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20.1 Introduction

The availability of large amounts of tick-by-tick data, in excess of 50,000
data points per day (Glattfelder et al., 2010), oanda, ebs has opened up new
opportunities for model building. It is now possible to follow an empirical
approach and develop models bottom up by analyzing empirical data and
searching for statistical properties.

The analysis of high frequency data is nontrivial: ticks (i.e., quoted prices)
are irregularly spaced in time in an intricate sequence. The available literature
essentially suggests two ways to handle this issue (Dacorogna et al., 2001; Engle
and Russell, 2006). The first method suggests aggregating price information by
interpolating prices between fixed and predetermined times. The drawback of
this method is the loss of intratime information during active periods and the
multiplication of price information during quiet periods, when insufficient data
is available. With the second approach, one can consider a time series made of
ticks and times between their occurrences (i.e., duration); this is referred to as a
point process (Bauwens and Hautsch, 2009). Point processes are valuable because
they incorporate durations and allow analytical results to be derived; however,
they have the disadvantage that time is measured in terms of physical units,
and therefore, point processes neither adapt to the changing market activity nor
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differentiate between a minute of early morning calm and a minute during a
hectic news announcement.

We propose a different way to analyze high frequency data: an event-based
approach in which the time series is dissected based on market events where
the direction of the trend changes from up to down or vice versa. We identify
alternating directional changes (DCs) as a price move of magnitude λ from the
last price extreme, be it a high or a low when a downward or upward directional
change is to be observed, respectively (Guillaume et al., 1997). Physical time is
substituted with the so-called intrinsic time incremented by one unit whenever a
directional change occurs. This approach is well suited to deal with tick-by-tick
data because it is not constrained by any fixed time grid and naturally adapts to
the market activity. With this methodology, we can model the price curve as a
superposition of different λ price curves based on directional changes.

We have discovered 12 new scaling laws (Glattfelder et al., 2010) that
researchers had failed to previously identify. The scaling laws are powerful tools
for model building: they are a frame of reference to relate different values to
each other. We use the scaling laws to compute the equivalent of a Richter scale
in geology (Richter, 1958) for financial markets. The scale of market quakes
(SMQ, Bisig et al., 2012) is an objective measure of the impact of political and
economic events in foreign exchange and used as a support tool for decision
makers and commentators in financial markets or as an input for an economic
model measuring the impact of fundamental economic events.

The discovery of the 12 new scaling laws can be used as a cornerstone for
model building. They provide a dynamic frame of reference, which is a kind of
anchor for the rest of the model. One of the scaling laws relates the total length
of the coastline of the price curve as a function of the threshold of observation.
If we sum up all the price changes bigger or equal to 0.05% after subtracting
potential transaction costs, then the 1-year coastline is an astounding 1600%
compared to a price risk of 30%. The length of the coastline is the result of
the ongoing imbalance between buyers and sellers and reflects a lack of market
liquidity, when there are not enough market participants ready to take the other
side of the immediate buy or sell flow.

We have developed a new class of trading models that is based on the scaling
law of price overshoots. The algorithm opens countertrend positions, when there
is an imbalance of buy and sell volume and a price overshoot occurs. The position
is closed out as soon as the position is back in a profit. The model takes advantage
of the long coastline and the recurring price rebounds and improves the price
average of the position by adding and subtracting to the position during the
temporary rebounds and generating incremental return that speeds up the time
for the closing of the position. Besides generating return, the strategy provides
liquidity to the market and reduces its overall volatility; this has economic
value because it lowers uncertainty, thus increasing economic efficiency. The
lack of correlation with other asset classes and investment strategies makes high
frequency finance strategies an attractive new asset class with unique features:
stable returns. An additional advantage is the liquidity of these strategies because
investments can be closed out at any time.
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The strategy can also be embedded as part of a dynamic currency overlay; in
conjunction with a static hedge, the dynamic hedge generates incremental return
and reduces overall risk: the dynamic hedge increases the size of its position,
whenever the underlying asset appreciates too rapidly, and starts to offset the
static hedge by building up long positions, whenever the asset drops too rapidly.
The incremental returns of the dynamic component turn currency hedging into
an attractive financial product.

The chapter is organized as follows. In Section 20.2, we define the event-based
framework in some detail. The scaling laws are then presented in Section 20.3.
Section 20.4 introduces the SMQ and analyzes SMQ events during the course
of several years for major currency pairs. The main features of our trading model
algorithm are then described in Section 20.5, where we discuss monthly statistics
of executed trades. Finally, we conclude and discuss further work.

20.2 The Intrinsic Time Framework

The foreign exchange (FX) market is usually analyzed as a homogeneous sequence
of returns r defined as the price difference over a fixed period of time (Dacorogna
et al., 2001). This metric is used for a discontinuous time series: over weekends,
trading comes to a standstill or, inversely, at news announcements, there are spurts
of market activity. Ideally, time should be a dynamic object that adapts itself to
market activity. To achieve this goal, we propose an event-based approach that
analyzes the time series in terms of price directional changes of a given amplitude
λ (Glattfelder et al., 2010). Within this framework, time flows unevenly: any
occurrence of a directional change represents a new intrinsic time unit. Intrinsic
time flows to the beat of events and is thus better suited to model the dynamics
of the underlying processes.

The dissection algorithm identifies the occurrence of a price change λ from
the last high or low (i.e., an extrema), whether it is in an up or down mode,
respectively. At each occurrence of a directional change, there is the so-called
overshoot associated with the previous directional change. The overshoot is
defined as the difference between the price level at which the last directional
change occurred and the extrema before the next directional change is triggered.
Figure 20.1 shows how the price curve is dissected into directional change and
overshoot sections.

Formally, we map the time series of prices into sequences of directional
changes and price overshoots as follows. Let " = {λ0, . . . , λnλ−1} be the set of
nλ price thresholds onto which time series is mapped. The initial condition of
the sequence is x0, the initial price; t0, the initial physical time; and m0, the
mode that switches between up and down indicating in which direction the
directional change is expected. An initial condition affects at most the first two
pairs (directional change, overshoot), and let the subsequent pairs in the sequence
to synchronize with any other sequence obtained with a different initialization.

A given λi discretizes the time series into a set of prices Xi(t) = {xi
0(ti

0), . . . ,
xi

ni−1(ti
ni−1), x(t)} occurring at times Ti(t) = {ti

0, . . . , ti
ni−1, t}, where x(t) =
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FIGURE 20.1 Projection of a (a) 2-week, (b) zoomed-in 36-h price sample onto a reduced
set of the so-called directional-change (DC) events defined by a threshold (a) λ = 1.7%,
(b) λ = 0.23%. These DC events (diamonds) act as natural dissection points, decomposing a
total-price move between two extremal price levels (bullets) into the so-called DC (solid lines)
and overshoot (OS, dashed lines) sections. Timescales depict physical time ticking evenly across
different price-curve activity regimes, whereas intrinsic time triggers only at DC events.

(bid(t) + ask(t))/2 is the midprice at time t. We highlight that the last elements
of the set (x(t), t) are temporary, as they do not correspond to a turning point
yet but represent the state of the process at time t. We compute the number of
turning points (i.e., the occurrence of a directional change) as ni

e = "ni/2#. The
series of amplitude of directional changes #i is defined as

#i(t) =
{
δi

0, . . . , δi
ni

e−1, δi
ni

e
(t)

}
=

{
xi

2j+1 − xi
2j

xi
2j

}

(20.1)

where 0 ≤ j ≤ ni
e. The discreteness of the time series of prices prevents |δi

j | = λi.
The discrepancy is, however, small and is on average within the spread. The
series of amplitudes of overshoots %i is written as

%i(t) =
{
ωi

0, . . . , ωi
ni

e−1, ωi
ni

e
(t)

}
=

{
xi

2(j+1) − xi
2j+1

xi
2j+1

}

(20.2)

Durations of directional changes or price overshoots are similarly defined by
replacing prices x by physical time t in Equations (20.1) and (20.2).
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Algorithm 20.1 shows a pseudocode that gives further details on how to
dissect the time series of prices.

ALGORITHM 20.1 Dissect the price curve from time t0 and
measure overshoots with a λi price threshold

Require: initialise variables (xext = x(t0), mode is arbitrarily set to up,
Xi = x0, Ti = t0)
1: update latest Xi with x(t)
2: update latest Ti with t
3: if mode is down then
4: if x(t) > xext then
5: xext ← x(t)
6: else if (xext − x(t))/xext ≥ λi then
7: xext ← x(t)
8: mode ← up
9: Xi ← x(t)

10: Ti ← t
11: end if
12: else if mode is up then
13: if x(t) < xext then
14: xext ← x(t)
15: else if (x(t) − xext)/xext ≥ λi then
16: xext ← x(t)
17: mode ← down
18: Xi ← x(t)
19: Ti ← t
20: end if
21: end if

Section 20.3 explores the relationships between the quantities introduced
above and empirically shows that a large number of scaling laws exist. We then
introduce a novel way to measure market activity by inspecting the behavior of
an aggregate of ωi

ni
e
(t) over i on a continuous basis.

20.3 Scaling Laws

Scaling laws establish invariance of scale and play an important role in describing
complex systems (Barabasi and Albert, 1999; Newman, 2005; West et al., 1997.
In finance, there is one scaling law that has been widely reported (Ballocchi
et al., 1999; Corsi et al., 2001; Dacorogna et al., 2001; Di Matteo et al.,
2005; Galluccio et al., 1997; Mantegna and Stanley, 1995; Müller et al., 1990;
Guillaume et al., 1997): the size of the average absolute price change (return) is
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scale-invariant to the time interval of its occurrence. This scaling law has been
applied to risk management and volatility modeling (Di Matteo, 2007; Gabaix
et al., 2003; Ghashghaie et al., 1996; Sornette, 2000), even though there has been
no consensus among researchers for why the scaling law exists (Barndorff-Nielsen
and Prause, 2001; Bouchaud, 2001; Farmer and Lillo, 2004; Joulin et al., 2008;
Lux, 2006).

Searching for new scaling laws, we analyze the price data of the FX market,
which is a complex network of interacting agents: corporations, institutional and
retail traders, and brokers trading through market makers, who themselves form
an intricate web of interdependence. We consider five years of tick-by-tick data
for 13 exchange rates through November 2007 (see Glattfelder et al. (2010) for
a description of the data set).

An exchange rate often moves by 10–20% within a year. However, since
the seminal work of Mandelbrot (1963), we know about the fractal nature
of price curves. The coastline, roughly being the sum of all price moves of
a given threshold, at fine levels of resolution, may be far longer than one
might intuitively think. But how much longer? The scaling laws described in
this chapter provide a surprisingly accurate estimate and not only highlight
the importance of considering tail events (Sornette, 2002) but also set these
in perspective with the remarkably long coastline of price changes preceding
them.

20.3.1 THE NEW SCALING LAWS

Interest in scaling relations in FX data was sparked in 1990 by a seminal paper
relating the mean absolute change of the logarithmic midprices, sampled at time
intervals #t over a sample of size n#t, to the size of the time interval (Müller
et al., 1990)

〈|#χ |〉p =
(

#t
Cχ (p)

)Eχ (p)

(20.3)

where #χi = χi − χi−1 and χi = χ (ti) = (ln bidi + ln aski)/2 is the logarith-
mic midprice of a currency pair at time ti, and Eχ (p), Cχ (p) are the scaling-law
parameters. The averaging operator is 〈x〉p =

(
1/n

∑n
j=1 xp

j

)1/p, usually with
p ∈ {1, 2}, and p is omitted if equal to one. Note that for law (20.3), the data is
sampled at fixed time intervals ti = i#t. This requires a time interpolation scheme
(described in Glattfelder et al. (2010)), which we will also employ when necessary.
Throughout the chapter, we consider a simpler definition of the price given by
xi = (bidi + aski)/2, where price moves are defined as #xi = (xi − xi−1)/xi−1.
Although the definition of xi loses the mathematical feature of χi of behaving
antisymmetrically under price inversions (e.g., χEUR-USD

i = −χUSD-EUR
i ), it is

more natural because, practically, percentages are more intuitive to manipulate
than differences between logarithmic values. However, considering either χi or
xi leads to very similar results even for large spread values.
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Later, in 1997, a second scaling law was reported by Guillaume et al. (1997),
relating the number N (#χdc) of directional changes to the directional-change
sizes #χdc

N (#χdc) =
(

#χdc

CN ,dc

)EN ,dc

. (20.4)

In Glattfelder et al. (2010), and reviewed here, we confirm laws (20.3) and
(20.4), considering xi (Fig. 20.3a–c), and report on 12 new independent scaling
laws holding across 13 exchange rates and for close to three orders of magnitude.
Tables of the estimated parameter values for all the laws and for the 13 exchange
rates, as well as for a Gaussian random walk (GRW) model, are provided in
Glattfelder et al. (2010). Table 20.1 shows the estimated scaling-law parameters
for EUR-USD. We start the enumeration of the laws by a generalization of
Equation (20.4) that relates the average number of ticks observed during a price
move of #x to the size of this threshold

〈N (#xtck)〉 =
(

#x
CN ,tck

)EN ,tck

(20.5)

where a tick is defined as a price move larger than (in absolute value) #xtck =
0.02%. The definition of a tick can, however, be altered without destroying

TABLE 20.1 Estimated Scaling-Law Parameter Values Considering EUR-USD

Name Equation E C

Tick count 20.5 1.93 2.1 × 10−2

Price move count 20.6 −1.93 9.5 × 100

Maximum price move 20.7 (p = 1) 0.52 1.9 × 105

Maximum price move 20.7 (p = 2) 0.49 1.3 × 105

Time of price move 20.8 1.93 1.2 × 10−3

Time of directional change 20.9 1.88 1.1 × 10−3

Total-price move 20.13 0.98 4.9 × 10−1

Overshoot move 20.13 1.0 9.9 × 10−1

Time of total move 20.16 1.89 1.1 × 10−3

Time of directional change 20.16 1.85 1.6 × 10−3

Time of overshoot 20.16 1.91 1.4 × 10−3

Total-move tick count 20.17 1.89 1.9 × 10−2

Directional-change tick count 20.17 2.02 4.2 × 10−2

Overshoot tick count 20.17 1.87 2.3 × 10−2

Cumulative total move 20.18 −0.94 2.0 × 102

Cumulative total move with costs 20.18 −0.98 1.5 × 102

Cumulative directional change 20.18 −0.95 8.8 × 101

Cumulative overshoot 20.18 −0.92 1.1 × 102
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the scaling-law relation. In essence, this law counts the average number of ticks
observed during every price move #x. Law (20.5) is plotted in Figure 20.2. The
second law counts the average yearly number N (#x) of price moves of size #x

N (#x) =
(

#x
CN ,x

)EN ,x

(20.6)

We annualize the number of observations of laws (20.4) and (20.6) by
dividing them by 5, the number of years in our data sample. Law (20.6) and all
the following scaling laws are given in Figure 20.3 The next scaling law relates
the average maximal price range #xmax, defined as the difference between the
high and low price levels, during a time interval #t, to the size of that time
interval

〈#xmax〉p =
(

#t
Cmax(p)

)Emax(p)

(20.7)
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FIGURE 20.2 Scaling law (20.5) is plotted, where the x-axis shows the price move
thresholds of the observations and the y-axis, the average tick numbers. A tick is defined as a
price move of 0.02%. The solid line shows the raw data for EUR-USD. For the remaining 12
currency pairs and the Gaussian random walk benchmark model, the raw data is displayed with
dots. Insets show the distribution of the EUR-USD observations (drawn above their x-axis) for
selected threshold values of 0.1% and 3.0%. See Glattfelder et al. (2010) for the values of the
estimated scaling-law parameters.
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FIGURE 20.3 Plots of all scaling laws described in the text. (a) Mean price move,
(b) quadratic mean price move, (c) directional-change count, (d) price move count, (e) maximum
price move, (f) quadratic mean maximum price move, (g) mean time of price move, (h) time
during directional changes, (i) total-price move, (j) time of total move, (k) total-move tick
count, (l) coastline (cumulative total move), (m) directional-change move, (n) time of directional
change, (o) directional-change tick count, (p) cumulative directional change, (q) overshoot move,
(r) time of overshoot, (s) overshoot tick count, and (t) cumulative overshoot. Symbols are as in
Figure 20.2. The raw data is plotted for the 13 currency pairs with dots and for the Gaussian
random walk model with dashes. See Glattfelder et al. (2010) for the values of the estimated
scaling-law parameters.
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where #xmax = max{x(τ ); τ ∈ [t − #t; t]} − min{x(τ ); τ ∈ [t − #t; t]} and
Equation (20.7) holds for p = 1, 2.

The statistical properties of a GRW are, as is well known, different to the
observed empirical data in many respects (Mandelbrot and Hudson, 2004).
Having said this, it is striking how closely this simple model can reproduce many
of the average statistical properties of the real market. Notable differences are
seen in law (20.7) (Figs 20.3e and f), which reveal an unintuitive result: the
bell-curve distribution of price moves leads to an average maximal price move
that is roughly eight times larger than that observed for the empirical data.

We have also discovered laws relating the time during which events happen
to the magnitude of these events. Law (20.8) relates the average time interval
〈#tx〉 for a price change of size #x to occur to the size of the threshold

〈#tx〉 =
(

#x
Ct,x

)Et,x

(20.8)

and similarly, considering directional changes of threshold λ

〈#tdc〉 =
(

λ

Ct,dc

)Et,dc

(20.9)

Thus, laws (20.8) and (20.9) relate the average numbers of seconds that
elapse between consecutive price moves and directional changes, respectively.

Next, we unveil a set of scaling laws emerging from the identification of
directional-change events that make up the so-called total-move (TM) segments,
which themselves decompose into directional-change (DC) and overshoot (OS)
parts. The total-price move, waiting time, and number of ticks can then be
written as

〈|#xtm|〉 = 〈|δ|〉 + 〈|ω|〉, (20.10)

〈#t tm〉 = 〈#tdc〉 + 〈#tos〉, (20.11)

〈N (#xtm
tck)〉 = 〈N (#xdc

tck)〉 + 〈N (#xos
tck)〉. (20.12)

This decomposition leads to nine additional scaling laws, where the average
values are functions of the directional-change thresholds λ

〈|#xtm|〉 =
(

λ

Cx,tm

)Ex,tm

(20.13)

〈|δ|〉 =
(

λ

Cx,dc

)Ex,dc

(20.14)

〈|ω|〉 =
(

λ

Cx,os

)Ex,os

(20.15)
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〈#t∗〉 =
(

λ

Ct,∗

)Et,∗

(20.16)

〈N (#x∗
tck)〉 =

(
λ

CN ,∗

)EN ,∗
(20.17)

where ∗ stands for {tm, dc, os}. Note that 〈|δ|〉 = λ holds by construction.
The actual deviation to Ex,dc = 1 and Cx,dc = 1, as seen in Glattfelder et al.
(2010), is given by the increasing noise for small thresholds, as the impact of
the effect of a tick exceeding the exact threshold systematically overestimates
〈|δ|〉 (Fig. 20.3m). The average parameter values (across the 13 currency pairs)
of law (20.13) display a peculiar feature: on average, a directional change λ is
followed by an overshoot of the same magnitude 〈|ω|〉 ≈ λ (Eav

x,os ≈ 1.04 and
C av

x,os ≈ 1.06), making the total move double the size of the directional-change
threshold 〈|#xtm|〉 ≈ 2λ (Eav

x,to ≈ 0.99 and C av
x,to ≈ 0.51). This result is also

found by computing the probable path of the price within a binomial tree
as 0.5#x + 0.52 2#x + 0.53 3#x + · · · = #x

∑n
i i 0.5i n→∞−−−→ 2#x. A similar

feature holds for the waiting times and number of ticks: 〈|#tos|〉 ≈ 2〈|#tdc|〉 and
〈N(#xos

tck)〉 ≈ 2〈N(#xdc
tck)〉. Although in terms of size the overshoot price move

is approximately as big as the direction-change threshold, it contains roughly
twice as many ticks and takes twice as long to unfold.

Considering cumulative price moves instead of the averages in law (20.3)
leads to another triplet of laws

#x∗
cum =

n∑

i=1

|#x∗
i | =

(
λ

Ccum,∗

)Ecum,∗

(20.18)

This concludes the presentation of 17 new scaling laws: we count Equation
(20.7) twice for p = 1, 2 and omit the trivial scaling law 〈|δ|〉 ∝ λ. In Glattfelder
et al. (2010), we actually show that 12 laws are independent and hence can be
understood as primary laws.

20.3.2 THE COASTLINE

We now have the necessary tools in hand to come back to the measurement
of the length of the coastline. The total-move scaling law (20.18) allows us to
estimate its size as a function of the resolution defined by the directional-change
threshold. Considering thresholds of 0.01%, 0.1%, 1%, and 5%, one finds the
average lengths of the annualized coastline to be 22, 509%, 2046%, 186%,
and 34.8%, respectively. So by decreasing the threshold of resolution 500-fold,
the length of the coastline decreases by a factor of 650. Similarly, looking
at the GRW, we find 14, 361%, 1946%, 264%, and 65.2%, respectively. The
500-fold decrease in resolution entails a coastline decrease by a factor of only
220, highlighting the fact that GRW has fewer small moves and more middle-
sized moves than the empirical price curves. Not surprisingly, taking transaction
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costs into account breaks the scaling law for small thresholds. However, it is
still possible to evaluate the length of the coastline by employing the scaling
relation for the interval [0.1%, 5%] and measuring it for 0.05%. Thus, for the
thresholds 0.05%, 0.1%, 1%, and 5% the new average coastline lengths are now
1, 604%, 1, 463%, 161%, 34.5%. For the 0.05% threshold (which occurs on
average every 15 min), we measure an average daily coastline of 6.4%. The range
of these average daily coastline lengths is from 1.8% for EUR-CHF to 9.1% for
AUD-JPY.

20.4 The Scale of Market Quakes

Scaling laws relate price moves, duration, and frequency; let us use this scaling-
law methodology to measure multiscale events such as market responses due
to news announcements or price jumps due to endogenous factors, such as
lack of liquidity (Joulin et al., 2008). Although a considerable amount of
research has been devoted to quantifying market impact of such events, see
for example Bauwens et al. (2005), Bouchaud (2009), Chaboud et al. (2004),
Dominguez (2003), Engle and Ng (1993) and references therein, there has been
to our knowledge only one attempt at quantifying multiscale events (Zumbach,
2000) where the authors propose a scale that is a weighted average of returns
over different (physical) time horizons. This approach suffers from the rigidity
of physical time and does not seem to measure comparable magnitudes over
different currency pairs. To alleviate these issues, and also inspired by the Richter
scale Richter (1958), we propose a methodology to quantify these multiscale
events along a scale, the SMQ (Bisig et al., 2012), which defines a tick-by-tick
metric allowing us to quantify market quakes on a continuous basis where we
monitor the excess price moves from one directional change to the next, that is,
the price overshoots. In the rest of this section, we summarize the main findings
from Bisig et al. (2012).

The SMQ can be used in different ways; decision makers can use the
indicator as a tool to filter the significance of market events. The output of the
SMQ can be used as an input to forecasting or trading models to identify regime
shifts and change the input factors.

Every occurrence of a directional change triggers a new overshoot that
oscillates between −λ and any positive value until it decreases by −λ from its
recent price extreme causing the next directional change. Figure 20.4(a) shows
the overshoot dynamics.

To measure the market activity over a range of price scales, we define an
average overshoot ω̄ as

ω̄(t) = 1
nλ

nλ∑

i=1

ωq(t, λi) (20.19)

where nλ is the number of thresholds λi and the superscript q denotes the
quantile taken from the historical distribution of price overshoot associated to a
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FIGURE 20.4 Sample evolution of (a) the price overshoot ω(t) and (b) the average price
overshoot ω̄(t). (a) Alternated gray and black lines show the overshoot normalized by λ.
(b) A subset of the nλ thresholds are shown in gray and the black line shows the average overshoot
ω̄(t). Overshoots are measured in quantiles to ensure a normalized measurement.

threshold λ and computed from tick-by-tick date from December 1, 2005, up to
December 31, 2008. Overshoots are expressed in quantiles to ensure a normalized
measurement and to be averaged over different thresholds. We consider evenly
distributed thresholds and set λi = i 0.05% with i running from 1 to nλ = 100.
Figure 20.4(b) shows the time evolution of ω̄.

We now describe the way the average overshoot ω̄(t) is converted into a
unique number: the SMQ S(t). It is defined as

S(t) = 1
na

na∑

i=0

F
(

%̄

(
t +

(
2i
na

− 1
)

δt
))

(20.20)

where δt is the time window, na = δt/δta is the time discretization of the average
and the set %̄(t) = {ω̄(τ ) − 〈ω̄(τ )〉%̄(t)|t − δt ≤ τ ≤ t + δt}. The average oper-
ator 〈·〉%̄(t) is used to prevent high or low plateaux to correspond to significantly
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different frequencies. The operator F(·) is defined as

F(%̄(t)) = 1
"nf /2 + 1#

"nf /2+1#∑

k=1

|Xk−1|
k

(20.21)

where nf = δt/δtf is the time discretisation of %̄(t), "·# is the floor operator, and
|Xk| is the magnitude of the Fourier frequency computed from the discretized
set %(t). The average is done only over half of the frequencies as the Fourier
transform of a real signal is symmetric around the middle of the spectrum. The
weighting ensures the robustness of the operator F(·) to small perturbations.

Figure 20.5(a–h) shows the behavior of EUR-USD and the SMQ on the
occasion of eight releases of nonfarm employment numbers Bureau of Labour
Statistics. The wide variety of market responses: a steep drop (f), the same price
move amplitude as in (f) but happening within a longer time period (e), little
reaction from the market (c), volatile market (g and h), or a drop immediately
followed by a recovery (b and g) is characterized by our methodology computing
a single number within the SMQ. As expected, we observe that the steep drop
(f) is associated with a higher value than (e), where the difference between the
two scenarios is mainly the time for the price move to occur. Scenario (b),
which could well go unnoticed as the original price level does not seem to be
altered by the news announcement, is given a significant SMQ magnitude that
is comparable to (e).

We also noticed in Figure 20.5a, b, and d that peaks of SMQ magnitude do
not always coincide with releasing time, as the market response can take a few
hours to operate.

As in the case of earthquakes, after-quakes occur, such as in (a and g), and
have, in contrast to what is shown here, also been observed to be stronger than
the original quake. The initial market impact can trigger margin calls that can
trigger a far bigger secondary market shock.

Figure 20.5i shows the distribution of the SMQ magnitude of two sets
of events versus the maximum price move that occurred within the next
12 hours following the events. The first events considered are 27 nonfarm
employment change announcements between 2007 and 2009, and the second
ones are 4687 SMQ magnitude peaks observed between December 2005 and
March 2009, where a SMQ magnitude peak corresponds to a value S(t), where
S(t) >S(t ± δta).

We observe a conelike structure where high values are not associated with
any small price moves whereas large price moves can relate to small SMQ values.
A high value necessarily implies that high price thresholds have been activated,
but a noticeable price move can happen as a jump in the market and therefore
does not necessarily correspond to a large SMQ value.

We stress here that we have opted for designing a scale that has a fixed frame of
reference, implying that the average of observed SMQ magnitudes as well as their
frequency can change over time, see Bisig et al. (2012) for analysis and discussion.

Here, we have restricted ourselves to EUR-USD and only considered US
news. The same analysis can be done for other currency pairs and news events.
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FIGURE 20.5 (a–h) Behavior of EUR-USD (thin lines) and the SMQ (thick line). The
announcement time is the dashed line, and its date appears on the top left of the figure.
(i) Distribution of the SMQ magnitude of two sets of events versus the maximum price move that
occurred within the next 12 h following the events. The first events (black circles) are 27 nonfarm
employment change announcements between 2007 and 2009, and the second ones (gray dots)
are 4687 SMQ magnitude peaks observed between December 2005 and March 2009 where a
SMQ magnitude peak S(t) is defined as S(t) > S(t ± δta). The 10% and 90% quantiles of the
distribution are shown.

We are, as we write, applying this methodology to eight currencies and publish
SMQ values for the main international news events at the www.olsen.ch.

20.5 Trading Models

20.5.1 OVERVIEW

In this section, we describe a new class of trading models. At Olsen, we use
this type of trading model in a portfolio of more than 20 currency pairs. The
positions of the trading models are countertrend, meaning that a price move
down triggers a buy; a price up move, a sell. These models provide liquidity to
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the market. Typically, prices move down when there is a lack of buyers, and
they move up when there are not enough sellers. By being countertrend, we help
balance demand and supply.

A trading model is made of basic agents: the so-called coastline traders
that are described in some detail below. The strength of our models is the fact
that these agents are identical across currency pairs. The only difference is the
price scale λ at which they operate, which adapts to the changing volatility
regimes.

20.5.2 COASTLINE TRADER

A coastline trader is a process that exploits profit opportunities contained in the
long coastline of prices. As seen above, the coastline is made of the price moves up
and down at a given price scale λ. As we shall see, trading the coastline generates
profits that is used to improve the price average and speed up the closure of the
position. On the price scale λ, the state of the process is defined by its exposure
eτ , price average aτ , and the length of overshoot lτ , where τ > 0 is the age of
the process expressed as the number of events. An event is the occurrence of a
price move of size λ. We now describe the state variables and the way the process
evolves.

A coastline trader is initialized when a price overshoot of magnitude ω is
observed. A common choice is to set ω = 1 · λ following the results shown above,
stating that the average overshoot length is equal to the originating price move.
Negative and positive price moves initialize long and short processes, respectively,
with initial price average a0 = x0, where xτ is the current bid or ask whether
the process is short or long, respectively. The process has initially an exposure
e0 set to G(l0 = 0), where G is a function describing position increments. The
quantity lτ > 0, ∀τ measures the price overshoot expressed as the number of λ
price moves the process is in, from the current price to a0. Note that here the
price overshoot does not end when an opposite λ price move occurs but when
the process is, as we shall see, in a profit and closes itself.

The occurrence of a new ±λ price move respectively decreases or increases
the counter lτ and makes the process state to evolve. In case of an increase
(lτ+1 = lτ + 1), a trade of size #eτ = G(lτ+1) is made and the exposure
becomes

eτ+1 = eτ + G(lτ+1) (20.22)

The new trade improves the price average, which reads

aτ+1 =
aτ eτ + xτ G(lτ+1)

eτ+1
(20.23)

where xτ is the ask or bid price when the process is long or short, respectively.
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On the other hand, when the length of the overshoot decreases by one unit
(lτ+1 = lτ − 1), part of the position #eτ = γ G(lτ ) is closed and the exposure
becomes

eτ+1 = eτ − γ G(lτ ) (20.24)

where 0 ≤ γ ≤ 1 tunes the size of closing trades. The larger the γ , the more
the coastline is traded as every up and down is fully traded. On the other hand,
setting γ close to 1 usually implies that a stronger price recovery is needed for
the process to be in a profit. We usually set γ = 0.5.

Closing part of the position generates a profit πr,τ expressed as

πr,τ = λ∗γ G(lτ )xbid,τ (20.25)

where the price xbid,τ is the bid price at time τ (the bid is taken as the profit is
positive) and where λ∗ ≈ λ is the inner price move (i.e., where the spread has
been deducted) that just occurred. Giving the discreteness of the time series of
prices, λ∗ is close to λ but usually not equal.

Because a profit is taken, the price average after having taken profit worsens
and becomes

aτ+1 =
(aτ − x̄τ )eτ − πr,τ

eτ+1
+ x̄τ (20.26)

where x̄τ is the bid or the ask prices when the process is long or short,
respectively.

We use the total realized profit πr =
∑

πr,τ to improve the price average of
the position. The coastline is thus used as a tool to manage positions. For that,
we introduce an altered price average, the so-called realized average ar

τ , that takes
the total realized profit π r into account

ar
τ = (aτ − x̄τ )eτ + πr

eτ
+ x̄τ (20.27)

A coastline trader process ends up its life when it is in a profit, that is, to
say when π = (x̄t − ar

τ )eτ ≥ π0, where π0 = 2δ/3 is the profit objective and t
is the time expressed in physical time as a position can be in a profit in between
events.

Figure 20.6 shows a possible coastline trading scenario. When an overshoot
happens, a coastline trader is launched at time 1. With every +λ price move,
the position grows by an additional G(1) + G(2). If at time 4, the size of the
overshoot reduces by one unit, then the exposure is reduced by G(2) units. Note
that here, as γ = 1, the process makes full use of the coastline and minimizes
exposure. On the other hand, this setting implies that a stronger price recovery is
needed before the position is back in a profit. The trader continues to trade the
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FIGURE 20.6 Occurrence of a coastline investment strategy.

coastline until the position. Then at time 5, the overshoot increases by one unit
and the exposure grows by an additional G(2). The exposure is now identical
to the one at time 3, but the realized average is smaller. However, in this scenario,
the realized average is still not close enough to end the process. Finally, at time 6,
the process is terminated and the position is closed, when the profit target has
been reached.

20.5.3 MONTHLY STATISTICS

Figure 20.7 shows monthly statistics computed from the execution on a sample
account of our investment strategy using coastline trading models, the so-called
AF program ols. The trading models of Olsen are based on the above algorithm,
and they also include additional risk management mechanisms to manage risk.
The running period is 23 months from November 2009 to September 2011
within a portfolio of 24 currency pairs: AUD-CAD, AUD-JPY, AUD-NZD,
AUD-USD, CAD-JPY, CHF-JPY, EUR-AUD, EUR-CAD, EUR-CHF, EUR-
GBP, EUR-JPY, EUR-NZD, EUR-USD, GBP-AUD, GBP-CAD, GBP-CHF,
GBP-JPY, GBP-USD, NZD-CAD, NZD-JPY, NZD-USD, USD-CAD, USD-
CHF, and USD-JPY. In Figure 20.7(a), we observe a smoothly increasing
cumulated profit that corresponds to the sum of 23 monthly profits for which
16 of them are positive. Figure 20.7(b) shows the distribution of the monthly
number of trades summing up to more than 830, 000 executed trades. Even
though the standard deviation of the sample is large, it is informative to compute
the average number of executed trades per minute: 830, 000/23/30/24/60 ≈ 1
trade per minute. We observe in Figure 20.7b and c that the trading models react
to market activity and provide liquidity when needed. Indeed the lower activity
in December 2009 and in the summer of 2010 is due to holidays season. In
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FIGURE 20.7 Monthly statistics of the execution of our trading models on a sample
account. Here we show numbers corresponding to the AF program ols. The running period is
23 months from November 2009 to September 2011 within a portfolio of 24 major currency
pairs. (a) Bars and the solid line show monthly and cumulated profit, respectively. (b) Monthly
number of trades. (c) Monthly volume expressed in multiple of capital. Volume is defined as the
sum of the absolute value of executed trades.

contrast, the fairly high activity in May 2010 and August 2011 are, respectively,
the result of the flash crash on May 6, 2010, and the CHF approaching parity
against the EUR at an extraordinary pace, followed by the SNB establishing a
floor in EUR-CHF.
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20.6 Conclusion

As we have seen during the current economic crisis, financial markets are
unstable. The price instability is a result of demand and supply not balancing
each other out for periods of time. We have been able to show that currency
markets have distinct statistical properties in the form of scaling laws that have
not been discovered before because researchers did not analyze market data using
intrinsic time. These properties are useful in several respects. First, it has allowed
us to design a SMQ that measures the impact of political and economic events.
Second, using the approach of intrinsic time we have shown that it is possible
to develop a new class of trading models that balances demand and supply. We
have presented an algorithm that generates incremental returns from the long
coastline of price moves and inject liquidity into the market, thus contributing
to overall market stability and thereby to the overall well-being.

We actually take for granted that these unexpected events are bounded, and
even more, we assume that they will eventually revert themselves to bounce
back where they were. But what if all market participants decide otherwise and
all act synchronously as they recently did in the flash crash of May 6, 2010?
Should we not have ways to prevent this system from slipping dangerously
closer and closer to the precipice? And at the same time generate profit? We
believe we should and have partially solved this challenging task by designing
high frequency countertrading models providing liquidity when and where it
is needed. More work remains to be done and our progress can be followed at
www.olseninvest.com.
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