLink-related failures ac-
count for approximately 52.42% (54 out of 103) of total fail-
ures, with raw data indicating 54 NVLink Errors, 21 CUDA
Errors, 16 Node Failures, 12 ECC Errors, and 12 Network
Errors. In comparison, our NVLink-related issues, primarily
Xid-74 Errors, as mentioned in Section VII-C1, account for
about 42.57% of GPU failures.

IX. FUTURE WORK

Future Arch and Integration with New GPU Models

Our next-generation PCIe architecture is designed for MoE
(Mixture of Experts) LLM training, where all-to-all perfor-
mance is crucial. Therefore, the next-gen nodes feature a 1:1
GPU to NIC ratio, comparable to DGX-H100/B100 systems,
as illustrated in Figure 12.

We are considering implementing a multi-plane network to
reduce costs while maintaining performance. Additionally, we
are exploring the use of RoCE switches instead of IB switches,
which can significantly lower network expenses. With a 128-
port 400 Gbps RoCE switch, a 4-Plane Two-Layer Fat-Trees
network can support up to 32,768 GPUs.
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Figure 12: Next Generation PCIe Node Atchitecture with
Multi-Plane Fat-Trees Network

X. CONCLUSIONS

In this paper, we have shared our experiences and in-
sights from deploying and maintaining the Fire-Flyer 2 AI-
HPC, which is equipped with 10,000 PCIe A100 GPUs.Our
approach to PCIe architecture and storage-computation inte-
grated network design has resulted in significant cost savings,
effectively halving construction costs and demonstrating sub-
stantial cost-effectiveness.

In terms of software co-design, we introduced HFReduce
and HaiScale to overcome hardware limitations, ensuring scal-
able performance of the PCIe architecture. Our in-house de-
veloped 3FS distributed file system,in conjunction with net-
work co-design, facilitates traffic isolation for both 3FS and
HFReduce allreduce traffic, effectively preventing congestion.
The comprehensive software stack within the HAI Platform
addresses a variety of system faults, from network conges-
tion to hardware failures, thereby ensuring high stability and
robustness.

Together, these software and hardware innovations enable
our PCIe A100 architecture to achieve 80% the performance of
NVIDIA’s DGX-A100, while consuming less than 60% of its
power. The practical knowledge we have accrued may prove
valuable for both industrial and academic sectors. We hope
that our work will serve as a reference for others aiming to
build their own cost-effective and efficient AI-HPC clusters.

ACKNOWLEDGMENT

We extend our heartfelt gratitude to all our colleagues at
DeepSeek-AI and High-Flyer Quant for their invaluable con-
tributions to the Fire-Flyer 2 AI-HPC project. Throughout the
four years of design, construction, and operation, their col-
laborative efforts have been crucial in overcoming numerous
challenges. Consequently, Fire-Flyer 2 AI-HPC now supports
the training tasks of the DeepSeek-AI series large language
models [72], [97]–[101]. We extend a special thanks to the
HFAiLab System Team and the Operations Team, whose core
contributions have been essential to the success of this en-
deavor.



REFERENCES

[1] Y. LeCun, Y. Bengio, and G. Hinton, “Deep learning,” nature, vol. 521,
no. 7553, pp. 436–444, 2015. I

[2] R. R. Schaller, “Moore’s law: past, present and future,” IEEE spectrum,
vol. 34, no. 6, pp. 52–59, 1997. I

[3] T. Brown, B. Mann, N. Ryder, M. Subbiah, J. D. Kaplan, P. Dhariwal,
A. Neelakantan, P. Shyam, G. Sastry, A. Askell et al., “Language mod-
els are few-shot learners,” Advances in neural information processing
systems, vol. 33, pp. 1877–1901, 2020. I

[4] Anthropic, “Introducing claude,” 2023. [Online]. Available: https:
//www.anthropic.com/news/introducing-claude I

[5] Google, “An important next step on our ai journey,” 2023.
[Online]. Available: https://blog.google/technology/ai/bard-google-ai-
search-updates/ I

[6] OpenAI, “Chatgpt: Optimizing language models for dialogue,” 2022.
[Online]. Available: https://openai.com/blog/chatgpt I

[7] J. Achiam, S. Adler, S. Agarwal, L. Ahmad, I. Akkaya, F. L. Aleman,
D. Almeida, J. Altenschmidt, S. Altman, S. Anadkat et al., “Gpt-4
technical report,” arXiv preprint arXiv:2303.08774, 2023. I, II-A

[8] NVIDIA, “Nvidia dgx platform the best of nvidia ai—all in one
place.” 2022. [Online]. Available: https://www.nvidia.com/en-us/data-
center/dgx-platform/ I, III-C

[9] C. E. Leiserson, “Fat-trees: Universal networks for hardware-efficient
supercomputing,” IEEE Transactions on Computers, vol. C-34, no. 10,
pp. 892–901, Oct 1985. I, III-B

[10] NVIDIA, “Nvidia collective communications library (nccl): Optimized
primitives for collective multi-gpu communication,” 2017. [Online].
Available: https://github.com/NVIDIA/nccl I, III-B

[11] Y. Huang, Y. Cheng, D. Chen, H. Lee, J. Ngiam, Q. V. Le, and
Z. Chen, “Gpipe: Efficient training of giant neural networks using
pipeline parallelism,” CoRR, vol. abs/1811.06965, 2018. [Online].
Available: http://arxiv.org/abs/1811.06965 I, II-B1, V-B

[12] D. Narayanan, A. Harlap, A. Phanishayee, V. Seshadri, N. R. Devanur,
G. R. Ganger, P. B. Gibbons, and M. Zaharia, “Pipedream: generalized
pipeline parallelism for dnn training,” in Proceedings of the 27th
ACM Symposium on Operating Systems Principles, ser. SOSP ’19.
New York, NY, USA: Association for Computing Machinery, 2019, p.
1–15. [Online]. Available: https://doi.org/10.1145/3341301.3359646 I,
II-B1, V-B

[13] M. Shoeybi, M. Patwary, R. Puri, P. LeGresley, J. Casper, and
B. Catanzaro, “Megatron-LM: Training Multi-Billion Parameter Lan-
guage Models Using Model Parallelism,” Mar. 2020, arXiv:1909.08053
[cs]. [Online]. Available: http://arxiv.org/abs/1909.08053 I, II-B1

[14] D. Narayanan, M. Shoeybi, J. Casper, P. LeGresley, M. Patwary,
V. Korthikanti, D. Vainbrand, P. Kashinkunti, J. Bernauer, B. Catanzaro,
A. Phanishayee, and M. Zaharia, “Efficient large-scale language
model training on gpu clusters using megatron-lm,” in Proceedings
of the International Conference for High Performance Computing,
Networking, Storage and Analysis, ser. SC ’21. New York, NY, USA:
Association for Computing Machinery, 2021. [Online]. Available:
https://doi.org/10.1145/3458817.3476209 I, II-B1, V-B

[15] S. Singh, O. Ruwase, A. A. Awan, S. Rajbhandari, Y. He, and
A. Bhatele, “A hybrid tensor-expert-data parallelism approach to
optimize mixture-of-experts training,” in Proceedings of the 37th ACM
International Conference on Supercomputing, ser. ICS ’23. New York,
NY, USA: Association for Computing Machinery, 2023, p. 203–214.
[Online]. Available: https://doi.org/10.1145/3577193.3593704 I, II-B1,
V-B

[16] S. Rajbhandari, C. Li, Z. Yao, M. Zhang, R. Aminabadi, A. Awan,
J. Rasley, and Y. He, “Deepspeed-moe: Advancing mixture-of-experts
inference and training to power next-generation ai scale,” Proceedings
of Machine Learning Research, vol. 162, pp. 18 332–18 346, 2022, pub-
lisher Copyright: Copyright © 2022 by the author(s); 39th International
Conference on Machine Learning, ICML 2022 ; Conference date: 17-
07-2022 Through 23-07-2022. I, II-B1, V-B

[17] C. Hwang, W. Cui, Y. Xiong, Z. Yang, Z. Liu, H. Hu, Z. Wang, R. Salas,
J. Jose, P. Ram et al., “Tutel: Adaptive mixture-of-experts at scale,”
Proceedings of Machine Learning and Systems, vol. 5, 2023. I, II-B1,
V-B

[18] Y. Zhao, A. Gu, R. Varma, L. Luo, C.-C. Huang, M. Xu, L. Wright,
H. Shojanazeri, M. Ott, S. Shleifer et al., “Pytorch fsdp: experiences on
scaling fully sharded data parallel,” arXiv preprint arXiv:2304.11277,
2023. I, V-B3

[19] S. Rajbhandari, J. Rasley, O. Ruwase, and Y. He, “Zero: Memory op-
timizations toward training trillion parameter models,” in SC20: In-
ternational Conference for High Performance Computing, Networking,
Storage and Analysis. IEEE, 2020, pp. 1–16. I, II-B1, II-B1, V-B3

[20] HFAiLab, “Hai platform: A high-performance deep learning training
platform with task-level gpu compute time-sharing scheduling,” 2023.
[Online]. Available: https://github.com/HFAiLab/hai-platform I

[21] A. Krizhevsky, I. Sutskever, and G. E. Hinton, “Imagenet classification
with deep convolutional neural networks,” Advances in neural infor-
mation processing systems, vol. 25, 2012. II-A

[22] K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for image
recognition,” in Proceedings of the IEEE conference on computer vision
and pattern recognition, 2016, pp. 770–778. II-A, III

[23] A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N.
Gomez, Ł. Kaiser, and I. Polosukhin, “Attention is all you need,” Ad-
vances in neural information processing systems, vol. 30, 2017. II-A

[24] A. W. Senior, R. Evans, J. Jumper, J. Kirkpatrick, L. Sifre, T. Green,
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[65] P. Sanders, J. Speck, and J. Träff, “Two-tree algorithms for full band-
width broadcast, reduction and scan,” Parallel Computing, vol. 35, pp.
581–594, 12 2009. III-B, IV, 1, IV-D1

[66] R. Shi, S. Potluri, K. Hamidouche, J. Perkins, M. Li, D. Rossetti, and
D. K. D. K. Panda, “Designing efficient small message transfer mecha-
nism for inter-node mpi communication on infiniband gpu clusters,” in
2014 21st International Conference on High Performance Computing
(HiPC), 2014, pp. 1–10. 1

[67] P. Foundation, “Tensors and dynamic neural networks in python
with strong gpu acceleration,” 2016. [Online]. Available: https:
//github.com/pytorch/pytorch V-A

https://doi.org/10.1145/3093338.3093385
http://link.springer.com/10.1007/s11432-016-5588-7
https://ieeexplore.ieee.org/document/9336127/
https://ieeexplore.ieee.org/document/9676353/
https://ieeexplore.ieee.org/document/9676353/
https://www.alcf.anl.gov/aurora
https://ieeexplore.ieee.org/document/8961159/
https://doi.org/10.1145/3538712.3538734
http://arxiv.org/abs/2104.05158
https://doi.org/10.1145/3651890.3672265
http://arxiv.org/abs/2402.15627
https://doi.org/10.1145/3651890.3672233
https://nvidianews.nvidia.com/news/nvidia-announces-dgx-h100-systems-worlds-most-advanced-enterprise-ai-infrastructure
https://nvidianews.nvidia.com/news/nvidia-announces-dgx-h100-systems-worlds-most-advanced-enterprise-ai-infrastructure
https://dl.acm.org/doi/10.1145/3579371.3589350
http://arxiv.org/abs/2309.16976
http://arxiv.org/abs/2309.16976
https://doi.org/10.1007/s42514-021-00080-x
https://njccs.journals.ekb.eg/article_280047.html
https://api.semanticscholar.org/CorpusID:52967399
https://api.semanticscholar.org/CorpusID:52967399
https://doi.org/10.1145/3524059.3532380
https://github.com/pytorch/pytorch
https://github.com/pytorch/pytorch


[68] S. Liu and W. Deng, “Very deep convolutional neural network based
image classification using small training sample size,” in 2015 3rd
IAPR Asian Conference on Pattern Recognition (ACPR), 2015, pp.
730–734. V-A

[69] M. Shoeybi, M. Patwary, R. Puri, P. LeGresley, J. Casper, and B. Catan-
zaro, “Megatron-lm: Training multi-billion parameter language models
using model parallelism,” arXiv preprint arXiv:1909.08053, 2019. V-B

[70] J. Rasley, S. Rajbhandari, O. Ruwase, and Y. He, “Deepspeed:
System optimizations enable training deep learning models with
over 100 billion parameters,” in Proceedings of the 26th ACM
SIGKDD International Conference on Knowledge Discovery & Data
Mining, ser. KDD ’20. New York, NY, USA: Association for
Computing Machinery, 2020, p. 3505–3506. [Online]. Available:
https://doi.org/10.1145/3394486.3406703 V-B

[71] H. Touvron, T. Lavril, G. Izacard, X. Martinet, M.-A. Lachaux,
T. Lacroix, B. Rozière, N. Goyal, E. Hambro, F. Azhar, A. Rodriguez,
A. Joulin, E. Grave, and G. Lample, “Llama: Open and efficient foun-
dation language models,” ArXiv, vol. abs/2302.13971, 2023. [Online].
Available: https://api.semanticscholar.org/CorpusID:257219404 V-B2

[72] DeepSeek-AI, A. Liu, B. Feng, B. Wang, B. Wang, B. Liu, C. Zhao,
C. Dengr, C. Ruan, D. Dai, D. Guo, D. Yang, D. Chen, D. Ji,
E. Li, F. Lin, F. Luo, G. Hao, G. Chen, G. Li, H. Zhang, H. Xu,
H. Yang, H. Zhang, H. Ding, H. Xin, H. Gao, H. Li, H. Qu, J. L.
Cai, J. Liang, J. Guo, J. Ni, J. Li, J. Chen, J. Yuan, J. Qiu, J. Song,
K. Dong, K. Gao, K. Guan, L. Wang, L. Zhang, L. Xu, L. Xia,
L. Zhao, L. Zhang, M. Li, M. Wang, M. Zhang, M. Zhang, M. Tang,
M. Li, N. Tian, P. Huang, P. Wang, P. Zhang, Q. Zhu, Q. Chen,
Q. Du, R. J. Chen, R. L. Jin, R. Ge, R. Pan, R. Xu, R. Chen,
S. S. Li, S. Lu, S. Zhou, S. Chen, S. Wu, S. Ye, S. Ma, S. Wang,
S. Zhou, S. Yu, S. Zhou, S. Zheng, T. Wang, T. Pei, T. Yuan,
T. Sun, W. L. Xiao, W. Zeng, W. An, W. Liu, W. Liang, W. Gao,
W. Zhang, X. Q. Li, X. Jin, X. Wang, X. Bi, X. Liu, X. Wang,
X. Shen, X. Chen, X. Chen, X. Nie, X. Sun, X. Wang, X. Liu,
X. Xie, X. Yu, X. Song, X. Zhou, X. Yang, X. Lu, X. Su, Y. Wu,
Y. K. Li, Y. X. Wei, Y. X. Zhu, Y. Xu, Y. Huang, Y. Li, Y. Zhao,
Y. Sun, Y. Li, Y. Wang, Y. Zheng, Y. Zhang, Y. Xiong, Y. Zhao,
Y. He, Y. Tang, Y. Piao, Y. Dong, Y. Tan, Y. Liu, Y. Wang, Y. Guo,
Y. Zhu, Y. Wang, Y. Zou, Y. Zha, Y. Ma, Y. Yan, Y. You, Y. Liu, Z. Z.
Ren, Z. Ren, Z. Sha, Z. Fu, Z. Huang, Z. Zhang, Z. Xie, Z. Hao,
Z. Shao, Z. Wen, Z. Xu, Z. Zhang, Z. Li, Z. Wang, Z. Gu, Z. Li,
and Z. Xie, “DeepSeek-V2: A Strong, Economical, and Efficient
Mixture-of-Experts Language Model,” Jun. 2024, arXiv:2405.04434
[cs]. [Online]. Available: http://arxiv.org/abs/2405.04434 V-B2, X

[73] A. Radford, J. Wu, R. Child, D. Luan, D. Amodei, and I. Sutskever,
“Language models are unsupervised multitask learners,” 2019. V-B3

[74] S.-A. Reinemo, T. Skeie, T. Sodring, O. Lysne, and O. Trudbakken,
“An overview of qos capabilities in infiniband, advanced switching
interconnect, and ethernet,” IEEE Communications Magazine, vol. 44,
no. 7, pp. 32–38, 2006. VI-A1, VI-A1

[75] D. Crupnicoff, S. Das, and E. Zahavi, “Deploying Quality of Service
and Congestion Control in InfiniBand-based Data Center Networks.”
[Online]. Available: https://network.nvidia.com/sites/default/files/
related-docs/whitepapers/deploying qos wp 10 19 2005.pdf VI-A1,
VI-A1

[76] M. Scharf and S. Kiesel, “Nxg03-5: Head-of-line blocking in tcp and
sctp: Analysis and measurements,” in IEEE Globecom 2006, 2006, pp.
1–5. VI-A1

[77] R. Budruk, D. Anderson, and E. Solari, PCI Express System Architec-
ture. Pearson Education, 2003. VI-A3

[78] Z. Liran, H. David, and M. Barbara,
“Wekafs architecture white paper,” 2021. [On-
line]. Available: https://www.weka.io/wp-content/uploads/files/2017/
12/Architectural WhitePaper-W02R6WP201812-1.pdf VI-B1

[79] Z. Liang, J. Lombardi, M. Chaarawi, and M. Hennecke, “Daos: A
scale-out high performance storage stack for storage class memory,” in
Supercomputing Frontiers, D. K. Panda, Ed. Cham: Springer Interna-
tional Publishing, 2020, pp. 40–54. VI-B1

[80] M. Hennecke, “Understanding daos storage performance scalability,”
in Proceedings of the HPC Asia 2023 Workshops, ser. HPCAsia
’23 Workshops. New York, NY, USA: Association for Computing
Machinery, 2023, p. 1–14. [Online]. Available: https://doi.org/10.1145/
3581576.3581577 VI-B1

[81] H. Frank and B. Sven, “Wekafs architecture white paper,”

2018. [Online]. Available: https://www.beegfs.io/docs/whitepapers/
Introduction to BeeGFS by ThinkParQ.pdf VI-B1

[82] J. Terrace and M. J. Freedman, “Object storage on CRAQ: High-
Throughput chain replication for Read-Mostly workloads,” in 2009
USENIX Annual Technical Conference (USENIX ATC 09). San
Diego, CA: USENIX Association, Jun. 2009. [Online]. Avail-
able: https://www.usenix.org/conference/usenix-09/object-storage-
craq-high-throughput-chain-replication-read-mostly-workloads VI-B3

[83] E. B. Nightingale, J. Elson, J. Fan, O. Hofmann, J. Howell, and
Y. Suzue, “Flat datacenter storage,” in Proceedings of the 10th USENIX
Conference on Operating Systems Design and Implementation, ser.
OSDI’12. USA: USENIX Association, 2012, p. 1–15. VI-B3

[84] DeepSeek-AI, “Deepseek api introduces context caching on disk,
cutting prices by an order of magnitude,” 2024. [Online]. Available:
https://platform.deepseek.com/api-docs/news/news0802 VI-B4

[85] K. Liu, Z. Jiang, J. Zhang, H. Wei, X. Zhong, L. Tan, T. Pan,
and T. Huang, “Hostping: Diagnosing intra-host network bottlenecks
in RDMA servers,” in 20th USENIX Symposium on Networked
Systems Design and Implementation (NSDI 23). Boston, MA:
USENIX Association, Apr. 2023, pp. 15–29. [Online]. Available:
https://www.usenix.org/conference/nsdi23/presentation/liu-kefei VII-B

[86] Y. He, M. Hutton, S. Chan, R. De Gruijl, R. Govindaraju,
N. Patil, and Y. Li, “Understanding and Mitigating Hardware
Failures in Deep Learning Training Systems,” in Proceedings of
the 50th Annual International Symposium on Computer Architecture.
Orlando FL USA: ACM, Jun. 2023, pp. 1–16. [Online]. Available:
https://dl.acm.org/doi/10.1145/3579371.3589105 VII-C

[87] S. Wang, G. Zhang, J. Wei, Y. Wang, J. Wu, and Q. Luo,
“Understanding Silent Data Corruptions in a Large Production CPU
Population,” in Proceedings of the 29th Symposium on Operating
Systems Principles. Koblenz Germany: ACM, Oct. 2023, pp. 216–230.
[Online]. Available: https://dl.acm.org/doi/10.1145/3600006.3613149
VII-C

[88] NVIDIA, “This document explains what xid messages are, and is
intended to assist system administrators, developers, and faes in
understanding the meaning behind these messages as an aid in
analyzing and resolving gpu-related problems.” [Online]. Available:
https://docs.nvidia.com/deploy/xid-errors/ VII-C1

[89] “Priority flow control : Build reliable layer 2 infrastructure,”
2015. [Online]. Available: https://api.semanticscholar.org/CorpusID:
42645413 VIII-A

[90] S. Yan, G. Min, and I. Awan, “Performance analysis of credit-
based flow control in infiniband interconnection networks,” Journal of
Interconnection Networks, vol. 07, no. 04, pp. 535–548, 2006. [Online].
Available: https://doi.org/10.1142/S0219265906001843 VIII-A

[91] E. Nepolo and G.-A. Lusilao Zodi, “A predictive ecmp routing protocol
for fat-tree enabled data centre networks,” in 2021 15th International
Conference on Ubiquitous Information Management and Communica-
tion (IMCOM), 2021, pp. 1–8. VIII-A
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APPENDIX: SUPPLEMENTARY CHARACTERIZATION

Table VI: Raw Data of GPU Xid Errors in Our Cluster Over
the Past Year, as Mentioned in Section VII-C1

GPU Error Type Xid Code Number Percentage

NVLink Error xid 74 5521 42.57%

Software Causes xid 13 45 0.35%

xid 31 2487 19.18%

xid 43 4342 33.48%

xid 45 240 1.85%

GPU ECC Error xid 63 245 1.89%

xid 64 2 0.02%

xid 94 13 0.10%

xid 95 17 0.13%

Uncorrectable Failures xid 44 1 0.01%

xid 48 2 0.02%

xid 61 13 0.10%

xid 62 3 0.02%

xid 69 1 0.01%

xid 79 37 0.29%

GPU GSP ERROR xid 119 1 0.01%

Total 12970 100.00%

Table VII: Raw Data of Memory and Network Failures from 2023 to 2024, as Mentioned in section VII-C2, Figure 10:
“Main Memory” indicates CPU Memory ECC errors, “Network” indicates Network Flash Cuts, and “xids” are related to GPU
memory ECC errors.

Main Memory Network xid 63 xid 64 xid 79 xid 94 xid 95 Total

2023

October 4 29 21 0 0 0 0 54

November 14 8 22 0 0 4 0 48

Ddecember 8 17 21 0 4 2 2 54

2024

January 11 9 16 1 3 1 1 42

February 8 12 18 0 2 0 3 43

March 9 14 22 0 6 0 0 51

Total 54 89 120 1 15 7 6 292



Table VIII: Raw Data of IB Network Failures and Flash Cuts Over the Past Year, as Mentioned in Section VII-C2, Figure 11.

Date Failure Count Date Failure Count Date Failure Count Date Failure Count

2023/4/19 1 2023/7/8 1 2023/9/7 3 2023/12/24 5

2023/4/21 1 2023/7/10 2 2023/9/12 1 2023/12/31 1

2023/4/26 1 2023/7/12 10 2023/9/17 1 2024/1/1 1

2023/4/27 4 2023/7/13 1 2023/9/21 7 2024/1/6 1

2023/4/30 1 2023/7/18 2 2023/9/27 1 2024/1/7 1

2023/5/1 1 2023/7/20 1 2023/10/8 2 2024/1/10 2

2023/5/4 2 2023/7/23 2 2023/10/10 1 2024/1/15 1

2023/5/6 2 2023/7/24 2 2023/10/11 1 2024/1/25 1

2023/5/9 2 2023/7/26 1 2023/10/16 1 2024/1/31 2

2023/5/17 2 2023/7/29 3 2023/10/22 1 2024/2/3 5

2023/5/26 1 2023/8/6 3 2023/10/25 1 2024/2/5 1

2023/5/27 8 2023/8/8 1 2023/10/26 3 2024/2/17 1

2023/5/28 10 2023/8/9 1 2023/10/27 2 2024/2/22 1

2023/5/30 2 2023/8/16 1 2023/10/28 1 2024/2/23 3

2023/6/5 1 2023/8/17 2 2023/11/2 1 2024/2/26 1

2023/6/6 1 2023/8/18 1 2023/11/6 1 2024/3/1 3

2023/6/8 1 2023/8/20 1 2023/11/9 1 2024/3/5 1

2023/6/14 2 2023/8/23 2 2023/11/14 1 2024/3/11 1

2023/6/16 0 2023/8/25 3 2023/11/20 1 2024/3/16 2

2023/6/17 2 2023/8/26 4 2023/11/30 3 2024/3/18 1

2023/6/20 3 2023/8/28 4 2023/12/7 5 2024/3/24 1

2023/6/26 1 2023/8/31 7 2023/12/9 1 2024/3/25 1

2023/6/27 2 2023/9/1 3 2023/12/10 1 2024/3/29 2

2023/7/4 2 2023/9/4 1 2023/12/14 1 2024/3/30 1

2023/7/6 2 2023/9/5 3 2023/12/22 3 2024/3/31 1

2023/7/7 10
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